
Auto Scaling
Developer Guide

API Version 2011-01-01

Auto Scaling: Developer Guide
Copyright © 2015 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
AWS CloudTrail, AWS CodeDeploy, Amazon Cognito, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic
Compute Cloud, Amazon Glacier, Amazon Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift,
Amazon Route 53, Amazon S3, Amazon VPC, and Amazon WorkDocs. In addition, Amazon.com graphics, logos, page headers,
button icons, scripts, and service names are trademarks, or trade dress of Amazon in the U.S. and/or other countries. Amazon's
trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is
likely to cause confusion among customers, or in any manner that disparages or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Auto Scaling Developer Guide

Table of Contents
What Is Auto Scaling? .. 1

Auto Scaling Components ... 2
Getting Started ... 2
Accessing Auto Scaling .. 2
Pricing for Auto Scaling .. 3
Related Services ... 3
Benefits of Auto Scaling .. 3

Example: Covering Variable Demand .. 4
Example: Web App Architecture ... 5
Example: Distributing Instances Across Availability Zones ... 6

Launch Configurations ... 7
Auto Scaling Groups .. 8
Scaling Plans .. 8
Auto Scaling Lifecycle .. 9

Auto Scaling Basic Lifecycle .. 9
Auto Scaling Instance States ... 11

Auto Scaling Limits .. 14
Setting Up .. 15

Sign Up for AWS ... 15
Prepare to Use Amazon EC2 ... 15

Install the CLI .. 16
Set the JAVA_HOME Environment Variable .. 16
Install the Auto Scaling CLI .. 16

Get the CLI .. 17
Set the Environment Variable for the CLI .. 17
Manage Access for the CLI ... 17
Change the Region .. 18

Verify that the Auto Scaling CLI is Installed ... 19
Commands ... 21

Getting Started .. 22
Create a Launch Configuration ... 22
Create an Auto Scaling Group .. 23
Verify Your Auto Scaling Group ... 24
(Optional) Delete Your Auto Scaling Infrastructure .. 25

Planning Your Auto Scaling Group .. 26
Scaling Your Group .. 27

Multiple Scaling Policies .. 27
Understanding Cooldowns .. 28
Choosing a Termination Policy ... 31
Maintaining a Fixed Number of EC2 Instances .. 34
Manual Scaling ... 35
Dynamic Scaling .. 35

Controlling Access to Your Auto Scaling Resources ... 49
Auto Scaling Actions .. 49
Auto Scaling Resources .. 49
Auto Scaling Keys .. 49
Example IAM Policies for Auto Scaling ... 50
Launch Auto Scaling Instances with an IAM Role .. 51

Creating Launch Configurations ... 54
Create a Launch Configuration ... 54
Create a Launch Configuration Using an EC2 Instance .. 55

Creating Auto Scaling Groups .. 58
Create an Auto Scaling Group .. 59
Create an Auto Scaling Group from an EC2 Instance ... 60

Auto Scaling and Amazon VPC .. 61

API Version 2011-01-01
iii

Auto Scaling Developer Guide

Default VPC .. 62
IP Addressing in a VPC .. 62
Instance Placement Tenancy ... 62
Linking EC2-Classic Instances to a VPC .. 63
Launch Auto Scaling Instances in a VPC .. 65

Controlling Instances .. 65
Introducing Lifecycle Hooks ... 66
Lifecycle Hook Examples .. 70

Tagging Auto Scaling Groups and Instances ... 76
Tag Restrictions ... 76
Add or Modify Tags for Your Auto Scaling Group .. 76
Delete Tags .. 77

Launching Spot Instances in Your Auto Scaling Group .. 78
Launching Spot Instances Using the Auto Scaling CLI .. 78

Configuring Your Auto Scaling Groups ... 85
Load Balance Your Auto Scaling Group .. 86

Set Up a Scaled and Load-Balanced Application ... 87
Add an Elastic Load Balancing Health Check to your Auto Scaling Group 88
Expand Your Scaled and Load-Balanced Application to an Additional Availability Zone 89

Attach EC2 Instances to Your Auto Scaling Group .. 90
Attaching an Instance Using the Auto Scaling CLI ... 91

Detach EC2 Instances From Your Auto Scaling Group .. 92
Detaching Instances Using the Auto Scaling CLI ... 92

Merging Auto Scaling Groups .. 93
Merge Zones Using the Auto Scaling CLI ... 93

Temporarily Removing Instances .. 95
Troubleshooting Instances ... 95
Updating or Modifying Instances ... 97

Suspend and Resume Processes ... 98
Auto Scaling Processes .. 99
Suspend and Resume Processes Using the Auto Scaling CLI .. 100

Shut Down Auto Scaling Processes Using the AWS CLI ... 100
Delete Your Auto Scaling Group .. 101
(Optional) Delete the Launch Configuration .. 101
(Optional) Delete the Load Balancer .. 101
(Optional) Delete CloudWatch Alarms .. 101

Monitoring Your Auto Scaling Instances .. 102
Amazon CloudWatch Alarms .. 102
Activating Detailed Instance Monitoring for Auto Scaling ... 103
Activating Basic Instance Monitoring for Auto Scaling ... 103
Auto Scaling Group Metrics ... 104

Auto Scaling Group Metrics Table ... 104
Dimensions for Auto Scaling Group Metrics .. 105

Health Checks ... 105
Set the Health State of An Instance Using the Auto Scaling CLI ... 106

Getting Notifications When Your Auto Scaling Group Changes ... 106
Configure Amazon SNS .. 107
Configure Your Auto Scaling Group to Send Notifications .. 107
Test the Notification Configuration ... 108
Verify That You Received Notification of the Scaling Event ... 108
Delete the Notification Configuration .. 109

Logging Auto Scaling API Calls By Using AWS CloudTrail ... 109
Auto Scaling Information in CloudTrail .. 110
Understanding Auto Scaling Log File Entries ... 110

Troubleshooting ... 113
Retrieving an Error Message .. 113
Instance Launch Failure .. 115

API Version 2011-01-01
iv

Auto Scaling Developer Guide

The security group <name of the security group> does not exist. Launching EC2 instance
failed. ... 116
The key pair <key pair associated with your EC2 instance> does not exist. Launching EC2
instance failed. .. 116
The requested configuration is currently not supported. .. 116
AutoScalingGroup <Auto Scaling group name> not found. ... 116
The requested Availability Zone is no longer supported. Please retry your request 117
Your requested instance type (<instance type>) is not supported in your requested Availability
Zone (<instance Availability Zone>).... ... 117
You are not subscribed to this service. Please see http://aws.amazon.com. 117
Invalid device name upload. Launching EC2 instance failed. .. 117
Value (<name associated with the instance storage device>) for parameter virtualName is
invalid... .. 118
EBS block device mappings not supported for instance-store AMIs. 118
Placement groups may not be used with instances of type 'm1.large'. Launching EC2 instance
failed. ... 118

Amazon EC2 AMIs ... 118
The AMI ID <ID of your AMI> does not exist. Launching EC2 instance failed. 119
AMI <AMI ID> is pending, and cannot be run. Launching EC2 instance failed. 119
Non-Windows AMIs with a virtualization type of 'hvm' currently may only be used with Cluster
Compute instance types. Launching EC2 instance failed. .. 119
Value (<ami ID>) for parameter virtualName is invalid. .. 119
The requested instance type's architecture (i386) does not match the architecture in the manifest
for ami-6622f00f (x86_64). Launching ec2 instance failed. ... 120

Load Balancer Configuration .. 120
Cannot find Load Balancer <your launch environment>. Validating load balancer configuration
failed. ... 120
There is no ACTIVE Load Balancer named <load balancer name>. Updating load balancer
configuration failed. .. 121
EC2 instance <instance ID> is not in VPC. Updating load balancer configuration failed. 121
EC2 instance <instance ID> is in VPC. Updating load balancer configuration failed. 121
The security token included in the request is invalid. Validating load balancer configuration
failed. ... 121

Capacity Limits .. 121
We currently do not have sufficient <instance type> capacity in the Availability Zone you
requested (<requested Availability Zone>).... ... 122
<number of instances> instance(s) are already running. Launching EC2 instance failed. 122

API Version 2011-01-01
v

Auto Scaling Developer Guide

What Is Auto Scaling?

Auto Scaling helps you ensure that you have the correct number of EC2 instances available to handle
the load for your application.You create collections of EC2 instances, called Auto Scaling groups.You
can specify the minimum number of instances in each Auto Scaling group, and Auto Scaling ensures that
your group never goes below this size.You can specify the maximum number of instances in each Auto
Scaling group, and Auto Scaling ensures that your group never goes above this size. If you specify the
desired capacity, either when you create the group or at any time thereafter, Auto Scaling ensures that
your group has this many instances. If you specify scaling policies, then Auto Scaling can launch or
terminate instances as demand on your application increases or decreases.

For example, the following Auto Scaling group has a minimum size of 1 instance, a desired capacity of
2 instances, and a maximum size of 4 instances. The scaling policies that you define adjust the number
of instances, within your minimum and maximum number of instances, based on the criteria that you
specify.

For more information about the benefits of Auto Scaling, see Benefits of Auto Scaling (p. 3).

API Version 2011-01-01
1

Auto Scaling Developer Guide

Auto Scaling Components
The following table describes the key components of Auto Scaling.

Groups

Your EC2 instances are organized into groups so
that they can be treated as a logical unit for the
purposes of scaling and management. When you
create a group, you can specify its minimum, max-
imum, and, desired number of EC2 instances. For
more information, see Auto Scaling Groups (p. 8).

Launch configurations

Your group uses a launch configuration as a tem-
plate for its EC2 instances. When you create a
launch configuration, you can specify information
such as the AMI ID, instance type, key pair, security
groups, and block device mapping for your in-
stances. For more information, see Launch Config-
urations (p. 7).

Scaling plans

A scaling plan tells Auto Scaling when and how to
scale. For example, you can base a scaling plan
on the occurrence of specified conditions (dynamic
scaling) or on a schedule. For more information,
see Scaling Plans (p. 8).

Getting Started
If you're new to Auto Scaling, we recommend that you review Auto Scaling Lifecycle (p. 9) before you
begin.

To begin, complete the Getting Started with the Auto Scaling CLI (p. 22) tutorial to create an Auto Scaling
group and see how it responds when an instance in that group terminates. If you already have running
EC2 instances, you can create an Auto Scaling group using an existing EC2 instance, and remove the
instance from the group at any time. After you are familiar with how Auto Scaling works, read Planning
Your Auto Scaling Group (p. 26) to learn how to make the most of Auto Scaling.

Accessing Auto Scaling
AWS provides a web-based user interface, the AWS Management Console. If you've signed up for an
AWS account, you can access Auto Scaling by signing into the AWS Management Console. To get
started, select EC2 from the console home page, and then select Launch Configurations from the
navigation pane.

If you prefer to use a command line interface, you have several options:

API Version 2011-01-01
2

Auto Scaling Developer Guide
Auto Scaling Components

AWS Command Line Interface (CLI)
Provides commands for a broad set of AWS products, and is supported on Windows, Mac, and Linux.
To get started, see AWS Command Line Interface User Guide. For more information about the
commands for Auto Scaling, see autoscaling in the AWS Command Line Interface Reference.

Auto Scaling Command Line Interface (CLI) Tools
Provides commands for Auto Scaling, and is supported on Windows, Mac, and Linux. To get started,
see Install the Auto Scaling CLI (p. 16).

AWS Tools for Windows PowerShell
Provides commands for a broad set of AWS products for those who script in the PowerShell
environment. To get started, see the AWS Tools for Windows PowerShell User Guide. For more
information about the cmdlets for Auto Scaling, see the AWS Tools for Windows PowerShell Reference.

Auto Scaling provides a Query API. These requests are HTTP or HTTPS requests that use the HTTP
verbs GET or POST and a Query parameter named Action. For more information about the API actions
for Amazon EC2, see Actions in the Amazon EC2 API Reference.

If you prefer to build applications using language-specific APIs instead of submitting a request over HTTP
or HTTPS, AWS provides libraries, sample code, tutorials, and other resources for software developers.
These libraries provide basic functions that automate tasks such as cryptographically signing your requests,
retrying requests, and handling error responses, making it is easier for you to get started. For more
information, see AWS SDKs and Tools.

For information about your credentials for accessing AWS, see AWS Security Credentials in the Amazon
Web Services General Reference.

Pricing for Auto Scaling
There are no additional fees with Auto Scaling, so it's easy to try it out and see how it can benefit your
AWS architecture.

Related Services
To automatically distribute incoming application traffic across multiple instances in your Auto Scaling
group, use Elastic Load Balancing. For more information, see Elastic Load Balancing Developer Guide.

To monitor basic statistics for your instances and Amazon EBS volumes, use Amazon CloudWatch. For
more information, see the Amazon CloudWatch Developer Guide.

To monitor the calls made to the Auto Scaling API for your account, including calls made by the AWS
Management Console, command line tools, and other services, use AWS CloudTrail. For more information,
see the AWS CloudTrail User Guide.

Benefits of Auto Scaling
Adding Auto Scaling to your application architecture is one way to maximize the benefits of the AWS
cloud. When you use Auto Scaling, your applications gain the following benefits:

• Better fault tolerance. Auto Scaling can detect when an instance is unhealthy, terminate it, and launch
an instance to replace it.

• Better availability.You can configure Auto Scaling to use multiple Availability Zones. If one Availability
Zone becomes unavailable, Auto Scaling can launch instances in another one to compensate.

API Version 2011-01-01
3

Auto Scaling Developer Guide
Pricing for Auto Scaling

http://docs.aws.amazon.com/cli/latest/userguide/
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/index.html
http://docs.aws.amazon.com/powershell/latest/userguide/
http://docs.aws.amazon.com/powershell/latest/reference/Index.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html
http://aws.amazon.com/tools/
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

• Better cost management. Auto Scaling can dynamically increase and decrease capacity as needed.
Because you pay for the EC2 instances you use, you save money by launching instances when they
are actually needed and terminating them when they aren't needed.

Contents

• Example: Covering Variable Demand (p. 4)

• Example: Web App Architecture (p. 5)

• Example: Distributing Instances Across Availability Zones (p. 6)

Example: Covering Variable Demand
To demonstrate some of the benefits of Auto Scaling, consider a basic Web application running on AWS.
This application allows employees to search for conference rooms that they might want to use for meetings.
During the beginning and end of the week, usage of this application is minimal. During the middle of the
week, more employees are scheduling meetings, so the demands on the application increases significantly.

The following graph shows how much of the application's capacity is used over the course of a week.

Traditionally, there are two ways to plan for these changes in capacity. The first option is to add enough
servers so that the application always has enough capacity to meet demand.The downside of this option,
however, is that there are days in which the application doesn't need this much capacity. The extra
capacity remains unused and, in essence, raises the cost of keeping the application running.

The second option is to have enough capacity to handle the average demands on the application. This
option is less expensive, because you aren't purchasing equipment that you'll only use occasionally.
However, you risk creating a poor customer experience when the demands on the application exceeds
its capacity.

API Version 2011-01-01
4

Auto Scaling Developer Guide
Example: Covering Variable Demand

By adding Auto Scaling to this application, you have a third option available.You can add new instances
to the application only when necessary, and terminate them when they're no longer needed. And because
Auto Scaling uses EC2 instances, you only have to pay for the instances you use, when you use them.
You now have a cost-effective architecture that provides the best customer experience while minimizing
expenses.

Example: Web App Architecture
In a common web app scenario, you run multiple copies of your app simultaneously to cover the volume
of your customer traffic. These multiple copies of your application are hosted on identical EC2 instances
(cloud servers), each handling customer requests.

Auto Scaling manages the launch and termination of these EC2 instances on your behalf.You define a
set of criteria (such as an Amazon CloudWatch alarm) that determines when the Auto Scaling group
launches or terminates EC2 instances. Adding Auto Scaling groups to your network architecture can help
you make your application more highly available and fault tolerant.

API Version 2011-01-01
5

Auto Scaling Developer Guide
Example: Web App Architecture

You can create as many Auto Scaling groups as you need. For example, you can create an Auto Scaling
group for each tier.

To distribute traffic between the instances in your Auto Scaling groups, you can introduce a load balancer
into your architecture. For more information, see Load Balance Your Auto Scaling Group (p. 86).

Example: Distributing Instances Across Availability
Zones
AWS resources, such as EC2 instances, are housed in highly-available data centers.To provide additional
scalability and reliability, these data centers are in different physical locations. Regions are large and
widely dispersed geographic locations. Each region contains multiple distinct locations, called Availability
Zones, that are engineered to be isolated from failures in other Availability Zones and provide inexpensive,
low-latency network connectivity to other Availability Zones in the same region. For information about the
regions for Auto Scaling, see Regions and Endpoints: Auto Scaling in the Amazon Web Services General
Reference.

Auto Scaling enables you to take advantage of the safety and reliability of geographic redundancy by
spanning Auto Scaling groups across multiple Availability Zones within a region. When one Availability
Zone becomes unhealthy or unavailable, Auto Scaling launches new instances in an unaffected Availability
Zone. When the unhealthy Availability Zone returns to a healthy state, Auto Scaling automatically
redistributes the application instances evenly across all of the designated Availability Zones.

An Auto Scaling group can contain EC2 instances in one or more Availability Zones within the same
region. However, Auto Scaling groups cannot span multiple regions.

For Auto Scaling groups in a VPC, the EC2 instances are launched in subnets.You can create your VPC
with one or more subnets in each Availability Zone.You select the subnets for your EC2 instances when
you create or update the Auto Scaling group. For more information, see Auto Scaling and Amazon Virtual
Private Cloud (p. 61).

Instance Distribution
Auto Scaling attempts to distribute instances evenly between the Availability Zones that are enabled for
your Auto Scaling group. Auto Scaling does this by attempting to launch new instances in the Availability
Zone with the fewest instances. If the attempt fails, however, Auto Scaling attempts to launch the instances
in another Availability Zone until it succeeds. For each instance that Auto Scaling launches in a VPC, it
selects a subnet from the Availability Zone at random.

API Version 2011-01-01
6

Auto Scaling Developer Guide
Example: Distributing Instances Across Availability

Zones

http://docs.aws.amazon.com/general/latest/gr/rande.html#as_region

Rebalancing Activities
Certain operations and conditions can cause your Auto Scaling group to become unbalanced between
Availability Zones. Auto Scaling compensates by creating a rebalancing activity under any of the following
conditions:

• You issue a request to change the Availability Zones for your group.

• You explicitly call for termination of a specific instance that caused the group to become unbalanced.

• An Availability Zone that previously had insufficient capacity recovers and has additional capacity
available.

When rebalancing, Auto Scaling launches new instances before terminating the old ones, so that
rebalancing does not compromise the performance or availability of your application.

Because Auto Scaling attempts to launch new instances before terminating the old ones, being at or near
the specified maximum capacity could impede or completely halt rebalancing activities. To avoid this
problem, the system can temporarily exceed the specified maximum capacity of a group by a 10 percent
margin (or by a 1-instance margin, whichever is greater) during a rebalancing activity. The margin is
extended only if the group is at or near maximum capacity and needs rebalancing, either because of
user-requested rezoning or to compensate for zone availability issues. The extension lasts only as long
as needed to rebalance the group typically a few minutes.

Launch Configurations
A launch configuration is a template that an Auto Scaling group uses to launch EC2 instances. When you
create a launch configuration, you specify information for the instances such as the ID of the Amazon
Machine Image (AMI), the instance type, a key pair, one or more security groups, and a block device
mapping.

When you create an Auto Scaling group, you must specify a launch configuration.You can specify your
launch configuration with multiple Auto Scaling groups. However, you can only specify one launch
configuration for an Auto Scaling group at a time, and you can't modify a launch configuration after you've
created it. Therefore, if you want to change the launch configuration for your Auto Scaling group, you
must create a new launch configuration and then update your Auto Scaling group with the new launch
configuration. When you change the launch configuration for your Auto Scaling group, any new instances
are launched using the new configuration parameters, but existing instances are not affected.

API Version 2011-01-01
7

Auto Scaling Developer Guide
Launch Configurations

For information about creating a launch configuration, see Creating Launch Configurations (p. 54).

Auto Scaling Groups
An Auto Scaling group contains a collection of EC2 instances that share similar characteristics and are
treated as a logical grouping for the purposes of instance scaling and management. For example, if a
single application operates across multiple instances, you might want to increase the number of instances
in that group to improve the performance of the application, or decrease the number of instances to reduce
costs when demand is low.You can use the Auto Scaling group to scale the number of instances
automatically based on criteria that you specify, or maintain a fixed number of instances even if a instance
becomes unhealthy. This automatic scaling and maintaining the number of instances in an Auto Scaling
group is the core value of the Auto Scaling service.

When you create a Auto Scaling group, you must specify a name, launch configuration, minimum number
of instances, and maximum number of instances.You can optionally specify a desired capacity, which
is the number of instances that the group must have at all times. If you don't specify a desired capacity,
the default desired capacity is the minimum number of instances that you specified. For information about
creating an Auto Scaling group, see Creating Auto Scaling Groups (p. 58).

An Auto Scaling group starts by launching enough EC2 instances to meet its desired capacity. The Auto
Scaling group maintains this number of instances by performing periodic health checks on the instances
in the group. If an instance becomes unhealthy, the group terminates the unhealthy instance and launches
another instance to replace it.

You can use scaling policies to increase or decrease the number of running EC2 instances in your group
automatically to meet changing conditions. When the scaling policy is in effect, the Auto Scaling group
adjusts the desired capacity of the group and launches or terminates the instances as needed. If you
manually scale or scale on a schedule, you must adjust the desired capacity of the group in order for the
changes to take effect. For more information, see Scaling Plans (p. 8).

Scaling Plans
Auto Scaling provides several ways for you to scale your Auto Scaling group.

Maintain current instance levels at all times

You can configure your Auto Scaling group to maintain a minimum or specified number of running instances
at all times. To maintain the current instance levels, Auto Scaling performs a periodic health check on
running instances within an Auto Scaling group. When Auto Scaling finds an unhealthy instance, it
terminates that instance and launches a new one. For information about configuring your Auto Scaling
group to maintain the current instance levels, see Maintaining a Fixed Number of EC2 Instances in Your
Auto Scaling Group (p. 34).

Manual scaling

Manual scaling is the most basic way to scale your resources.You only need to specify the change in
the maximum, minimum, or desired capacity of your Auto Scaling group. Auto Scaling manages the
process of creating or terminating instances to maintain the updated capacity. For more information, see
Manual Scaling (p. 35).

Scale based on a schedule

Sometimes you know exactly when you will need to increase or decrease the number of instances in your
group, simply because that need arises on a predictable schedule. Scaling by schedule means that scaling

API Version 2011-01-01
8

Auto Scaling Developer Guide
Auto Scaling Groups

actions are performed automatically as a function of time and date. For more information, see Scheduled
Scaling (p. 42).

Scale based on demand

A more advanced way to scale your resources, scaling by policy, lets you define parameters that control
the Auto Scaling process. For example, you can create a policy that calls for enlarging your fleet of EC2
instances whenever the average CPU utilization rate stays above ninety percent for fifteen minutes. This
is useful when you can define how you want to scale in response to changing conditions, but you don’t
know when those conditions will change.You can set up Auto Scaling to respond for you.

Note that you should have two policies, one for scaling in (terminating instances) and one for scaling out
(launching instances), for each event to monitor. For example, if you want to scale out when the network
bandwidth reaches a certain level, create a policy specifying that Auto Scaling should start a certain
number of instances to help with your traffic. But you may also want an accompanying policy to scale in
by a certain number when the network bandwidth level goes back down. For more information, see
Dynamic Scaling (p. 35).

Auto Scaling Lifecycle
Like Amazon EC2 instances launched manually, instances in an Auto Scaling group follow a specific
path, or lifecycle. For Auto Scaling instances, this lifecycle starts when you create a new Auto Scaling
group or when a scale out event occurs. At that point, a new instance launches and is put into service by
the Auto Scaling group. The lifecycle ends when a corresponding scale in event occurs, at which point
the Auto Scaling group detaches the instance and terminates it.

Contents

• Auto Scaling Basic Lifecycle (p. 9)

• Auto Scaling Instance States (p. 11)

Auto Scaling Basic Lifecycle
The following illustration shows the basic lifecycle of instances within an Auto Scaling group. The Auto
Scaling group has a desired capacity of two instances, a CloudWatch alarm that can trigger scaling events,
and policies that scale the group at specific dates and times.

API Version 2011-01-01
9

Auto Scaling Developer Guide
Auto Scaling Lifecycle

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/LaunchingAndUsingInstances.html
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/AutoScalingGroupLifecycle.html#AutoScalingLifeCycleBasic

Each part of the lifecycle has performance implications for your Auto Scaling group.

Scale out

These events direct the Auto Scaling group to launch new instances and add them to the group. For
example:

• You manually (p. 35) increase the number of instances, either by setting a new minimum number of
instances or desired capacity for the group.

• You use a Amazon CloudWatch alarm (p. 35) to monitor your application and scale based on specified
criteria.

• You use a schedule-based policy (p. 42) to increase or decrease the number of instances in the group
at a specific time.

• An existing instance fails required health checks, or you manually configure an instance (p. 106) to have
a have an Unhealthy status.

Launch instances

After a scale out event occurs, the Auto Scaling group uses its assigned launch configuration to launch
one or more EC2 instances. The number of instances launched depends on how you configured the
scaling policies for your group. Instances that have launched but are not yet fully configured are typically
in the Pending (p. 12) state.You have the option of adding a hook to your Auto Scaling group that puts
instances in this state into a Pending:Wait.This state allows you to access these instances before they
are put into service.

Attach instances to the Auto Scaling group

After an instance is launched and fully configured, it is put into service and attached to the Auto Scaling
group. The instance now counts against the minimum size, maximum size, and desired capacity (if set)
for the Auto Scaling group. These instances are in the InService state.

Scale in

API Version 2011-01-01
10

Auto Scaling Developer Guide
Auto Scaling Basic Lifecycle

These events direct the Auto Scaling group to terminate instances and detach them from the group.They
can be triggered in the same way as a scale out event. It is important that you create a scale in event for
each scale out event that you create. This helps ensure that the resources assigned to your application
match the demand for those resources as closely as possible.

Terminate instances

Finally, the instance is completely terminated.

Detach instances from the Auto Scaling group

After a scale in event occurs, the Auto Scaling group detaches one or more instances. How the Auto
Scaling group determines which instance to terminate depends on its termination policy (p. 31). Instances
that are in the process of detaching from the Auto Scaling group and shutting down are in the
Terminating (p. 13) state.You have the option of adding a hook to your Auto Scaling group instances
in this state into a Terminating:Wait state. This state allows you to access these instances before
they are terminated.

Auto Scaling Instance States
Instances in an Auto Scaling group can be in one of four main states:

• Pending (p. 12)

• InService (p. 12)

• Terminating (p. 13)

• Terminated

The following diagram shows how an instance moves from one state to another.

You can take specific actions when an instance is in one of these states:

ActionState

Installing Software to Pending Instances (p. 70)

Filling a Cache of Servers (p. 72)

Pending

Updating or Modifying Instances in an Auto Scaling Group (p. 97)

Troubleshooting Instances in an Auto Scaling Group (p. 95)

InService

API Version 2011-01-01
11

Auto Scaling Developer Guide
Auto Scaling Instance States

ActionState

Analyzing an Instance Before Termination (p. 73)

Retrieving Logs from Terminating Instances (p. 74)

Terminating

Auto Scaling Pending State
When an Auto Scaling group reaches a scale out threshold, it launches one or more instances (as
determined by your scaling policy). These instances are configured based on the launch configuration
for the Auto Scaling group. While an instance is launched and configured, it is in a Pending state.

Depending on how you want to manage your Auto Scaling group, the Pending state can be divided into
two additional states: Pending:Wait and Pending:Proceed.You can use these states to perform
additional actions before the instances are added to the Auto Scaling group.

Examples of these additional actions include:

• Installing Software to Pending Instances (p. 70)

• Filling a Cache of Servers (p. 72)

Note
You are billed for instances as soon as they are launched. This means you will incur charges
even if instances are in a Pending:Wait state but are not yet in service.

Auto Scaling InService State
Instances that are functioning within your application as part of an Auto Scaling group are in the InService
state. Instances remain in this state until:

• An Auto Scaling scale in event occurs, reducing the size of the Auto Scaling group

• You put the instance into a Standby state.

• You manually detach the instance from the Auto Scaling group

• The instance fails a required number of health checks or you manually set the status of the instance
to Unhealthy.

In addition, any running instances that you attach to the Auto Scaling group are also in the InService
state.

API Version 2011-01-01
12

Auto Scaling Developer Guide
Auto Scaling Instance States

You have the option of putting any InService instance into a Standby state. Instances in this state
continue to be managed by the Auto Scaling group. However, they are not an active part of your application
until you put them back into service.

Examples of when you might put instances into the Standby state include:

• To update or modify (p. 97) the instance

• To troubleshoot an instance (p. 95) that isn't performing as expected

Auto Scaling Terminating State

Instances that fail a required number of health checks are removed from an Auto Scaling group and
terminated. The instances first enter the Terminating state, then Terminated..

Depending on how you want to manage your Auto Scaling group, the Terminating state can be divided
into two additional states: Terminating:Wait and Terminating:Proceed.You can use these states
to perform additional actions before the instances are terminated.

Examples of actions you can take while an instance is terminating include:

• Analyzing an instance (p. 73) to understand why it failed

• Retrieving logs (p. 74) stored on the instance.

Important
You can use lifecycle hooks with Spot Instances. However, a lifecycle hook does not prevent
an instance from terminating due to a change in the Spot Price, which can happen at any time.

API Version 2011-01-01
13

Auto Scaling Developer Guide
Auto Scaling Instance States

In addition, when a Spot Instance terminates, you must still complete the lifecycle action (such
as with the as-complete-lifecycle-action command or CompleteLifecycleAction API call).
For more information, see Spot Instances.

Auto Scaling Limits
Your AWS account comes with default limits on your AWS resources. To learn about the default limits
for Auto Scaling, see AWS Service Limits: Auto Scaling Limits.

If you reach the default limit for an AWS resource, you can request a limit increase. For more information,
see AWS Service Limits.

To view the current limit on your Auto Scaling resources, use the describe-account-limits (AWS CLI)
command or the as-describe-account-limits (Auto Scaling CLI) command.

API Version 2011-01-01
14

Auto Scaling Developer Guide
Auto Scaling Limits

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_autoscaling
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-account-limits.html

Setting Up Auto Scaling

Before you start using Auto Scaling, complete the following tasks.

Tasks

• Sign Up for AWS (p. 15)

• Prepare to Use Amazon EC2 (p. 15)

Sign Up for AWS
When you create an AWS account, we automatically sign up your account for all AWS services.You pay
only for the services that you use.You can use Auto Scaling at no additional charge beyond what you
are paying for your EC2 instances.

If you don't have an AWS account, sign up for AWS as follows.

To sign up for an AWS account

1. Open http://aws.amazon.com/, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

AWS sends you a confirmation e-mail after the sign-up process is complete.

Prepare to Use Amazon EC2
If you haven't used Amazon EC2 before, complete the tasks described in the Amazon EC2 documentation.
For more information, see Setting Up with Amazon EC2 in the Amazon EC2 User Guide for Linux Instances
or Setting Up with Amazon EC2 in the Amazon EC2 User Guide for Microsoft Windows Instances,
depending on which operating system you plan to use for your EC2 instances.

API Version 2011-01-01
15

Auto Scaling Developer Guide
Sign Up for AWS

http://aws.amazon.com/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

Install the Auto Scaling CLI

Complete the following tasks to set up the Auto Scaling CLI.

Tasks

• Set the JAVA_HOME Environment Variable (p. 16)

• Install the Auto Scaling CLI (p. 16)

• Verify that the Auto Scaling CLI is Installed (p. 19)

• Commands (p. 21)

Set the JAVA_HOME Environment Variable
If you do not have Java 1.5 or later installed, download and install it now. To view and download JREs
for a range of platforms, including Linux/UNIX and Windows, go to http://java.oracle.com/.

The commands use the JAVA_HOME environment variable to locate the Java runtime. The CLI requires
Java version 5 or later to run.You can use either a JRE or JDK installation.

Set JAVA_HOME to the full path of the directory that contains a subdirectory named bin that in turn contains
the Java executable. For example, if your Java executable is in the /usr/jdk/bin directory, set
JAVA_HOME to /usr/jdk. If your Java executable is in C:\jdk\bin, set JAVA_HOME to C:\jdk.

For detailed directions on setting this environment variable, see Tell the Tools Where Java Lives (Linux
or Mac OS X) or Set the JAVA_HOME Environment Variable (Windows) in the Amazon EC2 Command
Line Reference.

Install the Auto Scaling CLI
To use the Auto Scaling CLI, you need to download it and set it up to use your AWS credentials.

Tasks

• Get the CLI (p. 17)

• Set the Environment Variable for the CLI (p. 17)

• Manage Access for the CLI (p. 17)

• Change the Region (p. 18)

API Version 2011-01-01
16

Auto Scaling Developer Guide
Set the JAVA_HOME Environment Variable

http://java.oracle.com/
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up-ec2-cli-linux.html#java_runtime_linux
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up-ec2-cli-linux.html#java_runtime_linux
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/set-up-ec2-cli-windows.html#java-runtime

Get the CLI
The CLI is available as a ZIP file in the Auto Scaling Command Line Tools website. These CLI tools are
written in Java and include shell scripts for both Windows and Linux/Unix/Mac OS X. The ZIP file is
self-contained; no installation is required.You just download ZIP file and unzip it.

Set the Environment Variable for the CLI
The CLI depends on an environment variable (AWS_AUTO_SCALING_HOME) to locate supporting libraries.
You need to set this environment variable before you can use the CLI.You should set this variable to the
path of the directory into which the CLI was unzipped. This directory is named AutoScaling-a.b.c.d
(a, b, c, and d are version/release numbers) and contains sub-directories named bin and lib.

Linux/Unix

The following Linux/Unix example sets AWS_AUTO_SCALING_HOME for a directory named
AutoScaling-1.0.61.6 in the /usr/local directory.

$ export AWS_AUTO_SCALING_HOME=/usr/local/AutoScaling-1.0.61.6

In addition, you can add the CLI bin directory to your system PATH to avoid having to reference this
directory specifically in every command. The examples in this guide assume that you have modified your
PATH as follows.

$ export PATH=$PATH:$AWS_AUTO_SCALING_HOME/bin

Windows

The following Windows example sets AWS_AUTO_SCALING_HOME for a directory named
AutoScaling-1.0.61.6 in the C:\CLIs directory.

Note
If you set a Windows environment variable with set, it is reset when you close the command
window. To set Windows environment variables permanently, use the setx command instead.

C:\> set AWS_AUTO_SCALING_HOME=C:\CLIs\AutoScaling-1.0.61.6
C:\> setx AWS_AUTO_SCALING_HOME C:\CLIs\AutoScaling-1.0.61.6

In addition, you can add the CLI bin directory to your system PATH to avoid having to reference this
directory specifically in every command. The examples in this guide assume that you have modified your
PATH as follows.

C:\> set PATH=%PATH%;%AWS_AUTO_SCALING_HOME%\bin
C:\> setx PATH %PATH%;%AWS_AUTO_SCALING_HOME%\bin

Manage Access for the CLI
After you sign up for AWS, you must create access keys for the account.Your access keys consists of
an access key ID and a secret access key.You must provide your access keys to the CLI to authenticate
the commands that you issue. The CLI reads your access keys from a credential file that you create on
your local system.

API Version 2011-01-01
17

Auto Scaling Developer Guide
Get the CLI

http://aws.amazon.com/items/2535?externalID=2535&categoryID=88

You can either specify your credential file with the --aws-credential-file parameter every time you
issue a command, or you can create an environment variable that points to the credential file on your
local system. If the environment variable is properly configured, you can omit the
--aws-credential-file parameter when you issue a command. The following procedure describes
how to create a credential file and a corresponding AWS_CREDENTIAL_FILE environment variable.

To create a credential file on your local system

1. Retrieve your access keys

Although you can retrieve the access key ID from the Security Credentials page, you cannot retrieve
the secret access key.You'll need to create new access keys if the secret access key was lost or
forgotten.You can create new access keys for the account by going to the Security Credentials page.
In the Access Keys section, click Create New Root Key.

2. Write down your secret key and access key ID, or save them.

3. Add your access key ID and secret access key to the file named
credential-file-path.template:

a. Open the file credential-file-path.template included in your CLI archive.

b. Copy and paste your access key ID and secret access key into the file.

c. Rename the file and save it to a convenient location on your computer.

d. If you are using Linux, set the file permissions as follows:

$ chmod 600 credential-file-name

4. Set the AWS_CREDENTIAL_FILE environment variable to the fully qualified path of the file you just
created.

The following Linux/Unix example sets AWS_CREDENTIAL_FILE for myCredentialFile in the
/usr/local directory.

$ export AWS_CREDENTIAL_FILE=/usr/local/myCredentialFile

The following Windows example sets AWS_CREDENTIAL_FILE for myCredentialFile.txt in the
C:\aws directory.

C:\> set AWS_CREDENTIAL_FILE=C:\aws\myCredentialFile.txt
C:\> setx AWS_CREDENTIAL_FILE C:\aws\myCredentialFile.txt

Change the Region
By default, the Auto ScalingCLI uses the US East (N. Virginia) region (us-east-1) with the
autoscaling.us-east-1.amazonaws.com service endpoint URL. If your instances are in a different
region, you must specify the region where your instances reside. For example, if your instances are in
Europe, you must specify the EU (Ireland) region by using the --region eu-west-1 parameter or by
setting the AWS_AUTO_SCALING_URL environment variable.

This section describes how to specify a different region by changing the service endpoint URL.

API Version 2011-01-01
18

Auto Scaling Developer Guide
Change the Region

https://console.aws.amazon.com/iam/home?#security_credential

Note
Keep in mind that if you set the EC2_REGION environment variable, such as us-east-1, its value
supersedes any value you set using AWS_AUTO_SCALING_URL.

To specify a different region

1. To view available regions, see Regions and Endpoints in the AWS General Reference.

2. If you want to change the service endpoint, set the AWS_AUTO_SCALING_URL environment variable
as follows:

• The following Linux example sets AWS_AUTO_SCALING_URL to the EU (Ireland) region.

$ export AWS_AUTO_SCALING_URL=https://autoscaling.eu-west-1.amazonaws.com

• The following Windows example sets AWS_AUTO_SCALING_URL to the EU (Ireland) region.

C:\> set AWS_AUTO_SCALING_URL=https://autoscaling.eu-west-1.amazonaws.com

C:\> setx AWS_AUTO_SCALING_URL https://autoscaling.eu-west-1.amazonaws.com

Verify that the Auto Scaling CLI is Installed
Before you begin using the CLI, you should verify that it is properly installed.Type the following command:

as-cmd

The output is similar to the following.

Command Name Description

------------ -----------

as-attach-instances Attaches Instances to Auto Scaling
 group
as-complete-lifecycle-action Completes the Lifecycle Ac... asso
ciated with the token
as-create-auto-scaling-group Create a new Auto Scaling group.
as-create-launch-config Creates a new launch configuration.
as-create-or-update-tags Create or update tags.
as-create-or-update-trigger Creates a new trigger or updates
an existing trigger.
as-delete-auto-scaling-group Deletes the specified Auto Scaling
 group.
as-delete-launch-config Deletes the specified launch config
uration.
as-delete-lifecycle-hook Deletes the specified lifecycle
hook.
as-delete-notification-configuration Deletes the specified notification
 configuration.
as-delete-policy Deletes the specified policy.

API Version 2011-01-01
19

Auto Scaling Developer Guide
Verify that the Auto Scaling CLI is Installed

http://docs.aws.amazon.com/general/latest/gr/rande.html#as_region

as-delete-scheduled-action Deletes the specified scheduled
action.
as-delete-tags Delete the specified tags
as-delete-trigger Deletes a trigger.
as-describe-account-limits Describes limits for the account.
as-describe-adjustment-types Describes all policy adjustment
types.
as-describe-auto-scaling-groups Describes the specified Auto Scaling
 groups.
as-describe-auto-scaling-instances Describes the specified Auto Scaling
 instances.
as-describe-auto-scaling-notification-types Describes all Auto Scaling notific
ation types.
as-describe-launch-configs Describes the specified launch
configurations.
as-describe-lifecycle-hook-types Describes all Auto Scaling lifecycle
 hook transition types.
as-describe-lifecycle-hooks Describes the specified lifecycle
hooks.
as-describe-metric-collection-types Describes all metric colle... metric
 granularity types.
as-describe-notification-configurations Describes all notification...given
 Auto Scaling groups.
as-describe-policies Describes the specified policies.
as-describe-process-types Describes all Auto Scaling process
 types.
as-describe-scaling-activities Describes a set of activities be
longing to a group.
as-describe-scheduled-actions Describes the specified scheduled
actions.
as-describe-tags Describes tags
as-describe-termination-policy-types Describes all Auto Scaling termina
tion policy types.
as-describe-triggers Describes a trigger, including its
 internal state.
as-detach-instances Detaches Instances from Auto Scaling
 group
as-disable-metrics-collection Disables collection of Auto Scaling
 group metrics.
as-enable-metrics-collection Enables collection of Auto Scaling
 group metrics.
as-enter-standby Move instances into Standby
as-execute-policy Executes the specified policy.
as-exit-standby Move instances out of Standby
as-put-lifecycle-hook Creates or updates a Lifecycle Hook.
as-put-notification-configuration Creates or replaces notifi...or the
 Auto Scaling group.
as-put-scaling-policy Creates or updates an Auto Scaling
 policy.
as-put-scheduled-update-group-action Creates or updates a scheduled update
 group action.
as-record-lifecycle-action-heartbeat Records a heartbeat for th... asso
ciated with the token
as-resume-processes Resumes all suspended Auto... given
 Auto Scaling group.
as-set-desired-capacity Sets the desired capacity of the
Auto Scaling group.
as-set-instance-health Sets the health of the instance.

API Version 2011-01-01
20

Auto Scaling Developer Guide
Verify that the Auto Scaling CLI is Installed

as-suspend-processes Suspends all Auto Scaling ... given
 Auto Scaling group.
as-terminate-instance-in-auto-scaling-group Terminates a given instance.
as-update-auto-scaling-group Updates the specified Auto Scaling
 group.
help
version Prints the version of the CLI tool
 and the API.

 For help on a specific command, type 'commandname --help'

Commands
To list the commands for the Auto Scaling CLI, use the following command:

as-cmd

To get a description of a command, use the following command:

as-cmd command --help

For a summary of commands and the general options that you can use with any Auto Scaling command,
see the Auto Scaling Quick Reference Card.

API Version 2011-01-01
21

Auto Scaling Developer Guide
Commands

http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-qrc.pdf

Getting Started with the Auto
Scaling CLI

You can use the Auto Scaling CLI to create your basic Auto Scaling infrastructure.

Prerequisites

Before you can use the Auto Scaling CLI, you must install the tools. For more information, see Install the
Auto Scaling CLI (p. 16).

If you haven't used Amazon EC2 before, complete the tasks described in the Amazon EC2 documentation.
For more information, see Setting Up with Amazon EC2 in the Amazon EC2 User Guide for Linux Instances
or Setting Up with Amazon EC2 in the Amazon EC2 User Guide for Microsoft Windows Instances,
depending on which operating system you plan to use for your EC2 instances.

Tasks

• Create a Launch Configuration (p. 22)

• Create an Auto Scaling Group (p. 23)

• Verify Your Auto Scaling Group (p. 24)

• (Optional) Delete Your Auto Scaling Infrastructure (p. 25)

Create a Launch Configuration
A launch configuration serves as a template that Auto Scaling uses to launch EC2 instances.This template
contains all the information necessary for Auto Scaling to launch instances that run your application (for
example, the ID of an Amazon Machine Image (AMI), a key pair, and one or more security groups). For
more information, see Launch Configurations (p. 7).

To create a launch configuration, use the as-create-launch-config command. The syntax for this
command is as follows:

as-create-launch-config LaunchConfigurationName --image-id value --instance-type
value [--associate-public-ip-address value] [--spot-price value]
[--iam-instance-profile value] [--block-device-mapping
"key1=value1,key2=value2..."] [--ebs-optimized] [--monitoring-enabled |

API Version 2011-01-01
22

Auto Scaling Developer Guide
Create a Launch Configuration

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/get-set-up-for-amazon-ec2.html

--monitoring-disabled] [--kernel value] [--key value] [--ramdisk value] [--group
value[,value...]] [--user-data value] [--user-data-file value] [General Options]

The only required options are a name for the launch configuration, an AMI ID, and an instance type. Note
that you can use the ec2-describe-images Amazon EC2 CLI command to get an AMI ID.

EC2-Classic or a default VPC

Use the following as-create-launch-config command to create a launch configuration:

as-create-launch-config my-test-lc --image-id ami-xxxxxxxx --instance-type
m1.small

Nondefault VPC

Use the following as-create-launch-config command to create a launch configuration that enables
you to connect to the EC2 instances in your VPC using a public IP address:

as-create-launch-config my-test-lc --image-id ami-xxxxxxxx --instance-type
m1.small --associate-public-ip-address true

Create an Auto Scaling Group
Auto Scaling groups are the core of the Auto Scaling service. An Auto Scaling group is a collection of
EC2 instances.You specify a launch configuration and settings such as the minimum, maximum, and
desired number of EC2 instances. For more information, see Auto Scaling Groups (p. 8).

To create an Auto Scaling group, use the as-create-auto-scaling-group CLI command.The syntax
for this command is as follows:

as-create-auto-scaling-group AutoScalingGroupName --availability-zones
value[,value...] --launch-configuration value --max-size value --min-size value
[--default-cooldown value] [--desired-capacity value] [--grace-period value]
[--health-check-type value] [--load-balancers value[, value]] [--placement-group
value] [--vpc-zone-identifier value] [General Options]

The required options are a name for your Auto Scaling group, a launch configuration, one or more
Availability Zones, a minimum group size, and a maximum group size. The Availability Zones that you
choose determine the physical location of your Auto Scaling instances. The minimum and maximum
group size tells Auto Scaling the minimum and maximum number of instances the Auto Scaling group
should have.

Desired capacity is an important component of the as-create-auto-scaling-group command.
Although it is an optional parameter, desired capacity tells Auto Scaling the number of instances you want
to run initially.To adjust the number of instances you want running in your Auto Scaling group, you change
the value of --desired-capacity. If you don't specify --desired-capacity, the default value is the
minimum group size.

If your AWS account supports the EC2-VPC platform only, it comes with a default VPC with a default
subnet in each Availability Zone, a default security group, an Internet gateway connected to the default
VPC, and routing to the Internet gateway. For more information, see Your Default VPC and Subnets in
the Amazon VPC User Guide.

If you have a default VPC and do not specify --vpc-zone-identifier, your instances are automatically
launched into a default subnet in your default VPC. By default, we select an Availability Zone and launch

API Version 2011-01-01
23

Auto Scaling Developer Guide
Create an Auto Scaling Group

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html

the Auto Scaling group into the corresponding subnet for that Availability Zone. Alternatively, you can
select the Availability Zone for your Auto Scaling group by specifying its corresponding default subnet.

EC2-Classic or a default VPC

Use the following as-create-auto-scaling-group command to launch your Auto Scaling group in
EC2-Classic or a default VPC. Based on the my-test-asg Auto Scaling group and the my-test-lc
launch configuration, Auto Scaling launches one EC2 instance in the specified Availability Zone.

as-create-auto-scaling-group my-test-asg --launch-configuration my-test-lc -
-availability-zones us-east-1a --min-size 1 --max-size 10 --desired-capacity 1

Nondefault VPC

Use the following as-create-auto-scaling-group command to launch your Auto Scaling group in
the specified subnet of a nondefault VPC. Based on the my-test-asg Auto Scaling group and the
my-test-lc launch configuration, Auto Scaling launches one EC2 instance in the specified Availability
Zone.

as-create-auto-scaling-group my-test-asg --launch-configuration my-test-lc -
-vpc-zone-identifier subnet-xxxxxxxx --min-size 1 --max-size 10 --desired-capa
city 1

If you also specify the --availability-zones option, be sure to specify the Availability Zone for the
specified subnet. Note that depending on the version of the CLI that you're using, the command can fail
if you specify both --availability-zones and --vpc-zone-identifier unless
--availability-zones is the last parameter in the command.

Verify Your Auto Scaling Group
To verify that the Auto Scaling group has launched your EC2 instance, use the
as-describe-auto-scaling-groups command. The syntax for this command is as follows:

as-describe-auto-scaling-groups [AutoScalingGroupName [AutoScalingGroupName...]]
[--max-records value] [General Options]

Use the following as-describe-auto-scaling-groups command to get information about the
my-test-asg group:

as-describe-auto-scaling-groups my-test-asg --headers

The following is an example response:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
MAX-SIZE DESIRED-CAPACITY
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1a 1 10
 1
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-bcdd63d1 us-east-1a InService HEALTHY my-test-lc

API Version 2011-01-01
24

Auto Scaling Developer Guide
Verify Your Auto Scaling Group

(Optional) Delete Your Auto Scaling
Infrastructure

You can either delete your Auto Scaling set up or delete just your Auto Scaling group and keep your
launch configuration to use at a later time.

To delete your Auto Scaling group, use the as-delete-auto-scaling-group command. The syntax
for this command is as follows:

as-delete-auto-scaling-group AutoScalingGroupName [--force-delete] [General
Options]

Use the following as-delete-auto-scaling-group command to delete the my-test-asg group:

as-delete-auto-scaling-group my-test-asg

When prompted "Are you sure you want to delete this AutoScalingGroup? [Ny]", enter y.

The following is an example response:

OK-Deleted AutoScalingGroup

To delete your launch configuration, use the as-delete-launch-config command. The syntax for
this command is as follows:

as-delete-launch-config LaunchConfigurationName [General Options]

Use the following as-delete-launch-config command to delete the my-test-lc configuration:

as-delete-launch-config my-test-lc

When prompted "Are you sure you want to delete this launch configuration? [Ny]", enter y.

The following is an example response:

OK-Deleted launch configuration

API Version 2011-01-01
25

Auto Scaling Developer Guide
(Optional) Delete Your Auto Scaling Infrastructure

Planning Your Auto Scaling Group

Auto Scaling, when correctly implemented, provides a number of advantages to your applications. An
Auto Scaling group can help you make sure that your application always has the right amount of capacity
to handle the current traffic demands.You can also use Auto Scaling to make your applications more
highly available and fault tolerant. Most importantly, you can implement Auto Scaling at no additional
cost—you only pay for the Amazon EC2 resources you use.

There are actions that you need to consider before you put your first Auto Scaling group into production.
By planning ahead, you can help ensure that your Auto Scaling performs as expected and in a cost-effective
manner.

Before you get started, take the time to review your application thoroughly as it runs in the AWS cloud.
Take note of things like:

• How long it takes to launch and configure a server

• What metrics have the most relevance to your application's performance

• What existing resources (such as EC2 instances or AMIs) you might want to use as part of your Auto
Scaling group

• How many Availability Zones you want to the Auto Scaling group to span

• The role you want Auto Scaling to play in your application. Do you want Auto Scaling to use scaling to
increase or decrease capacity? Or do you want to use it solely to ensure that a specific number of
servers are always running? (Keep in mind that an Auto Scaling group can actually perform both
functions simultaneously.)

The better you understand your application, the more effective your implementation of Auto Scaling
becomes.

When you have enough information about your application, take a look at the section, Scaling the Size
of Your Auto Scaling Group (p. 27). This section describes the different ways that Auto Scaling can help
you adjust your application's capacity. In addition, this section describes features such as Auto Scaling
cooldowns (p. 28) and termination policies (p. 31), which play important roles in controlling how Auto
Scaling scales your application.

When you have a good idea of how you want to scale your architecture, the next section you should
review is Controlling Access to Your Auto Scaling Resources (p. 49), which describes the role AWS
Identity and Access Management plays in managing your EC2 instances in an Auto Scaling group.

Contents

• Scaling the Size of Your Auto Scaling Group (p. 27)

API Version 2011-01-01
26

Auto Scaling Developer Guide

http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/

• Controlling Access to Your Auto Scaling Resources (p. 49)

• Creating Launch Configurations (p. 54)

• Creating Auto Scaling Groups (p. 58)

• Auto Scaling and Amazon Virtual Private Cloud (p. 61)

• Controlling How Instances Launch and Terminate (p. 65)

• Tagging Auto Scaling Groups and Instances (p. 76)

• Launching Spot Instances in Your Auto Scaling Group (p. 78)

Scaling the Size of Your Auto Scaling Group
Scaling is the ability to increase or decrease the compute capacity of your application. Scaling starts with
an event, or scaling action, which instructs Auto Scaling to either launch or terminate EC2 instances.

Auto Scaling provides a number of ways to adjust scaling to best meet the needs of your applications.
As a result, it's important that you have a good understanding of your application.You should keep the
following considerations in mind:

• What role do you want Auto Scaling to play in your application's architecture? It's common to think
about Auto Scaling as a way to increase and decrease capacity, but Auto Scaling is also useful for
when you want to maintain a steady number of servers.

• What cost constraints are important to you? Because Auto Scaling uses EC2 instances, you only pay
for the resources you use. Knowing your cost constraints can help you decide when to scale your
applications, and by how much.

• What metrics are important to your application? CloudWatch supports a number of different metrics
that you can use with your Auto Scaling group. We recommend reviewing them to see which of these
metrics are the most relevant to your application.

To learn more about scaling implementations, see the following:

Cooldowns (p. 28)
Periods of time during which Auto Scaling ignores any additional scaling actions.

Termination policies (p. 31)
Criteria that determine which instances Auto Scaling should terminate first.

Maintaining a Fixed Number of EC2 Instances in Your Auto Scaling Group (p. 34)
Maintains the minimum or specified number of instances in your Auto Scaling group at all times.

Manual Scaling (p. 35)
Change the number of running instances in your Auto Scaling group manually at any time.

Dynamic Scaling (p. 35)
Scale dynamically in response to changes in the demand for your application.You must specify when
and how to scale.

Scheduled Scaling (p. 42)
Scale your application on a predefined schedule (one-time only or on a recurring schedule).

Multiple Scaling Policies
An Auto Scaling group can have more than one scaling policy attached to it any given time. In fact, we
recommend that each Auto Scaling group has at least two policies: one to scale your architecture out
and another to scale your architecture in.You can also combine scaling policies to maximize the
performance of an Auto Scaling group.

API Version 2011-01-01
27

Auto Scaling Developer Guide
Scaling Your Group

To illustrate how multiple policies work together, consider an application that uses an Auto Scaling group
and an Amazon SQS queue to send requests to the EC2 instances in that group. To help ensure the
application performs at optimum levels, there are two policies that control when the Auto Scaling group
should scale out. One policy uses the Amazon CloudWatch metric, CPUUtilization, to detect when
an instance is at 90% of capacity. The other uses the NumberOfMessagesVisible to detect when the
SQS queue is becoming overwhelmed with messages.

Note
In a production environment, both of these policies would have complementary policies that
control when Auto Scaling should scale in the number of EC2 instances.

When you have more than one policy attached to an Auto Scaling group, there's a chance that both
policies could instruct Auto Scaling to scale out (or in) at the same time. In our previous example, it's
possible that both an EC2 instance could trigger the CloudWatch alarm for the CPUUtilization metric,
and the SQS queue trigger the alarm for the NumberOfMessagesVisible metric.

When these situations occur, Auto Scaling chooses the policy that has the greatest impact on the Auto
Scaling group. For example, suppose that the policy for CPU utilization instructs Auto Scaling to launch
1 instance, while the policy for the SQS queue prompts Auto Scaling to launch 2 instances. If the scale
out criteria for both policies are met at the same time, Auto Scaling gives precedence to the SQS queue
policy, because it has the greatest impact on the Auto Scaling group.This results in Auto Scaling launching
two instances into the group. This precedence applies even when the policies use different criteria for
scaling out. For instance, if one policy instructs Auto Scaling to launch 3 instances, and another instructs
Auto Scaling to increase capacity by 25 percent, Auto Scaling give precedence to whichever policy has
the greatest impact on the group at that time.

Understanding Auto Scaling Cooldowns
As described in What Is Auto Scaling? (p. 1), you can use Auto Scaling groups to scale—increase and
decrease—the resources available to your application.You have a variety of different scaling methods
available to you, such as manual scaling (p. 35) or dynamic scaling (p. 35). Regardless of how you decide
to scale your resources, you need to consider the Auto Scaling cooldown period and how you want it to
affect your Auto Scaling group.

The Auto Scaling cooldown period is a configurable setting that determines when Auto Scaling should
suspend any scaling activities related to a specific Auto Scaling group.This cooldown period is important,
because it helps to ensure you don’t launch or terminate more resources than you need.

Contents

• Example: Auto Scaling Cooldowns (p. 28)

• Default Cooldowns (p. 29)

• Scaling-Specific Cooldowns (p. 30)

• Cooldowns and Multiple Instances (p. 31)

• Cooldowns and Lifecycle Hooks (p. 31)

• Cooldowns and Spot Instances (p. 31)

Example: Auto Scaling Cooldowns
Consider the following scenario: you have a web application running in AWS.This web application consists
three basic tiers: web, application, and database. To make sure that the application always has the
resources it needs to meet traffic demands, you create two Auto Scaling groups: one for your web tier
and one for your application tier.

API Version 2011-01-01
28

Auto Scaling Developer Guide
Understanding Cooldowns

To help make sure the Auto Scaling group for the application tier has the appropriate amount of resources
available, you create an CloudWatch alarm to occur whenever the CPUUtilization metric for the EC2
instances exceeds 90%. When the alarm occurs, Auto Scaling launches and configures another instance
to join the application tier.

These instances use a configuration script to install and configure software before the instance is put into
service. As a result, it takes around two or three minutes from the time the instance launches to when it
is in service. (The actual time, of course, depends on several factors, such as whether you are using an
AMI, the size of the instance, and so on.)

Now a spike in traffic occurs, causing the CloudWatch alarm to fire. When it does, Auto Scaling launches
an instance to help handle the increase in demand. However, there’s a problem: the instance takes a
couple of minutes to launch. During that time, the CloudWatch alarm could continue to fire, resulting in
Auto Scaling launch another instance each time the alarm goes off.

This is where the cooldown period comes into effect. With a cooldown period in place, Auto Scaling
launches an instance and then suspends any scaling activities until a specific amount of time elapses.
(The default amount of time is 300 seconds.) This way, the newly-launched instance has time to start
handling application traffic. After the cooldown period expires, scaling actions resume for the Auto Scaling
group. If the CloudWatch alarm is still occurring, Auto Scaling launches another instance, and the cooldown
period takes effect again. If, however, the additional instance was enough to bring the CPU utilization
back down, then the group remains at its current size.

Default Cooldowns
As illustrated in the previous example, an Auto Scaling cooldown period helps to ensure you don’t launch
or terminate more resources than your application needs. Auto Scaling supports two types of cooldown
periods: a default cooldown period and a scaling-specific (p. 30) cooldown period.

API Version 2011-01-01
29

Auto Scaling Developer Guide
Understanding Cooldowns

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/US_SingleMetricPerInstance.html

The default cooldown period is applied when you create your Auto Scaling group. Its default value is 300
seconds. This cooldown period applies to any scaling activity that occurs within the Auto Scaling group.
This means it not only applies to dynamic scaling (p. 35) actions, as described the preceding section, but
manual scaling (p. 35) actions as well.

You can configure the default cooldown period when you create the Auto Scaling group, using any of the
following:

• AWS Management Console

• AWS CLI (aws autoscaling create-auto-scaling-group)

• Auto Scaling CLI (as-create-auto-scaling-group)

• CreateAutoScalingGroup API

You can change the default cooldown period whenever you need to, using any of the following:

• AWS Management Console

• AWS CLI (aws autoscaling update-auto-scaling-group)

• Auto Scaling CLI (as-update-auto-scaling-group)

• UpdateAutoScalingGroup API

Scaling-Specific Cooldowns
In addition to the default cooldown period, you can create cooldowns that apply to a specific scaling policy.
Any cooldown period that you configure with a scaling policy automatically overrides the default
cooldown (p. 29) period.

Having a scaling-specific cooldown period can be very helpful in a number of situations. One common
implementation is with a scale in policy—a policy that terminates instances based on a specific criteria
or metric.

Note
It is always recommended that every Auto Scaling group that you create have at least two policies:
one that scales out the number of instances in the group, and one that scales in the number of
instances.

Consider the example described in the section called “Example: Auto Scaling Cooldowns” (p. 28). Let’s
say that, in addition to a policy that scales out, or increases, the number of instances in the Auto Scaling
group, there is also a policy that scales in when the CPU Utilization metric falls below a 50%. Because
this policy terminates instances, less time is needed to determine whether to terminate additional instances
in the Auto Scaling group.The default cooldown period of 300 seconds is too long—costs can be reduced
by applying a scaling-specific cooldown period of 180 seconds.

API Version 2011-01-01
30

Auto Scaling Developer Guide
Understanding Cooldowns

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-auto-scaling-group.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_CreateAutoScalingGroup.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/update-auto-scaling-group.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html

You can create a scaling-specific cooldown period using one of the following:

• AWS Management Console

• AWS CLI (aws autoscaling put-scaling-policy)

• Auto Scaling CLI (as-auto-scaling-put-scaling-policy)

• PutScalingPolicy API

Cooldowns and Multiple Instances
The preceding sections have provided examples that show how cooldown periods affect Auto Scaling
groups when a single instance launches or terminates. However, it is not uncommon for Auto Scaling
groups to launch more than one instance at a time. For example, you might choose to have Auto Scaling
launch three instances when a specific metric threshold is met.

In these situations, the cooldown period (either the default cooldown or the scaling-specific cooldown)
take effect starting when the last instance launches.

Cooldowns and Lifecycle Hooks
Auto Scaling supports adding lifecycle hooks to Auto Scaling groups. These hooks allow you to control
how instances launch and terminate (p. 65) within an Auto Scaling group, allowing you to perform actions
on the instance before the instance is put into service or before it terminates.

These hooks can affect the impact of any cooldown periods configured for the Auto Scaling group or a
scaling policy. If the instance remains in a wait state, any additional scaling actions for the Auto Scaling
group are suspended. The cooldown period for the Auto Scaling group does not begin until after the
instance moves out of the wait state.

Cooldowns and Spot Instances
You can create Auto Scaling groups to use Spot Instances (p. 78) instead of On-demand or Reserved
Instances. In these situations, the cooldown periods for the Auto Scaling group take effect when the bid
for any Spot Instance is successful.

Choosing a Termination Policy for Your Auto
Scaling Group
With each Auto Scaling group, you control when Auto Scaling adds instances (referred to as scaling out)
or remove instances (referred to as scaling in) from your network architecture.You can scale the size of
your group manually by attaching and detaching instances, or you can automate the process through the
use of a scaling policy.

When you have Auto Scaling automatically scale in, you must decide which instances Auto Scaling should
terminate first.You can configure this through the use of a termination policy.

Contents

• Default Termination Policy (p. 32)

• Customizing the Termination Policy (p. 33)

API Version 2011-01-01
31

Auto Scaling Developer Guide
Choosing a Termination Policy

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-scaling-policy.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_PutScalingPolicy.html

Default Termination Policy
The default termination policy is designed to help ensure that your network architecture spans Availability
Zones evenly. When using the default termination policy, Auto Scaling selects an instance to terminate
as follows:

1. Auto Scaling determines whether there are instances in multiple Availability Zones. If so, it selects the
Availability Zone with the most instances. If there is more than one Availability Zone with this number
of instances, Auto Scaling selects the Availability Zone with the instances that use the oldest launch
configuration.

2. Auto Scaling determines which instances in the selected Availability Zone use the oldest launch
configuration. If there is one such instance, it terminates it.

3. If there are multiple instances that use the oldest launch configuration, Auto Scaling determines which
instances are closest to the next billing hour. (This helps you maximize the use of your EC2 instances
while minimizing the number of hours you are billed for Amazon EC2 usage.) If there is one such
instance, Auto Scaling terminates it.

4. If there is more than one instance closest to the next billing hour, Auto Scaling selects one of these
instances at random.

The following flow diagram illustrates how the default termination policy works.

Consider an Auto Scaling group that has two Availability Zones, a desired capacity of two instances, and
scaling policies that increase and decrease the number of instances by 1 when certain thresholds are
met. The two instances in this group are distributed as follows.

API Version 2011-01-01
32

Auto Scaling Developer Guide
Choosing a Termination Policy

When the threshold for the scale out policy is met, the policy takes effect and Auto Scaling launches a
new instance. The Auto Scaling group now has three instances, distributed as follows.

When the threshold for the scale in policy is met, the policy takes effect and Auto Scaling terminates one
of the instances. If the group does not have a specific termination policy assigned to it, Auto Scaling uses
the default termination policy. Auto Scaling selects the Availability Zone with two instances, and terminates
the instance launched from the oldest launch configuration. If the instances were launched from the same
launch configuration, then Auto Scaling selects the instance that is closest to the next billing hour and
terminates it.

Customizing the Termination Policy
The default termination policy assigned to an Auto Scaling group is typically sufficient for most situations.
However, you have the option of replacing the default policy with a customized one.

When you customize the termination policy, Auto Scaling first assesses the Availability Zones for any
imbalance. If an Availability Zone has more instances than the other Availability Zones that are used by
the group, then Auto Scaling applies your specified termination policy on the instances from the imbalanced
Availability Zone. If the Availability Zones used by the group are balanced, then Auto Scaling applies the
termination policy that you specified.

Auto Scaling currently supports the following custom termination policies:

• OldestInstance. Auto Scaling terminates the oldest instance in the group. This option is useful when
you're upgrading the instances in the Auto Scaling group to a new EC2 instance type, and want to
eventually replace instances with older instances with newer ones.

• NewestInstance. Auto Scaling terminates the newest instance in the group. This policy is useful when
you're testing a new launch configuration but don't want to keep it in production.

• OldestLaunchConfiguration. Auto Scaling terminates instances that have the oldest launch configuration.
This policy is useful when you're updating a group and phasing out the instances from a previous
configuration.

• ClosestToNextInstanceHour. Auto Scaling terminates instances that are closest to the next billing hour.
This policy helps you maximize the use of your instances and manage costs.

• Default. Auto Scaling uses its default termination policy. This policy is useful when you have more than
one scaling policy associated with the group.

To customize a termination policy using the Auto Scaling CLI

API Version 2011-01-01
33

Auto Scaling Developer Guide
Choosing a Termination Policy

Use one of the following commands:

• as-create-auto-scaling-group

• as-update-auto-scaling-group

Maintaining a Fixed Number of EC2 Instances in
Your Auto Scaling Group
After you have created your launch configuration and Auto Scaling group, the Auto Scaling group starts
by launching the minimum number of EC2 instances (or the desired number, if specified). If there are no
other scaling conditions attached to the Auto Scaling group, the Auto Scaling group maintains this number
of running instances at all times.

To maintain the same number of instances, Auto Scaling performs a periodic health check on running
instances within an Auto Scaling group. When it finds that an instance is unhealthy, it terminates that
instance and launches a new one.

All instances in your Auto Scaling group start in the healthy state. Instances are assumed to be healthy
unless Auto Scaling receives notification that they are unhealthy. This notification can come from one or
more of the following sources: Amazon EC2, Elastic Load Balancing, or your customized health check.

Determining Instance Health
By default, the Auto Scaling group determines the health state of each instance by periodically checking
the results of EC2 instance status checks. If the instance status is any state other than running or if the
system status is impaired, Auto Scaling considers the instance to be unhealthy and launches a
replacement. For more information about EC2 instance status checks, see Monitoring the Status of Your
Instances in the Amazon EC2 User Guide for Linux Instances.

If you have associated your Auto Scaling group with a load balancer and have chosen to use the Elastic
Load Balancing health check, Auto Scaling determines the health status of the instances by checking the
results of both EC2 instance status and Elastic Load Balancing instance health. Auto Scaling marks an
instance unhealthy if the instance is in a state other than running, the system status is impaired, or
Elastic Load Balancing reports the instance state as OutOfService. To learn more about Elastic Load
Balancing health checks, see Elastic Load Balancing Health Check in the Elastic Load Balancing Developer
Guide.

You can customize the health check conducted by your Auto Scaling group by specifying additional
checks, or if you have your own health check system, you can send the instance's health information
directly from your system to Auto Scaling.

Replacing Unhealthy Instances
After an instance has been marked unhealthy as a result of an Amazon EC2 or Elastic Load Balancing
health check, it is almost immediately scheduled for replacement. It never automatically recovers its
health.You can intervene manually by calling the SetInstanceHealth action (or the
as-set-instance-health command) to set the instance's health status back to healthy, but you will
get an error if the instance is already terminating. Because the interval between marking an instance
unhealthy and its actual termination is so small, attempting to set an instance's health status back to
healthy with the SetInstanceHealth action (or, as-set-instance-health command) is probably
useful only for a suspended group. For more information, see Suspend and Resume Auto Scaling
Processes (p. 98).

Auto Scaling creates a new scaling activity for terminating the unhealthy instance and then terminates it.
Subsequently, another scaling activity launches a new instance to replace the terminated instance.

API Version 2011-01-01
34

Auto Scaling Developer Guide
Maintaining a Fixed Number of EC2 Instances

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-monitoring.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-monitoring.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/arch-loadbalancing.html#healthcheck
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_SetInstanceHealth.html

When your instance is terminated, any associated Elastic IP addresses are disassociated and are not
automatically associated with the new instance.You must associate these Elastic IP addresses with the
new instance manually. Similarly, when your instance is terminated, its attached EBS volumes are
detached.You must attach these EBS volumes to the new instance manually.

Manual Scaling
At any time, you can manually change the size of an existing Auto Scaling group. Auto Scaling manages
the process of launching or terminating instances to maintain the updated group size.

Prerequisites

The following examples assume that you've created an Auto Scaling group with a minimum size of 1 and
a maximum size of 5. Therefore, the group currently has one running instance.

Scaling Manually Using the Auto Scaling CLI
Use the as-set-desired-capacity command to change the size of your Auto Scaling group, as
shown in the following example:

as-set-desired-capacity my-test-asg --desired-capacity 2 --honor-cooldown

By default, the command overrides any cooldown period specified for the Auto Scaling group.You can
choose to reject the default behavior and honor the cooldown period by specifying the –-honor-cooldown
option with the command. For more information, see Understanding Auto Scaling Cooldowns (p. 28).

Auto Scaling returns the following response:

OK-Desired Capacity Set

Use the as-describe-auto-scaling-groups command to confirm that the size of your Auto Scaling
group has changed, as in the following example:

as-describe-auto-scaling-groups my-test-asg --headers

Auto Scaling responds with details about the group and instances launched. The response should be
similar to the following example:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1e 1 5
 2 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-98e204e8 us-east-1e InService Healthy my-test-lc
INSTANCE i-2a77ae5a us-east-1e InService Healthy my-test-lc

The desired capacity of your Auto Scaling group is updated to the new value.Your Auto Scaling group
has launched an additional instance.

Dynamic Scaling
When you use Auto Scaling to scale on demand, you must define how you want to scale in response to
changing conditions. For example, you have a web application that currently runs on two instances.You

API Version 2011-01-01
35

Auto Scaling Developer Guide
Manual Scaling

want to launch two additional instances when the load on the running instances reaches 70 percent, and
then you want to terminate the additional instances when the load goes down to 40 percent.You can
configure your Auto Scaling group to scale up and then scale down automatically based on specifying
these conditions.

An Auto Scaling group uses a combination of policies and alarms to determine when the specified
conditions for launching and terminating instances are met. An alarm is an object that watches over a
single metric (for example, the average CPU utilization of your EC2 instances in an Auto Scaling group)
over a time period that you specify. When the value of the metric breaches the thresholds that you define,
over a number of time periods that you specify, the alarm performs one or more actions. An action can
be sending messages to Auto Scaling. A policy is a set of instructions for Auto Scaling that tells the service
how to respond to alarm messages.

Along with creating a launch configuration and Auto Scaling group, you need to create the alarms and
the scaling policies and associate them with your Auto Scaling group.When the alarm sends the message,
Auto Scaling executes the associated policy on your Auto Scaling group to scale the group in (terminate
instances) or scale the group out (launch instances).

Auto Scaling integrates with CloudWatch for identifying metrics and defining alarms. For more information,
see Creating CloudWatch Alarms in the Amazon CloudWatch Developer Guide.

Contents

• Scaling Policies (p. 36)

• Architectural Overview of Dynamic Scaling (p. 37)

• Scaling Based on Metrics (p. 38)

• Scheduled Scaling (p. 42)

• Scaling Based on Amazon SQS (p. 45)

Scaling Policies
When a scaling policy is executed, it changes the size of your Auto Scaling group by the amount specified
in the policy.You can express the change to the current size as an absolute number, an increment, or
as a percentage of the current group size.When the policy is executed, Auto Scaling uses both the current
group capacity and the change specified in the policy to compute a new size for your Auto Scaling group.
Auto Scaling then updates the current size, and this consequently affects the size of your group.

A positive adjustment value increases the current capacity and a negative adjustment value decreases
the current capacity. Auto Scaling does not scale above the maximum size or below the minimum size
of the Auto Scaling group.

We recommend that you create two policies for each scaling change that you want to perform: one policy
for scaling out and another policy for scaling in.

To create a scaling policy, you need to specify a name for the policy, the name of the Auto Scaling group
to associate the policy with, the number of instances by which to scale, and the adjustment type. Auto
Scaling supports the following adjustment types:

• ChangeInCapacity: Increases or decreases the existing capacity. For example, the current capacity
of your Auto Scaling group is set to three instances, and you then create a scaling policy on your Auto
Scaling group, specify the type as ChangeInCapacity, and the adjustment as five. When the policy
is executed, Auto Scaling adds five more instances to your Auto Scaling group.You then have eight
running instances in your Auto Scaling group: current capacity (3) plus ChangeInCapacity (5) equals
8.

• ExactCapacity: Changes the current capacity to the specified value. For example, if the current capacity
is 5 instances and you create a scaling policy on your Auto Scaling group, specify the type as

API Version 2011-01-01
36

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html

ExactCapacity and the adjustment as 3. When the policy is executed, your Auto Scaling group has
three running instances.

You'll get an error if you specify a negative adjustment value for the ExactCapacity adjustment type.

• PercentChangeInCapacity: Increases or decreases the capacity by a percentage. For example, if the
current capacity is 10 instances and you create a scaling policy on your Auto Scaling group, specify
the type as PercentChangeInCapacity, and the adjustment as 10. When the policy is executed,
your Auto Scaling group has eleven running instances because 10 percent of 10 instances is 1 instance,
and 10 instances plus 1 instance is 11 instances.

Auto Scaling handles non-integer numbers returned by PercentChangeInCapacity as follows:

• If the value is greater than 1, Auto Scaling rounds it to the lower value. For example, a return value
of 12.7 is rounded to 12.

• If the value is between 0 and 1, Auto Scaling rounds it to 1. For example, a return value of .67 is
rounded to 1.

• If the value between 0 and -1, Auto Scaling rounds it to -1. For example, a return value of -.58 is
rounded to -1.

• If the value is less than –1, Auto Scaling rounds it to the higher value. For example, a return value
of -6.67 is rounded to -6.

Architectural Overview of Dynamic Scaling
The following diagram shows how the various components of Auto Scaling work together when you scale
dynamically based on demand. The AWS user has done the following:

• Created a launch configuration by providing all the information required to launch EC2 instances.

• Created an Auto Scaling group by defining maximum, minimum, and (optionally), the desired capacity
for the EC2 instances.

• Created an CloudWatch alarm and defined which metrics to monitor.

• Created two scaling policies, one for scaling out and another for scaling in, and associated the policies
with the alarm.

• Associated the scaling policies with the Auto Scaling group.

API Version 2011-01-01
37

Auto Scaling Developer Guide
Dynamic Scaling

The following events begin when a client sends a request to the AWS user's application, and with the
launch of EC2 instances in the Auto Scaling group:

1. The application is ready to communicate with users after the Auto Scaling group has launched all
Amazon EC2 application instances for the application.

2. While requests are being sent by users and received by the application instances, CloudWatch
monitors the specified metrics of all the instances in the Auto Scaling group.

3. As the demand for the application either grows or shrinks, the specified metrics change.

4. The change in metrics invokes the CloudWatch alarm to perform an action. The action is a message
sent to either the scaling-in policy or the scaling-out policy, depending on the metrics that were
breached.

5. The Auto Scaling policy that receives the message then invokes the scaling activity within the Auto
Scaling group.

6. This Auto Scaling process continues until the policies are deleted or the Auto Scaling group is
terminated.

Scaling Based on Metrics
When you create your policy, you can create CloudWatch alarms to watch specified scale-in and scale-out
metrics. Then you associate the alarms with the scaling policies that you have created. These alarms
send messages to Auto Scaling when the specified metrics breach the thresholds that you specified in
your policies.

When you create your CloudWatch alarm, you can add an Amazon SNS topic to send an email notification
when the alarm changes state. For more information, see the Amazon Simple Notification Service Getting
Started Guide.

Scaling policies also enable you to specify a custom cooldown period. Cooldown periods help to prevent
Auto Scaling from initiating additional scaling activities before the effects of previous activities are visible.
Because scaling activities are suspended when an Auto Scaling group is in cooldown mode, an adequate
cooldown period helps to prevent initiating a scaling activity based on stale metrics. By default, Auto
Scaling uses a default period associated with your Auto Scaling group.When specified, the policy cooldown
period takes priority over the default cooldown period specified in the Auto Scaling group. If the policy

API Version 2011-01-01
38

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/sns/latest/gsg/
http://docs.aws.amazon.com/sns/latest/gsg/

does not specify a cooldown period, the group's default cooldown period is used. For more information,
see Understanding Auto Scaling Cooldowns (p. 28).

The following example uses CPUUtilization metrics.

Scaling with Metrics Using the Auto Scaling CLI

Use the Auto Scaling CLI as follows to create a launch configuration, Auto Scaling group, and Auto Scaling
policies. For more information about the command syntax of any of these commands, use the --help
option with the command or see the Auto Scaling Quick Reference Card.

Tasks

• Create a Launch Configuration (p. 39)

• Create an Auto Scaling Group (p. 39)

• (Optional) Verify Your Auto Scaling Group (p. 39)

• Create Scaling Policies (p. 40)

• Create CloudWatch Alarms (p. 40)

• (Optional) Verify Your Scaling Policies and CloudWatch Alarms (p. 41)

Create a Launch Configuration

Use the following as-create-launch-config command to create a launch configuration named
my-test-lc:

as-create-launch-config my-test-lc --image-id ami-514ac838 --instance-type
m1.small --associate-public-ip-address true

If your request is successful, the response should be a confirmation like the following:

OK-Created launch config

Create an Auto Scaling Group

Use the following as-create-auto-scaling-group command to create an Auto Scaling group named
my-test-asg using the launch configuration my-test-lc that you just created:

as-create-auto-scaling-group my-test-asg --launch-configuration my-test-lc -
-availability-zones "us-east-1e" --max-size 5 --min-size 1

If your request was successful, the response should be a confirmation like the following:

OK-Created AutoScalingGroup

(Optional) Verify Your Auto Scaling Group

Use the as-describe-auto-scaling-groups command, as in the following example, to verify your
Auto Scaling group.

as-describe-auto-scaling-groups my-test-asg --headers

API Version 2011-01-01
39

Auto Scaling Developer Guide
Dynamic Scaling

http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-qrc.pdf

The following is an example response that shows that Auto Scaling launched an instance using
my-test-lc, and the instance is running (InService):

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1e 1
5 1 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-cbd7caba us-east-1e InService InService my-test-lc

Create Scaling Policies

You can create scaling policies that tell the Auto Scaling group what to do when the specified conditions
change.

Example: my-scaleout-policy

Use the following as-put-scaling-policy command to create a scaling policy named
my-scaleout-policy with an adjustment type of PercentChangeInCapacity that increases the
capacity of the group by 30 percent:

as-put-scaling-policy my-scaleout-policy --auto-scaling-group my-test-asg -
-adjustment=30 --type PercentChangeInCapacity

Auto Scaling returns the ARN that serves as a unique name for the policy. Subsequently, you can use
either the ARN or a combination of the policy name and group name to specify the policy. Store this ARN
in a safe place.You'll need it to create CloudWatch alarms.

arn:aws:autoscaling:us-east-1:123456789012:scalingPolicy:ac542982-cbeb-4294-
891c-a5a941dfa787:autoScalingGroupName/my-test-asg:policyName/my-scaleout-policy

Example: my-scalein-policy

Use the following as-put-scaling-policy command to create a scaling policy named
my-scalein-policy with an adjustment type of ChangeInCapacity that decreases the capacity of
the group by two instances:

as-put-scaling-policy my-scalein-policy --auto-scaling-group my-test-asg "-
-adjustment=-2" --type ChangeInCapacity

Auto Scaling returns the ARN for the policy. Store this ARN in a safe place.You'll need it to create
CloudWatch alarms.

arn:aws:autoscaling:us-east-1:123456789012:scalingPolicy:4ee9e543-86b5-4121-
b53b-aa4c23b5bbcc:autoScalingGroupName/my-test-asg:policyName/my-scalein-policy

Create CloudWatch Alarms

In the previous task, you created scaling policies that provided instructions to the Auto Scaling group
about how to scale in and scale out when the conditions that you specify change. In this task you create
alarms by identifying the metrics to watch, defining the conditions for scaling, and then associating the
alarms with the scaling policies.

Example: AddCapacity

API Version 2011-01-01
40

Auto Scaling Developer Guide
Dynamic Scaling

Use the following CloudWatch command mon-put-metric-alarm to create an alarm named AddCapacity
that increases the size of the Auto Scaling group when the average CPU usage of all the instances
(CPUUtilization) increases to 80 percent (GreaterThanOrEqualToThreshold):

mon-put-metric-alarm --alarm-name AddCapacity --metric-name CPUUtilization --
namespace AWS/EC2
--statistic Average --period 120 --threshold 80 --comparison-operator Greater
ThanOrEqualToThreshold
--dimensions "AutoScalingGroupName=my-test-asg" --evaluation-periods 2
--alarm-actions arn:aws:autoscaling...scalingPolicy:ac542982-cbeb-4294-891c-
a5a941dfa787:autoScalingGroupName/my-test-asg:policyName/my-scaleout-policy

Example: RemoveCapacity

Use the following CloudWatch command mon-put-metric-alarm to create an alarm named
RemoveCapacity that decreases the size of the Auto Scaling group when the average CPU usage of
all the instances (CPUUtilization) decreases to 40 percent (LessThanOrEqualToThreshold):

mon-put-metric-alarm --alarm-name RemoveCapacity --metric-name CPUUtilization
--namespace AWS/EC2
 --statistic Average --period 120 --threshold 40 --comparison-operator
LessThanOrEqualToThreshold
 --dimensions "AutoScalingGroupName=my-test-asg" --evaluation-periods 2
 --alarm-actions arn:aws:autoscaling...scalingPolicy:4ee9e543-86b5-4121-b53b-
aa4c23b5bbcc:autoScalingGroupName/my-test-asg:policyName/my-scalein-policy

(Optional) Verify Your Scaling Policies and CloudWatch Alarms

You can verify the scaling policies and CloudWatch alarms that you created.

To verify your CloudWatch alarms

Use the CloudWatch command mon-describe-alarms as follows:

mon-describe-alarms --headers

The following is an example response:

ALARM STATE ALARM_ACTIONS NAMESPACE METRIC_NAME PERIOD STATISTIC EV
AL_PERIODS COMPARISON THRESHOLD
RemoveCapacity OK arn:aws:autoscaling...policyName/my-scalein-policy AWS/EC2
CPUUtilization 120 Average 5 LessThanOrEqualToThreshold 2
AddCapacity OK arn:aws:autoscaling...policyName/my-scaleout-policy AWS/EC2
CPUUtilization 120 Average 5 GreaterThanOrEqualToThreshold 2

To verify your scaling policies

Use the Auto Scaling command as-describe-policies as follows:

as-describe-policies --auto-scaling-group my-test-asg --headers

The following is an example response:

API Version 2011-01-01
41

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-put-metric-alarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-put-metric-alarm.html

SCALING-POLICY GROUP-NAME POLICY-NAME SCALING-ADJUSTMENT ADJUSTMENT-
TYPE POLICY-ARN
SCALING-POLICY my-test-asg my-scalein-policy -2 ChangeInCapa
city policy-arn1
ALARM ALARM-NAME POLICY-NAME
ALARM RemoveCapacity my-scalein-policy
SCALING-POLICY my-test-asg my-scaleout-policy 30 PercentChange
InCapacity policy-arn2
ALARM ALARM-NAME POLICY-NAME
ALARM AddCapacity my-scaleout-policy

Scheduled Scaling
Scaling based on a schedule allows you to scale your application in response to predictable load changes.
For example, every week the traffic to your web application starts to increase on Wednesday, remains
high on Thursday, and starts to decrease on Friday.You can plan your scaling activities based on the
predictable traffic patterns of your web application.

To configure your Auto Scaling group to scale based on a schedule, you need to create scheduled actions.
A scheduled action tells Auto Scaling to perform a scaling action at certain time in future. To create a
scheduled scaling action, you specify the start time at which you want the scaling action to take effect,
and you specify the new minimum, maximum, and desired size you want for that group at that time. At
the specified time, Auto Scaling updates the group to set the new values for minimum, maximum, and
desired sizes, as specified by your scaling action.

You can create scheduled actions for scaling one time only or for scaling on a recurring schedule.

Contents

• Programming Considerations for Scheduled Actions (p. 42)

• Scheduling Scaling Using the Auto Scaling CLI (p. 42)

Programming Considerations for Scheduled Actions

When you create a scheduled action, keep the following programming considerations in mind.

• Auto Scaling guarantees the order of execution for scheduled actions within the same group, but not
for scheduled actions across groups.

• A scheduled action generally executes within seconds. However, the action may be delayed for up to
two minutes from the scheduled start time. Because Auto Scaling executes actions within an Auto
Scaling group in the order they are specified, scheduled actions with scheduled start times close to
each other may take longer to execute.

• You can schedule a scheduled action for up to a month in the future.

• You can create a maximum of 125 scheduled actions per month per Auto Scaling group. This allows
scaling four times a day for a 31-day month for each Auto Scaling group.

• A scheduled action must have a unique time value. If you attempt to schedule an activity at a time when
another existing activity is already scheduled, the call is rejected with an error message noting the
conflict.

Scheduling Scaling Using the Auto Scaling CLI

Complete the following tasks to create a scheduled action to scale your Auto Scaling group. For more
information about the command syntax of any of these commands, use the --help option with the
command or see the Auto Scaling Quick Reference Card.

API Version 2011-01-01
42

Auto Scaling Developer Guide
Dynamic Scaling

http://awsdocs.s3.amazonaws.com/AutoScaling/latest/as-qrc.pdf

Tasks

• Create a Launch Configuration (p. 43)

• Create an Auto Scaling Group (p. 43)

• (Optional) Verify Your Auto Scaling Group (p. 43)

• Create a Schedule for Scaling Actions (p. 43)

• (Optional) Verify that the Auto Scaling Group is Scheduled for Scaling (p. 44)

Create a Launch Configuration

Use the following as-create-launch-config command to create a launch configuration named
my-test-lc:

as-create-launch-config my-test-lc --image-id ami-514ac838 --instance-type
m1.small

Create an Auto Scaling Group

Use the following as-create-auto-scaling-group command to create an Auto Scaling group named
my-test-asg.

as-create-auto-scaling-group my-test-asg --launch-configuration my-test-lc -
-availability-zones "us-east-1e" --max-size 5 --min-size 1

(Optional) Verify Your Auto Scaling Group

Use the following as-describe-auto-scaling-groups command to get information about the
my-test-asg group:

as-describe-auto-scaling-groups my-test-asg --headers

The following is an example response that shows that Auto Scaling launched an instance using
my-test-lc, and the instance is running (InService):

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1e 1
5 1 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-cbd7caba us-east-1e InService InService my-test-lc

Create a Schedule for Scaling Actions

You can create a schedule for scaling one time only or for scaling on a recurring schedule.

To schedule scaling for one time only

To increase the number of running instances in your Auto Scaling group at a specific time, use the following
as-put-scheduled-update-group-action command to create a scheduled action named ScaleUp
that runs at the specified time (specified in "YYYY-MM-DDThh:mm:ssZ" format in UTC time):

as-put-scheduled-update-group-action ScaleUp --auto-scaling-group my-test-asg
--start-time "2013-05-12T08:00:00Z" --desired-capacity 3

API Version 2011-01-01
43

Auto Scaling Developer Guide
Dynamic Scaling

To decrease the number of running instances in your Auto Scaling group at a specific time, use the
following as-put-scheduled-update-group-action command to create a scheduled action named
ScaleDown that runs at the specified time (specified in "YYYY-MM-DDThh:mm:ssZ" format in UTC time):

as-put-scheduled-update-group-action ScaleDown --auto-scaling-group my-test-asg
 --start-time "2013-05-13T08:00:00Z" --desired-capacity 1

To schedule scaling on a recurring schedule

You can specify a recurrence schedule using the Unix cron syntax format. For more information about
cron syntax, see the Cron Wikipedia entry.

Use the following as-put-scheduled-update-group-action command to create a scheduled action
named scaleup-schedule-year that runs at 00:30 hours on the first of January, June, and December
each year:

as-put-scheduled-update-group-action scaleup-schedule-year --auto-scaling-group
my-test-asg --recurrence "30 0 1 1,6,12 0" --desired-capacity 3

(Optional) Verify that the Auto Scaling Group is Scheduled for Scaling

Use the following as-describe-scheduled-actions command to list all the scheduled actions attached
to your Auto Scaling groups that are still waiting to be executed. After a scheduled action is completed,
it is automatically deleted and no longer visible in the list of planned actions.

as-describe-scheduled-actions --auto-scaling-group my-test-asg --headers

The following is an example response:

UPDATE-GROUP-ACTION my-test-asg ScaleUp 2013-05-12T08:00:00Z 3
UPDATE-GROUP-ACTION my-test-asg ScaleDown 2013-01-13T08:00:00Z 1

If the scheduled action is already executed, use as-describe-scaling-activities, with the
--show-xml option, as follows:

as-describe-scaling-activities --auto-scaling-group my-test-asg --show-xml

The following is an example response.You can determine whether instances were launched due to a
scheduled action by examining the description in the Cause field. Activities launched as a direct result of
a scheduled action have a reference to the specific action name in Cause, as shown here.

<DescribeScalingActivitiesResponse xmlns="http://autoscaling.amazon
aws.com/doc/2011-01-01/">
 <DescribeScalingActivitiesResult>
 <NextToken>71382dd3-75af-4a57-9c23-988fdcb1866a</NextToken>
 <Activities>
 <member>
 <StatusCode>Successful</StatusCode>
 <Progress>100</Progress>
 <ActivityId>7d1a9dd2-7b53-4334-8a5f-5fa2a9731d64</ActivityId>
 <StartTime>2013-01-30T03:00:51.931Z</StartTime>
 <AutoScalingGroupName>my-test-asg</AutoScalingGroupName>
 <Cause>At 2013-01-30T03:00:21Z a scheduled action update of AutoScal

API Version 2011-01-01
44

Auto Scaling Developer Guide
Dynamic Scaling

http://en.wikipedia.org/wiki/Cron

ingGroup constraints to min: 1, max: 5, desired: 3
changing the desired capacity from 1 to 3. At 2013-01-30T03:00:21Z the scheduled
 action ScaleUp executed. Setting desired capacity
from 1 to 3. At 2013-01-30T03:00:51Z an instance was started in response to a
 difference between desired and actual capacity,
increasing the capacity from 1 to 3.</Cause>
 <Details>{}</Details>
 <Description>Launching a new EC2 instance: i-aacc62da</Description>
 <EndTime>2013-01-30T03:02:01Z</EndTime>
 </member>

Scaling Based on Amazon SQS
Amazon Simple Queue Service (Amazon SQS) is a scalable message queuing system that stores
messages as they travel between various components of your application architecture. Amazon SQS
enables web service applications to quickly and reliably queue messages that are generated by one
component and consumed by another component. A queue is a temporary repository for messages that
are awaiting processing. For more information about Amazon SQS, see the Amazon Simple Queue
Service Developer Guide.

For example, suppose that you have a web app that receives orders from customers. The app runs on
EC instances in an Auto Scaling group that is configured to handle a typical amount of orders. The app
places the orders in an Amazon SQS queue until they are picked up for processing, processes the orders,
and then sends the processed orders back to the customer. The following diagram illustrates the
architecture of this example.

This architecture works well if your order levels remain the same at all times. What happens if your order
levels change? You would need to launch additional EC2 instances when the orders increase and terminate
the extra EC2 instances when the orders decrease. If your orders increase and decrease on a predictable
schedule, you can specify the time and date to perform scaling activities. For more information, see
Scheduled Scaling (p. 42). Otherwise, you can scale based on criteria, such as the number of messages
in your Amazon SQS queue. For more information, see Dynamic Scaling (p. 35).

Queues provide a convenient mechanism to determine the load on an application.You can use the length
of the queue (number of messages available for retrieval from the queue) to determine the load. Because
each message in the queue represents a request from a user, measuring the length of the queue is a fair
approximation of the load on the application. CloudWatch integrates with Amazon SQS to collect, view,
and analyze metrics from Amazon SQS queues.You can use the metrics sent by Amazon SQS to
determine the length of the Amazon SQS queue at any point in time. For a list of all the metrics that
Amazon SQS sends to CloudWatch, see Amazon SQS Metrics in the Amazon Simple Queue Service
Developer Guide.

The following examples create Auto Scaling policies that configure your Auto Scaling group to scale
based on the number of messages in your Amazon SQS queue.

API Version 2011-01-01
45

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/MonitorSQSwithCloudWatch.html#SQS_metricscollected

Scaling with Amazon SQS Using the Auto Scaling CLI

The following example shows you how to create policies for scaling in and scaling out, plus create, verify,
and validate CloudWatch alarms for your scaling policies. It assumes that you already have an Amazon
SQS queue, an Auto Scaling group, and EC2 instances running the application that uses the Amazon
SQS queue.

Create the Scaling Policies

You can create scaling policies that tell the Auto Scaling group what to do when the specified conditions
change.

To create scaling policies

1. Use the following as-put-scaling-policy command to create a scale out policy to increase the
Auto Scaling group by one EC2 instance:

as-put-scaling-policy my-sqs-scaleout-policy -–auto-scaling-group my-asg -
-adjustment=1 --type ChangeInCapacity

Auto Scaling returns the Amazon Resource Name (ARN) for the new policy. Store the ARN in a safe
place.You'll need it when you create the CloudWatch alarms.

2. Use the following as-put-scaling-policy command to create a scale in policy to decrease the
Auto Scaling group by one EC2 instance:

as-put-scaling-policy my-sqs-scalein-policy --auto-scaling-group my-asg -
-adjustment=-1 --type ChangeInCapacity

Auto Scaling returns the ARN for the new policy. Store the ARN in a safe place.You'll need it when
you create the CloudWatch alarms.

Create the CloudWatch Alarms

Next, you create alarms by identifying the metrics to watch, defining the conditions for scaling, and then
associating the alarms with the scaling policies that you created in the previous task.

Note
All active Amazon SQS queues send metrics to CloudWatch every five minutes.We recommend
that you set the alarm Period to at least 300 seconds. Setting the alarm Period to less than
300 seconds will result in alarm going to INSUFFICIENT_DATA state while waiting for the metrics.

To create CloudWatch alarms

1. Use the following CloudWatch command, mon-put-metric-alarm, to create an alarm that increases
the size of the Auto Scaling group when the number of messages in the queue available for processing
(ApproximateNumberOfMessagesVisible) increases to three and remains at three or greater
for at least five minutes.

mon-put-metric-alarm --alarm-name AddCapacityToProcessQueue --metric-name
ApproximateNumberOfMessagesVisible --namespace "AWS/SQS"
--statistic Average --period 300 --threshold 3 --comparison-operator Great
erThanOrEqualToThreshold --dimensions "QueueName=my-queue"
--evaluation-periods 2 --alarm-actions arn

API Version 2011-01-01
46

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-put-metric-alarm.html

2. Use the following CloudWatch command, mon-put-metric-alarm, to create an alarm that decreases
the size of the Auto Scaling group when the number of messages in the queue available for processing
(ApproximateNumberOfMessagesVisible) decreases to one and the length remains at one or
fewer for at least five minutes.

mon-put-metric-alarm --alarm-name RemoveCapacityFromProcessQueue --metric-
name ApproximateNumberOfMessagesVisible --namespace "AWS/SQS"
 --statistic Average --period 300 --threshold 1 --comparison-operator
LessThanOrEqualToThreshold --dimensions "QueueName=my-queue"
 --evaluation-periods 2 --alarm-actions arn

Verify Your Scaling Policies and CloudWatch Alarms

You can verify that your CloudWatch alarms and scaling policies were created.

To verify your CloudWatch alarms

Use the following CloudWatch command mon-describe-alarms:

mon-describe-alarms AddCapacityToProcessQueue RemoveCapacityFromProcessQueue -
-headers

The following is example output:

ALARM STATE ALARM_ACTIONS NAMESPACE METRIC_NAME PERIOD STATISTIC EV
AL_PERIODS COMPARISON THRESHOLD
RemoveCapacityFromProcessQueue OK arn:aws:autoscaling...policyName/my-sqs-
scalein-policy AWS/SQS ApproximateNumberOfMessagesVisible 300 Average 5
LessThanOrEqualToThreshold 1
AddCapacityToProcessQueue OK arn:aws:autoscaling...:policyName/my-sqs-scaleout-
policy AWS/SQS ApproximateNumberOfMessagesVisible 300 Average 5 GreaterThanOrE
qualToThreshold 3

To verify your scaling policies

Use the following as-describe-policies command:

as-describe-policies --auto-scaling-group my-asg --headers

The following is example output:

SCALING-POLICY GROUP-NAME POLICY-NAME SCALING-ADJUSTMENT ADJUSTMENT-
TYPE POLICY-ARN
SCALING-POLICY my-asg my-sqs-scalein-policy 1 ChangeInCapa
city arn:aws:autoscaling:...
ALARM ALARM-NAME POLICY-NAME
ALARM RemoveCapacityFromProcessQueue my-sqs-scalein-policy
SCALING-POLICY my-asg my-sqs-scaleout-policy 1 ChangeInCapa
city arn:aws:autoscaling:...
ALARM ALARM-NAME POLICY-NAME
ALARM AddCapacityToProcessQueue my-sqs-scaleout-policy

API Version 2011-01-01
47

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-put-metric-alarm.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-describe-alarms-for-metric.html

Test Your Scale Out and Scale In Policies

You can test your scale out policy by increasing the number of messages in your Amazon SQS queue
and then verifying that your Auto Scaling group has launched an additional EC2 instance. Similarly, you
can test your scale in policy by decreasing the number of messages in your Amazon SQS queue and
then verifying that the Auto Scaling group has terminated an EC2 instance.

To test the scale out policy

1. Follow the steps in Sending a Message to add messages to your Amazon SQS queue. Make sure
that you have at least three messages in the queue.

It takes a few minutes for the Amazon SQS queue metric ApproximateNumberOfmessagesVisible
to invoke the CloudWatch alarm. After the CloudWatch alarm is invoked, it notifies the Auto Scaling
policy to launch one EC2 instance.

2. Use the following as-describe-auto-scaling-groups command to verify that the group has
launched an instance:

as-describe-auto-scaling-groups my-asg --headers

The following is example output:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-asg my-lc us-west-2b 1
 10 1 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-2cd22f5c us-west-2b InService Healthy my-lc
INSTANCE i-5a277829 us-west-2b InService Healthy my-lc

To test the scale in policy

1. Follow the steps in Deleting a Message to remove messages from the Amazon SQS queue. Make
sure that you have no more than one message in the queue.

It takes a few minutes for the Amazon SQS queue metric ApproximateNumberOfmessagesVisible
to invoke the CloudWatch alarm. After the CloudWatch alarm is invoked, it notifies the Auto Scaling
policy to terminate one EC2 instance.

2. Use the following as-describe-auto-scaling-groups command to verify that the group has
terminated an instance:

as-describe-auto-scaling-groups my-asg --headers

The following is example output:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-asg my-lc us-west-2b 1
 10 1 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-5a277829 us-west-2b InService Healthy my-lc

API Version 2011-01-01
48

Auto Scaling Developer Guide
Dynamic Scaling

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/SendMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/DeleteMessage.html

Controlling Access to Your Auto Scaling
Resources

Auto Scaling integrates with AWS Identity and Access Management (IAM), a service that enables you to
do the following:

• Create users and groups under your organization's AWS account

• Assign unique security credentials to each user under your AWS account

• Control each user's permissions to perform tasks using AWS resources

• Allow the users in another AWS account to share your AWS resources

• Create roles for your AWS account and define the users or services that can assume them

• Use existing identities for your enterprise to grant permissions to perform tasks using AWS resources

For example, you could create an IAM policy that grants the Managers group permission to use only
DescribeAutoScalingGroups, DescribeLaunchConfigurations, DescribeScalingActivities,
and DescribePolicies. Users in the Managers group could then use those actions with any Auto
Scaling groups and launch configurations. Note that you can't restrict access to a particular Auto Scaling
group or launch configuration.

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• IAM Getting Started Guide

• Using IAM

Contents

• Auto Scaling Actions (p. 49)

• Auto Scaling Resources (p. 49)

• Auto Scaling Keys (p. 49)

• Example IAM Policies for Auto Scaling (p. 50)

• Launch Auto Scaling Instances with an IAM Role (p. 51)

Auto Scaling Actions
In an IAM policy, you can specify any and all Auto Scaling actions. For Auto Scaling, use the following
prefix with the name of the action: autoscaling:. For example:
autoscaling:CreateAutoScalingGroup and autoscaling:CreateLaunchConfiguration.You
can also use wildcards. For example, use autoscaling:* to indicate all Auto Scaling actions.

For a list of the Auto Scaling actions, see Auto Scaling Actions in the Auto Scaling API Reference.

Auto Scaling Resources
When writing an IAM policy to control access to Auto Scaling actions, you must use "*" as the resource.
There are no supported Amazon Resource Names (ARNs) for Auto Scaling resources.

Auto Scaling Keys
Auto Scaling implements the following policy keys only.

API Version 2011-01-01
49

Auto Scaling Developer Guide
Controlling Access to Your Auto Scaling Resources

http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_Operations.html

AWS-Wide Policy Keys

• aws:CurrentTime—To check for date/time conditions.

• aws:EpochTime—To check for date/time conditions using a date in epoch or UNIX time.

• aws:principaltype—To check the type of principal (user, account, federated user, etc.) for the current
request.

• aws:SecureTransport—To check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws:SecureTransport key has no
meaning.

• aws:SourceArn—To check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

• aws:SourceIp—To check the IP address of the requester. Note that if you use aws:SourceIp, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

• aws:UserAgent—To check the client application that made the request.

• aws:userid—To check the user ID of the requester.

• aws:username—To check the user name of the requester, if available.

Note
Key names are case sensitive.

Example IAM Policies for Auto Scaling
The following are simple IAM policies that you can use to control user access to Auto Scaling.The resource
is always "*", because you can't specify a particular Auto Scaling resource in a policy.

Example 1: Create and manage Auto Scaling launch configurations

The following policy grants users permission to use all Auto Scaling actions that include the string
LaunchConfiguration in their names.

Alternatively, you can list each action explicitly instead of using wildcards. If you list each action separately,
the policy would not automatically apply to any new Auto Scaling actions we introduce that include the
string LaunchConfiguration in their names.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "autoscaling:*LaunchConfiguration*",
 "Resource": "*"
 }
]
}

Example 2: Create and manage Auto Scaling groups and policies.

The following policy grants users permission to use all Auto Scaling actions that include the string Scaling
in their names.

Alternatively, you can list each action explicitly instead of using wildcards. If you list each action separately,
the policy would not automatically apply to any new Auto Scaling actions we introduce that include the
string Scaling in their names.

API Version 2011-01-01
50

Auto Scaling Developer Guide
Example IAM Policies for Auto Scaling

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["autoscaling:*Scaling*"],
 "Resource": "*"
 }
]
}

Example 3: Change the capacity of Auto Scaling groups.

The following policy grants users permission to use the SetDesiredCapacity action to change the
capacity of Auto Scaling groups.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "autoscaling:SetDesiredCapacity",
 "Resource": "*"
 }
]
}

Launch Auto Scaling Instances with an IAM Role
AWS Identity and Access Management (IAM) roles for EC2 instances make it easier for you to access
other AWS services securely from within the EC2 instances. EC2 instances launched with an IAM role
automatically have AWS security credentials available.

You can use IAM roles with Auto Scaling to automatically enable applications running on your EC2
instances to securely access other AWS resources.

To launch EC2 instances with an IAM role in Auto Scaling, you'll have to create an Auto Scaling launch
configuration with an EC2 instance profile. An instance profile is simply a container for an IAM role. First,
create an IAM role that has all the permissions required to access the AWS resources, then add your
role to the instance profile.

For more information about IAM roles and instance profiles, see Delegating API Access by Using Roles
in the Using IAM guide.

Prerequisites: Using IAM
Use these steps for launching Auto Scaling instances with an IAM role. Before you walk, be sure you've
completed the following steps using IAM:

• Create an IAM role.

• Create an IAM instance profile.

• Add the IAM role to the IAM instance profile.

• Retrieve the IAM instance profile name or the full Amazon Resource Name (ARN) of the instance
profile.

API Version 2011-01-01
51

Auto Scaling Developer Guide
Launch Auto Scaling Instances with an IAM Role

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

For more information about creating and managing an IAM role, see Create a Role in the Using IAM
guide.

If you plan to use the IAM CLI, be sure to install the IAM CLI. For more information, see AWS Identity
and Access Management Command Line Interface Reference.

Steps for Launching Instances with an IAM role
After you have created the IAM role, the IAM instance profile, and have added the role to the instance
profile, you are ready to launch Auto Scaling instances with the IAM role, using the following steps:

• Create a launch configuration by specifying the IAM instance profile name or the full ARN of the IAM
instance profile.

• Create an Auto Scaling group with the launch configuration that you just created.

• Verify that the EC2 instance was launched with the IAM role.

Launching Instances with the CLI

Use the following Auto Scaling commands to launch instances.

DescriptionCommands

Creates a new launch configuration with specified
attributes.

as-create-launch-config

Creates a new Auto Scaling group with the spe-
cified name and other attributes.

as-create-auto-scaling-group

Describes the Auto Scaling groups, if the groups
exist.

as-describe-auto-scaling-groups

Create a Launch Configuration

If you're not familiar with how to create a launch configuration or an Auto Scaling group, we recommend
that you go through the steps in the Getting Started with the Auto Scaling CLI (p. 22). Use the basic
scenario to get started with the infrastructure that you need in most Auto Scaling scenarios.

For this procedure, specify the following values for the as-create-launch-config command:

• Launch configuration name = lc-with-instance-profile

• Image ID = ami-baba68d3
If you don't have an AMI, and you want to find a suitable one, follow the instructions in Finding an AMI.

• Instance type = m1.small

• Instance profile name = mytest-instance-profile.

Your command should look similar to the following example:

as-create-launch-config lc-with-instance-profile --image-id ami-baba68d3 --in
stance-type m1.small --iam-instance-profile mytest-instance-profile

You should get a confirmation like the following example:

API Version 2011-01-01
52

Auto Scaling Developer Guide
Launch Auto Scaling Instances with an IAM Role

http://docs.aws.amazon.com/IAM/latest/UserGuide/CreateRole.html
http://docs.aws.amazon.com/IAM/latest/CLIReference/Setup.html
http://docs.aws.amazon.com/IAM/latest/CLIReference/Setup.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/finding-an-ami.html

OK-Created launch config

Create an Auto Scaling Group

Create your Auto Scaling group by using as-create-auto-scaling-group and then specifying the
launch configuration you just created. For more information about the syntax of the
as-create-auto-scaling-group command, see Create an Auto Scaling Group (p. 23).

Specify these values for the command:

• Auto Scaling group name = asg-using-instance-profile

• Launch configuration name = lc-with-instance-profile

• Availability Zone = us-east-1e

• Max size = 1

• Min size = 1

Your command should look similar to the following example:

as-create-auto-scaling-group asg-using-instance-profile --launch-configuration
 lc-with-instance-profile --availability-zones "us-east-1e" --max-size 1 --min-
size 1

You should get confirmation similar to the following example:

OK-Created AutoScalingGroup

Verify That the EC2 Instance Launches with the IAM Role

To confirm that Auto Scaling launches your EC2 instances using the IAM role you specify, use
as-describe-auto-scaling-groups. The command shows details about the group and instances
launched. For information about the as-describe-auto-scaling-groups command, see Verify Your
Auto Scaling Group (p. 24).

Your command should look like the following example:

as-describe-auto-scaling-groups asg-using-instance-profile --headers

Note
Specify the --headers general option to show column headers that organize the describe
command's information.

The information you get should be similar to the following example.

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-
ZONES MIN-SIZE MAX-SIZE DESIRED-CAPACITY
AUTO-SCALING-GROUP asg-using-instance-profile lc-with-instance-profile
 us-east-1e 1 1 1

INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-5d97a03b us-east-1e InService Healthy lc-
with-instance-profile

API Version 2011-01-01
53

Auto Scaling Developer Guide
Launch Auto Scaling Instances with an IAM Role

You can see that Auto Scaling launched an instance using the lc-with-instance-profile launch
configuration; and it is running (InService) and is healthy.

Clean Up

After you're finished using your instances and your Auto Scaling group, it is a good practice to clean up.
Run the as-delete-auto-scaling-group command with the optional --force-delete parameter.
Force delete specifies that EC2 instances that are part of the Auto Scaling group are deleted with the
Auto Scaling group, even if the instances are still running. If you don't specify the --force-delete
parameter, then you cannot delete your Auto Scaling group until you have terminated all instances in that
Auto Scaling group.

Run the command with the following values:

• Auto Scaling group name = asg-with-instance-profile

• Force delete (optional parameter) = --force-delete

Your command should look like the following example:

as-delete-auto-scaling-group asg-with-instance-profile --force-delete

Confirm that you want to delete the Auto Scaling group. After you confirm that you want to delete the
Auto Scaling group, Auto Scaling deletes the group, as the following example shows:

Are you sure you want to delete this AutoScalingGroup? [Ny]
OK-Deleted AutoScalingGroup

Creating Launch Configurations
A launch configuration is a template for the EC2 instances launched into an Auto Scaling group.You
must specify a launch configuration when you create an Auto Scaling group.You can't modify a launch
configuration after you've created it. However, you can change which launch configuration is associated
with an Auto Scaling group at any time.

If you've launched an EC2 instance before, you've already walked through the process of defining compute
characteristics such as the instance type, security groups, and configuration scripts.You define these
same characteristics for any instances launched into the Auto Scaling group using a launch configuration.

When your launch configuration is ready, you can move straight to creating your Auto Scaling group (p. 58).
However, you might also want to look at how to control when your instances launch and terminate (p. 65),
how to tag instances (p. 76) so they're easier to identify, and how to incorporate Spot Instances (p. 78)
to make your Auto Scaling group even more cost effective.

Contents

• Create a Launch Configuration (p. 54)

• Create a Launch Configuration Using an EC2 Instance (p. 55)

Create a Launch Configuration
When you create a launch configuration, you must specify information about the EC2 instances to launch,
such as the Amazon Machine Image (AMI), instance type, key pair, security groups, and block device
mapping.

API Version 2011-01-01
54

Auto Scaling Developer Guide
Creating Launch Configurations

To create a launch configuration using the console

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation bar at the top of the screen, the current region is displayed. Select a region for your
Auto Scaling group that meets your needs.

3. In the navigation pane, under Auto Scaling, click Launch Configurations. If you are new to Auto
Scaling, you see a welcome page; click Create Auto Scaling group.

4. Click Create launch configuration.

5. On the Choose AMI page, select an AMI.

6. On the Choose Instance Type page, select a hardware configuration for your instance. Click Next:
Configure details.

Note
T2 instances must be launched into a subnet of a VPC. If you select a t2.micro instance
but don't have a VPC, one is created for you. This VPC includes a public subnet in each
Availability Zone in the region.

7. On the Configure Details page, do the following:

a. In the Name field, enter a name for your launch configuration.

b. Under Advanced Details, select an IP address type. If you want to connect to an instance in a
VPC, you must select an option that assigns a public IP address. If you want to connect to you
instance but aren't sure whether you have a default VPC, select Assign a public IP address
to every instance.

c. Click Skip to review.

8. On the Review page, click Edit security groups, follow the instructions to choose an existing security
group, and then click Review.

9. On the Review page, click Create launch configuration.

10. In the Select an existing key pair or create a new key pair field, select one of the listed options.
Click the acknowledgment check box, and then click Create launch configuration.

Warning
Do not select Proceed without a key pair if you need to connect to your instance.

Create a Launch Configuration Using an EC2
Instance
Auto Scaling provides you with an option to create a new launch configuration using the attributes from
a running EC2 instance. When you use this option, Auto Scaling copies the attributes from the specified
instance into a template from which you can launch one or more Auto Scaling groups.

Tip
You can create an Auto Scaling group directly from an EC2 instance (p. 60). When you use this
feature, Auto Scaling automatically creates a launch configuration for you as well.

If the specified instance has properties that are not currently supported by Auto Scaling, instances launched
by Auto Scaling using the launch configuration created from the identified instance might not be identical
to the identified instance.

There are differences between creating a launch configuration from scratch and creating a launch
configuration from an existing EC2 instance. When you create a launch configuration from scratch, you
specify the image ID, instance type, optional resources (such as storage devices), and optional settings
(like monitoring).When you create a launch configuration from a running instance, by default Auto Scaling

API Version 2011-01-01
55

Auto Scaling Developer Guide
Create a Launch Configuration Using an EC2 Instance

https://console.aws.amazon.com/ec2/

derives attributes for the launch configuration from the specified instance, plus the block device mapping
for the AMI that the instance was launched from (ignoring any additional block devices that were added
to the instance after launch).

When you create a launch configuration using a running instance, you can override the following attributes
by specifying then as part of the same request: AMI, block devices, key pair, instance profile, instance
type, kernel, monitoring, placement tenancy, ramdisk, security groups, Spot Price, user data, whether
the instance has a public IP address is associated, and whether the instance is EBS-optimized.

The following examples show you to create a new launch configuration from an EC2 instance.

Examples

• Create a Launch Configuration Using an EC2 Instance (p. 56)

• Create a Launch Configuration from an Instance and Override the Block Devices (p. 57)

• Create a Launch Configuration and Override the Instance Type (p. 57)

Create a Launch Configuration Using an EC2 Instance
To create a launch configuration using the attributes of an existing EC2 instance, specify the ID of the
instance.

Important
The AMI used to launch the specified instance must still exist.

Create a Launch Configuration from an EC2 Instance Using the Auto Scaling
CLI

Use the following as-create-launch-config command to create a new launch configuration from an
instance using the same attributes as the instance (other than any block devices added after launch):

as-create-launch-config my-test-lc-from-instance --instance-id i-a8e09d9c

When the launch configuration is created, Auto Scaling returns a success message like the following.

OK-Created launch config

You can use the following as-describe-launch-configs command to describe the launch configuration
and verify that its attributes match those of the instance:

as-describe-launch-configs my-test-lc-from-instance --show-long

The following is an example response:

LAUNCH-CONFIG,my-test-lc-from-instance,ami-b8a63b88,t1.micro,(nil),aki-6065f250,
(nil),{/dev/sda1=snap-3decf207:6:true:standard},sg-d6b3dae6,2013-11-22T05:01:59.
291Z,false,arn:aws:autoscaling:us-east-1a:605053316265:launchConfiguration:39c956
71-708e-4cd2-8642-7fa491e3f114:launchConfigurationName/my-test-lc-from-instance,
(nil),(nil),false,(nil)

API Version 2011-01-01
56

Auto Scaling Developer Guide
Create a Launch Configuration Using an EC2 Instance

Create a Launch Configuration from an Instance and Override
the Block Devices
By default, Auto Scaling uses the attributes from the EC2 instance you specify to create the launch
configuration, except that the block devices come from the AMI used to launch the instance, not the
instance. To add block devices to the launch configuration, override the block device mapping for the
launch configuration.

Important
The AMI used to launch the specified instance must still exist.

Create a Launch Configuration and Override the Block Devices Using the
Auto Scaling CLI

Use the following as-create-launch-config command to create a launch configuration using an EC2
instance but with a custom block device mapping:

as-create-launch-config my-test-lc-from-instance-bdm --instance-id i-a8e09d9c
--block-device-mapping "/dev/sda1=snap-3decf207,/dev/sdf=snap-eed6ac86"

When the launch configuration is created, Auto Scaling returns a success message like the following:

OK-Created launch config

Use the following as-describe-launch-configs command to describe the launch configuration and
verify that it uses your custom block device mapping:

as-describe-launch-configs my-test-lc-from-instance-bdm --show-long

The following example response describes the launch configuration:

LAUNCH-CONFIG,my-test-lc-from-instance-bdm,ami-c49c0dac,t1.mi
cro,(nil),(nil),(nil),
"{/dev/sda1=snap-3decf207,/dev/sdf=snap-eed6ac86}",sg-d6b3dae6,
2013-12-04T12:37:43.366Z,false,arn,(nil),(nil),false,(nil)

Create a Launch Configuration and Override the Instance
Type
By default, Auto Scaling uses the attributes from the EC2 instance you specify to create the launch
configuration. Depending on your requirements, you might want to change some of these attributes. Auto
Scaling provides you with options to override attributes from the instance and use the values that you
need. For example, you can override the instance type.

Important
The AMI used to launch the specified instance must still exist.

Create a Launch Configuration and Override the Instance Type Using the
Auto Scaling CLI

Use the following as-create-launch-config command to create a launch configuration using an EC2
instance but with a different instance type (for example m1.small) than the instance (for example
t1.micro):

API Version 2011-01-01
57

Auto Scaling Developer Guide
Create a Launch Configuration Using an EC2 Instance

as-create-launch-config my-test-lc-from-instance-changetype --instance-id i-
a8e09d9c --instance-type m1.small

When the launch configuration is created, Auto Scaling returns a success message like the following:

OK-Created launch config

Use the following as-describe-launch-configs command to describe the launch configuration and
verify that the instance type was overridden:

as-describe-launch-configs my-test-lc-from-instance-changetype --show-long

The following example response describes the launch configuration:

LAUNCH-CONFIG,my-test-lc-from-instance-changetype,ami-
b8a63b88,m1.small,(nil),(nil),(nil),
{/dev/sda1=snap-3decf207:6:true:standard},sg-d6b3dae6,2013-11-22T05:22:13.556Z,
false,arn,(nil),(nil),false,(nil)

Creating Auto Scaling Groups
An Auto Scaling group is a collection of EC2 instances managed by the Auto Scaling service. Each Auto
Scaling group contains configuration options that control when Auto Scaling should launch new instances
and terminate existing instances. At a minimum, an Auto Scaling group must contain the following:

• A name

• The maximum number of instances that can be in the Auto Scaling group

• The minimum number of instances that can be in the Auto Scaling group

However, an Auto Scaling group with these options only does not provide much value. The following are
additional configuration options that you should define to get the most out of your Auto Scaling group:

• Desired capacity. This parameter specifies the number of instances you'd like to have in the Auto
Scaling group.

• Availability Zones or subnets. It is often a good idea to build or modify your applications in AWS to use
more than one Availability Zone. If your Auto Scaling group operates within a VPC, you can alternatively
specify which subnets you want Auto Scaling to use.

• Launch configuration. As described in Creating Launch Configurations (p. 54), you must define an
instance type and how each instance will be configured.

• Metrics and health checks. An effective Auto Scaling group uses metrics to determine when it should
launch or terminate instances. In addition, it's helpful to define health checks which Auto Scaling uses
to determine if an instance is healthy or, if not, if Auto Scaling should terminate the instance and replace
it.

After you create your Auto Scaling, read Configuring Your Auto Scaling Groups (p. 85) to learn about
actions that you can take and Monitoring Your Auto Scaling Instances (p. 102) to learn about tracking the
performances of instances in the Auto Scaling group.

Contents

• Create an Auto Scaling Group (p. 59)

API Version 2011-01-01
58

Auto Scaling Developer Guide
Creating Auto Scaling Groups

• Create an Auto Scaling Group from an EC2 Instance (p. 60)

Create an Auto Scaling Group
When you create an Auto Scaling group, you must specify the launch configuration to use for launching
the instances, and the number of instances your group must maintain at all times.You can also specify
the Availability Zone in which you want the instances to be launched.

Prerequisites

Create a launch configuration. For more information, see Create a Launch Configuration (p. 54).

To create an Auto Scaling group using the console

1. Open the Amazon EC2 console.

2. In the navigation bar at the top of the screen, the current region is displayed. Select the same region
as the launch configuration.

3. In the navigation pane, under Auto Scaling, click Auto Scaling Groups.

4. Click Create Auto Scaling group.

5. On the Create Auto Scaling Group page, select Create an Auto Scaling group from an existing
launch configuration, select a launch configuration, and then click Next Step.

6. On the Configure Auto Scaling group details page, do the following:

a. In Group name, enter a name for your Auto Scaling group.

b. In Group size, enter the desired capacity for your Auto Scaling group.

c. If you are launching a T2 instance, you must select a VPC in Network. Otherwise, if your account
supports EC2-Classic and you are launching a type of instance that doesn't require a VPC, you
can select either Launch into EC2-Classic or a VPC.

d. If you selected a VPC in the previous step, select a subnet from Subnet. If you selected
EC2-Classic in the previous step, select an Availability Zone from Availability Zone(s).

e. Click Next: Configure scaling policies.

7. In the Configure scaling policies page, select one of the following options, and then click Review:

• To automatically adjust the size of the Auto Scaling group based on criteria that you specify, select
Use scaling policies to adjust the capacity of this group and follow the directions.

• To manually adjust the size of the Auto Scaling group, select Keep this group at its initial size.
For more information, see Manual Scaling (p. 35).

8. (Optional) To add tags now, click Edit tags and complete the following steps. Alternatively, you can
add tags later on. For more information, see Tagging Auto Scaling Groups and Instances (p. 76).

a. In the Key and Value fields, enter the key and the value for your first tag.

b. Keep Tag New Instances selected if you want Auto Scaling to propagate the tag to the instances
launched by your Auto Scaling group.

c. Click Add tag to add additional tags and then specify keys and values for the tags.

d. Click Review.

9. On the Review page, click Create Auto Scaling group.

10. On the Auto Scaling group creation status page, click Close.

API Version 2011-01-01
59

Auto Scaling Developer Guide
Create an Auto Scaling Group

To create an Auto Scaling group using the command line

You can use one of the following commands:

• create-auto-scaling-group (AWS CLI)

• as-create-auto-scaling-group (p. 23) (Auto Scaling CLI)

• New-ASAutoScalingGroup (AWS Tools for Windows PowerShell)

Create an Auto Scaling Group from an EC2
Instance
Auto Scaling provides you with the option to create an Auto Scaling group by specifying an EC2 instance,
instead of a launch configuration, and by specifying attributes such as the minimum, maximum, and
desired number of EC2 instances for the Auto Scaling group.

When you create an Auto Scaling group using an EC2 instance, Auto Scaling automatically creates a
launch configuration for you and associates it with the Auto Scaling group. This launch configuration has
the same name as the Auto Scaling group, and it derives its attributes, such as AMI ID, instance type,
and Availability Zone, from the specified instance.

Limitations

The following are limitations when creating an Auto Scaling group from an EC2 instance:

• If the identified instance has tags, the tags are not copied to the Tags attribute of the new Auto Scaling
group.

• The Auto Scaling group includes the block device mapping from the AMI used to launch the instance;
it does not include any block devices attached after instance launch.

• If the identified instance is registered with one or more load balancers, the load balancer names are
not copied to the LoadBalancerNames attribute of the new Auto Scaling group.

Prerequisites

Before you begin, find the ID of the EC2 instance using the Amazon EC2 console, the describe-instances
command (AWS CLI), or the ec2-describe-instances command (Amazon EC2 CLI).

The EC2 instance must meet the following criteria:

• The instance is in the Availability Zone in which you want to create the Auto Scaling group.

• The instance is not a member of another Auto Scaling group.

• The instance is in running state.

• The AMI used to launch the instance must still exist.

Create an Auto Scaling Group from an EC2 Instance Using
the Auto Scaling CLI
Use the following as-create-auto-scaling-group command to create an Auto Scaling group,
my-asg-from-instance, from the EC2 instance i-7f12e649.

as-create-auto-scaling-group my-asg-from-instance --instance-id i-7f12e649 -
-min-size 1 --max-size 2 --desired-capacity 2

API Version 2011-01-01
60

Auto Scaling Developer Guide
Create an Auto Scaling Group from an EC2 Instance

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-auto-scaling-group.html
http://docs.aws.amazon.com/powershell/latest/reference/items/New-ASAutoScalingGroup.html
http://docs.aws.amazon.com/cli/latest/reference/ec2/describe-instances.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-DescribeInstances.html

When the Auto Scaling group is created, Auto Scaling returns a success message.

OK-Created AutoScalingGroup

Use the following as-describe-auto-scaling-groups command to verify that the
my-asg-from-instance group was created with the specified size and desired capacity:

as-describe-auto-scaling-groups my-asg-from-instance --headers

The following example response shows that the desired capacity of the group is 2, the group has 2 running
instances, and the launch configuration is also named my-asg-from-instance:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES
 MIN-SIZE MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-asg-from-instance my-asg-from-instance us-east-1a
 1 2 2 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-08d6a93e us-east-1a InService Healthy my-asg-from-in
stance
INSTANCE i-0bd6a93d us-east-1a InService Healthy my-asg-from-in
stance

Use the following as-describe-launch-configs command to describe the launch configuration
my-asg-from-instance.

as-describe-launch-configs my-asg-from-instance --show-long --headers

Auto Scaling and Amazon Virtual Private Cloud
Amazon Virtual Private Cloud (Amazon VPC) enables you to define a virtual networking environment in
a private, isolated section of the AWS cloud.You have complete control over your virtual networking
environment. For more information, see the Amazon VPC User Guide.

Within a virtual private cloud (VPC), you can launch AWS resources such as an Auto Scaling group. An
Auto Scaling group in a VPC works essentially the same way as it does on Amazon EC2 and supports
the same set of features. This section provides you with an overview of Auto Scaling groups in a VPC
and steps you through the process of creating an Auto Scaling group in a VPC. If you want to launch your
Auto Scaling instances in Amazon EC2, see Getting Started with the Auto Scaling CLI (p. 22).

Before you can create your Auto Scaling group in a VPC, you must first configure your VPC environment.
You create your VPC by specifying a range of IP addresses in the classless inter-domain routing (CIDR)
range of your choice (for example, 10.0.0.0/16). For more information about CIDR notation and what "/16"
means, go to Classless Inter-Domain Routing on Wikipedia.

You can create a VPC that spans multiple Availability Zones then add one or more subnets in each
Availability Zone. A subnet in Amazon VPC is a subdivision within an Availability Zone defined by a
segment of the IP address range of the VPC. Using subnets, you can group your instances based on
your security and operational needs. A subnet resides entirely within the Availability Zone it was created
in.You launch Auto Scaling instances within the subnets.

To enable communication between the Internet and the instances in your subnets, you must create an
Internet gateway and attach it to your VPC. An Internet gateway enables your resources within the subnets
to connect to the Internet through the Amazon EC2 network edge. If a subnet's traffic is routed to an

API Version 2011-01-01
61

Auto Scaling Developer Guide
Auto Scaling and Amazon VPC

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/
http://en.wikipedia.org/wiki/CIDR

Internet gateway, the subnet is known as a public subnet. If a subnet's traffic is not routed to an Internet
gateway, the subnet is known as a private subnet. Use a public subnet for resources that must be
connected to the Internet, and a private subnet for resources that need not be connected to the Internet.

Contents

• Default VPC (p. 62)

• IP Addressing in a VPC (p. 62)

• Instance Placement Tenancy (p. 62)

• Linking EC2-Classic Instances to a VPC (p. 63)

• Launch Auto Scaling Instances in a VPC (p. 65)

Default VPC
If you have created your AWS account after 2013-12-04 or you are creating your Auto Scaling group in
a new region, we create a default VPC for you.Your default VPC comes with a subnet in each Availability
Zone. If you have a default VPC, by default, your Auto Scaling group is created in the default VPC.

A default VPC combines the benefits of the advanced features provided by Amazon VPC platform with
the ease of use of the Amazon EC2 platform.You can launch instances into your default VPC without
needing to know anything about Amazon VPC.

For information about default VPC and to find out if your account comes with a default VPC, see Your
Default VPC and Subnets in the Amazon VPC Developer Guide.

The steps for creating an Auto Scaling group in a default VPC is similar to the steps for creating an Auto
Scaling group in Amazon EC2.

IP Addressing in a VPC
When you launch your Auto Scaling instances in a VPC, your instances are automatically assigned with
a private IP address in the address range of the subnet. This enables your instances to communicate
with other instances in the VPC.You have an option to assign a public IP address to your instance.
Assigning a public IP address to your instance allows it to communicate with the Internet or other services
in AWS.You can choose the option of assigning public IP address to your instances when you create
your launch configuration.

Instance Placement Tenancy
Dedicated Instances are physically isolated at the host hardware level from instances that aren't dedicated
and from instances that belong to other AWS accounts. When you create a VPC, by default its tenancy
attribute is set to default. In such a VPC, you can launch instances with a tenancy value of dedicated
so that they run as single-tenancy instances. Otherwise, by default, they run as shared-tenancy instances.
If you set the tenancy attribute of a VPC to dedicated, all instances launched in the VPC run as
single-tenancy instances. For more information, see Dedicated Instances in the Amazon VPC User Guide.
For pricing information, see the Amazon EC2 Dedicated Instances product page.

When you create a launch configuration, the default value for the instance placement tenancy is null
and the instance tenancy is controlled by the tenancy attribute of the VPC.The following table summarizes
the instance placement tenancy of the Auto Scaling instances launched in a VPC.

VPC Tenancy = dedicatedVPC Tenancy = defaultLaunch Configuration Tenancy

Dedicated Instanceshared-tenancy instancenot specified

API Version 2011-01-01
62

Auto Scaling Developer Guide
Default VPC

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html#launching-into
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/default-vpc.html#launching-into
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/dedicated-instance.html
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/

VPC Tenancy = dedicatedVPC Tenancy = defaultLaunch Configuration Tenancy

Dedicated Instanceshared-tenancy instancedefault

Dedicated InstanceDedicated Instancededicated

You can specify the instance placement tenancy for your launch configuration as default or dedicated
using the create-launch-configuration command with the --placement-tenancy option. For example,
the following command sets the launch configuration tenancy to dedicated:

aws autoscaling create-launch-configuration --launch-configuration-name my-
launch-config --placement-tenancy dedicated --image-id ...

You can use the following describe-launch-configurations command to verify the instance placement
tenancy of the launch configuration:

aws autoscaling describe-launch-configurations --launch-configuration-names my-
launch-config

The following is example output for a launch configuration that creates Dedicated Instances. Note that
PlacementTenancy is not part of the output for this command unless you have explicitly set the instance
placement tenancy.

{
 "LaunchConfigurations": [
 {
 "UserData": null,
 "EbsOptimized": false,
 "PlacementTenancy": "dedicated",
 "LaunchConfigurationARN": "arn",
 "InstanceMonitoring": {
 "Enabled": true
 },
 "ImageId": "ami-b5a7ea85",
 "CreatedTime": "2015-03-08T23:39:49.011Z",
 "BlockDeviceMappings": [],
 "KeyName": null,
 "SecurityGroups": [],
 "LaunchConfigurationName": "my-launch-config",
 "KernelId": null,
 "RamdiskId": null,
 "InstanceType": "m3.medium"
 }
]

Linking EC2-Classic Instances to a VPC
If you are launching the instances in your Auto Scaling group in EC2-Classic, you can link them to a VPC
using ClassicLink. ClassicLink enables you to associate one or more security groups for the VPC with
the EC2-Classic instances in your Auto Scaling group, enabling communication between these linked
EC2-Classic instances and instances in the VPC using private IP addresses. For more information, see
ClassicLink in the Amazon EC2 User Guide for Linux Instances.

API Version 2011-01-01
63

Auto Scaling Developer Guide
Linking EC2-Classic Instances to a VPC

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-launch-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-launch-configurations.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html

If you have running EC2-Classic instances in your Auto Scaling group, you can link them to a VPC with
ClassicLink enabled. For more information, see Linking an Instance to a VPC in the Amazon EC2 User
Guide for Linux Instances. Alternatively, you can update the Auto Scaling group to use a launch
configuration that automatically links the EC2-Classic instances to a VPC at launch, then terminate the
running instances and let Auto Scaling launch new instances that are linked to the VPC.

Link to a VPC Using the AWS Management Console
Use the following procedure to create a launch configuration that links EC2-Classic instances to the
specified VPC and update an existing Auto Scaling group to use the launch configuration.

To link EC2-Classic instances in an Auto Scaling group to a VPC using the console

1. Verify that the VPC has ClassicLink enabled. For more information, see Viewing Your
ClassicLink-Enabled VPCs in the Amazon EC2 User Guide for Linux Instances.

2. Create a security group for the VPC that you are going to link EC2-Classic instances to, with rules
to control communication between the linked EC2-Classic instances and instances in the VPC.

3. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

4. In the navigation pane, click Launch Configurations. If you are new to Auto Scaling, you see a
welcome page. Click Create Auto Scaling group.

5. Click Create launch configuration.

6. On the Choose AMI page, select an AMI.

7. On the Choose an Instance Type page, select an instance type, and then click Next: Configure
details.

8. On the Configure details page, do the following:

a. Enter a name for your launch configuration.

b. Expand Advanced Details, select the IP Address Type that you need, and then select Link
to VPC.

c. From VPC, select the VPC with ClassicLink enabled from step 1.

d. From Security Groups, select the security group from step 2.

e. Click Skip to review.

9. On the Review page, make any changes that you need, and then click Create launch configuration.
In the Select an existing key pair or create a new key pair field, select an option, click the
acknowledgment check box (if present), and then click Create launch configuration.

10. When prompted, follow the directions to create an Auto Scaling group that uses the new launch
configuration. Be sure to select Launch into EC2-Classic for Network. Otherwise, click Cancel and
then add your launch configuration to an existing Auto Scaling group as follows:

a. In the navigation pane, click Auto Scaling Groups.

b. Select your Auto Scaling group, click Actions, and then click Edit.

c. From Launch Configuration, select your new launch configuration and then click Save.

Link to a VPC Using the AWS CLI
Use the following procedure to create a launch configuration that links EC2-Classic instances to the
specified VPC and update an existing Auto Scaling group to use the launch configuration.

API Version 2011-01-01
64

Auto Scaling Developer Guide
Linking EC2-Classic Instances to a VPC

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html#classiclink-link-instance
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html#classiclink-describe-vpcs-instances
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html#classiclink-describe-vpcs-instances
https://console.aws.amazon.com/ec2/

To link EC2-Classic instances in an Auto Scaling group to a VPC using the AWS CLI

1. Verify that the VPC has ClassicLink enabled. For more information, see Viewing Your
ClassicLink-Enabled VPCs in the Amazon EC2 User Guide for Linux Instances.

2. Create a security group for the VPC that you are going to link EC2-Classic instances to, with rules
to control communication between the linked EC2-Classic instances and instances in the VPC.

3. Create a launch configuration using the create-launch-configuration command as follows, where
vpd_id is the ID of the VPC with ClassicLink enabled from step 1 and group_id is the security group
from step 2:

aws autoscaling create-launch-configuration --launch-configuration-name
classiclink-config
--image-id ami_id --instance-type instance_type
--classic-link-vpc-id vpc_id --classic-link-vpc-groups group_id

4. Update your existing Auto Scaling group, for example my-asg, with the launch configuration that you
created in the previous step. Any new EC2-Classic instances launched in this Auto Scaling group
are linked EC2-Classic instances. Use the update-auto-scaling-group command as follows:

aws autoscaling update-auto-scaling-group --auto-scaling-group-name my-asg

--launch-configuration-name classiclink-config

Alternatively, you can use this launch configuration with a new Auto Scaling group that you create
using create-auto-scaling-group.

Launch Auto Scaling Instances in a VPC
You can use Auto Scaling to launch instances into a virtual private cloud (VPC).

Prerequisites

Before you can launch your Auto Scaling instances in a VPC, you must first create your VPC environment.
After you create your VPC and subnets, you launch Auto Scaling instances within the subnets.The easiest
way to create a VPC with one public subnet is to use the VPC wizard. For more information, see the
Amazon VPC Getting Started Guide.

Examples

• Getting Started with the Auto Scaling CLI (p. 22)

• Hosting a Web App on Amazon Web Services

• Hosting a .NET Web App on Amazon Web Services

Controlling How Instances Launch and
Terminate

The section, Auto Scaling Lifecycle (p. 9), describes the basic lifecycle of instances as they launch or
terminate within an Auto Scaling group.

API Version 2011-01-01
65

Auto Scaling Developer Guide
Launch Auto Scaling Instances in a VPC

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html#classiclink-describe-vpcs-instances
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/vpc-classiclink.html#classiclink-describe-vpcs-instances
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-launch-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/update-auto-scaling-group.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/create-auto-scaling-group.html
http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/
http://docs.aws.amazon.com/gettingstarted/latest/wah-linux/web-app-hosting-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/wah/web-app-hosting-intro.html

As this diagram illustrates, the standard procedure is for Auto Scaling to launch and configure an instance
in response to a scale out event. When the instance is ready, it is immediately put into service. The same
is true when a scale in event occurs. Auto Scaling selects an instances (based on any existing termination
policies (p. 31) that are in place), removes it from the Auto Scaling group and terminates it.

While these processes are usually sufficient for most implementations of Auto Scaling groups, there are
some situations in which you want more granular control over when instances are put into service and
when they terminate.You can use lifecycle hooks to implement this level of control.

Introducing Lifecycle Hooks
An Auto Scaling lifecycle hook allows you to add custom events to instances as they launch or terminate.
A custom event could be actions such as manually installing software, or retrieving log files.

API Version 2011-01-01
66

Auto Scaling Developer Guide
Introducing Lifecycle Hooks

When you add a lifecycle hook to your Auto Scaling group:

1. Auto Scaling responds to a scale in or scale out event by launching or terminating an instance.

2. Auto Scaling puts the instance into a wait state.The state of the instance becomes either Pending:Wait
or Terminating:Wait.

3. Auto Scaling sends a message to the notification target defined for the lifecycle hook. The message
contains information about the instance that is launching or terminating, and a token you can use to
control the lifecycle action.

4. At this point, the instance is ready for you to perform a custom action. The instance remains in a wait
state until you tell Auto Scaling to continue or until the timeout period for the lifecycle hook ends.

5. By default, the instance remains in the Pending:Wait or Terminating:Wait state for one hour. If
you take no action during that time, Auto Scaling terminates the instance.You can extend the length
of time the instance remains in a waiting state by recording a heartbeat.

Note
You can only add lifecycle hooks to your Auto Scaling group through the Auto Scaling CLI or
API. There is no way to add a lifecycle hook using the AWS Management Console.

For more information about adding lifecycle hooks to your Auto Scaling groups, see the following:

• Adding Lifecycle Hooks (p. 68)

• Considerations When Using Lifecycle Hooks (p. 69)

API Version 2011-01-01
67

Auto Scaling Developer Guide
Introducing Lifecycle Hooks

Adding Lifecycle Hooks
Each Auto Scaling can have multiple lifecycle hooks. However, you can have only a set number of hooks
for each AWS account. For more information, see Auto Scaling Account Limits.

To add a lifecycle hook to an Auto Scaling group

1. Create a notification target.You can either create a topic using Amazon SNS, or use an Amazon
SQS queue.

After you create your target, make a note of its Amazon Resource Name (ARN). For example,
arn:aws:sns:us-west-2:123456789012:my-sns-topic.

2. Create an AWS Identity and Access Management role using the steps in Creating a Role for an AWS
Service (AWS Management Console) in the Using IAM guide. When you are prompted to select a
role type, choose AWS Service Roles and then select AutoScaling Notification Access.

After you create your role, make a note of its ARN. For example,
arn:aws:iam::123456789012:role/my-auto-scaling-role.

3. Create a lifecycle hook, which tells Auto Scaling that you want to perform an action on the instance
before it transitions.You create a lifecycle hook using the put-lifecycle-hook command as follows:

aws autoscaling put-lifecycle-hook --lifecycle-hook-name my-lifecycle-hook
 --auto-scaling-group-name my-asg --lifecycle-transition autoscaling:EC2_IN
STANCE_LAUNCHING --notification-target-arn sns-topic-arn --role-arn iam-
role-arn

Note that you can specify the --heartbeat-timeout parameter to determine how long Auto Scaling
should keep an instance in the Pending:Wait or Terminating:Wait state.

4. Perform a custom action.

5. (Optional) If you need more time to complete the custom action, use the following
record-lifecycle-action-heartbeat command to restart the heartbeat timeout and keep the instance in
a waiting state. Note that the lifecycle action token is included in the message sent to your notification
target.

aws autoscaling record-lifecycle-action-heartbeat --lifecycle-action-token
bcd2f1b8-9a78-44d3-8a7a-4dd07d7cf635 --auto-scaling-group-name my-asg -

-lifecycle-hook-name my-lifecycle-hook

For example, consider a lifecycle hook that uses the default timeout value of 60 minutes. After 30
minutes, if you discover that you need more time to complete your custom action, use the
record-lifecycle-action-heartbeat command to restart the timeout value, giving you a total
of 90 minutes to complete the custom action.

6. When you finish the custom action, let Auto Scaling know it can finish launching or terminating the
instance.You use the complete-lifecycle-action command as follows:

aws autoscaling complete-lifecycle-action --lifecycle-action-token bcd2f1b8-
9a78-44d3-8a7a-4dd07d7cf635 --lifecycle-hook-name my-lifecycle-hook --auto-
scaling-group-name my-asg --lifecycle-action-result CONTINUE

API Version 2011-01-01
68

Auto Scaling Developer Guide
Introducing Lifecycle Hooks

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_autoscaling
http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/put-lifecycle-hook.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/record-lifecycle-action-heartbeat.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/complete-lifecycle-action.html

Considerations When Using Lifecycle Hooks
Adding lifecycle hooks to your Auto Scaling gives you a greater degree of control over how instances
launch and terminate. Here are some things to consider when adding a lifecycle hook to your Auto Scaling,
to help ensure that the group continues to perform as expected.

Considerations

• Keeping Instances in a Wait State (p. 69)

• Cooldowns and Custom Actions (p. 69)

• Abandon or Continue (p. 69)

• Spot Instances (p. 70)

Keeping Instances in a Wait State

Instances can only remain in a wait state for a finite period of time. The default length of time is 1 hour
(3600 seconds).You can adjust this time in the following ways:

• Change the heartbeat timeout for the lifecycle hook.When you create a lifecycle hook, you can optionally
define the timeout value.You accomplish this in the CLI with the --heartbeat-timeout parameter.
In the API, use the HeartbeatTimeout parameter.

• Call the complete-lifecycle-action command or CompleteLifecycleAction action, which tells Auto
Scaling that the instance is ready to continue to the next state.

• Call the record-lifecycle-action-heartbeat command or the RecordLifecycleActionHeartbeat
action to increment the amount of time the instance remains in a wait state. The amount of time added
is equal to the time assigned to the timeout value. For example, if the timeout value is 1 hour, and you
call this command after 30 minutes, the instance remains in a wait state for an additional hour, or a
total of 90 minutes.

Note
You can only keep an instance in a wait state for a maximum of 48 hours, regardless of how
often you call record-lifecycle-action-heartbeat or RecordLifecycleActionHeartbeat.

Cooldowns and Custom Actions

Each time Auto Scaling launches or terminates an instance, a cooldown (p. 28) takes effect.This cooldown
helps ensure that the Auto Scaling group does not launch or terminate more instances than needed.

When you put a lifecycle hook on an Auto Scaling group, any scaling actions are suspended until the
instance move out of a Wait state. After the instance moves out of a Wait state, the cooldown period
starts.

For example, consider an Auto Scaling group for a set of servers in a basic web application. This group
has a lifecycle hook that allows for custom actions as a new instance launches.The application experiences
an increase in demand, and Auto Scaling launches a new instance to address the need for additional
capacity. Because there is a lifecycle hook, the instance is put into a Pending:Wait state, which means
the instance is not available to handle traffic yet. Until the instance moves into service, all scaling actions
are suspended for the Auto Scaling group. When the instance is put into service, the cooldown period
starts and, when it expires, additional scaling actions can resume.

Abandon or Continue

At the conclusion of a lifecycle hook, an instance can have one of two results: ABANDON or CONTINUE.

If the instance is launching, an ABANDON result means that whatever additional actions you wanted to
take on the instance were unsuccessful. Instead of putting the instance into service, Auto Scaling terminates

API Version 2011-01-01
69

Auto Scaling Developer Guide
Introducing Lifecycle Hooks

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/complete-lifecycle-action.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/record-lifecycle-action-heartbeat.html

the instance and, if necessary, launches a new one. A CONTINUE result means that your actions were
successful, and Auto Scaling can put the instance into service.

If the instance is terminating, an ABANDON result means stop any remaining actions, such as other lifecycle
hooks, and move straight to terminating the instance. A CONTINUE result means continue with the
termination process, but allow any other lifecycle hooks applied to the instance take effect as well.

Note
For terminating instances, both an ABANDON result and a CONTINUE result cause the instance
to terminate. The main difference is whether any other actions are allowed to occur on the
instance.

Spot Instances

You can use lifecycle hooks with Spot Instances. However, a lifecycle hook does not prevent an instance
from terminating due to a change in the Spot Price, which can happen at any time. In addition, when a
Spot Instance terminates, you must still complete the lifecycle action (using the complete-lifecycle-action
command or the CompleteLifecycleAction action).

Examples of How to Use Lifecycle Hooks
Lifecycle hooks can allow you to customize an Auto Scaling to meet the needs of your application's
architecture. Here are some examples.

Examples

• Installing Software to Pending Instances (p. 70)

• Filling a Cache of Servers (p. 72)

• Analyzing an Instance Before Termination (p. 73)

• Retrieving Logs from Terminating Instances (p. 74)

Installing Software to Pending Instances
As with a standalone EC2 instance, you have the option of configuring instances launched into an Auto
Scaling group using user data. For example, you can specify a configuration script using the UserData

API Version 2011-01-01
70

Auto Scaling Developer Guide
Lifecycle Hook Examples

field in the AWS Management Console, or the --userdata parameter in the AWS CLI or Auto Scaling
CLI.

If you have software that can't be installed using a configuration script, or if you need to modify software
manually before Auto Scaling adds the instance to the group, add a lifecycle hook to your Auto Scaling
group that notifies you when the Auto Scaling group launches an instance. This hook keeps the instance
in the Pending:Wait state while you install and configure the additional software.

By default, the instance remains in the Pending:Wait state for one hour. If you take no action during
that time, Auto Scaling assumes that the instance was not configured correctly and terminates it. If you
need more time, you can restart the timeout period. For example, if after 30 minutes you discover that
you need more time to complete your software installation, you can restart the timeout period, giving you
a total of 90 minutes to complete the software installation. If you are ready to add the instance to the Auto
Scaling group before the timeout period ends, you can complete the lifecycle action.

Adding Software Using the Auto Scaling CLI

The following steps demonstrate the general process for installing additional software on instances joining
an Auto Scaling group.

To add software manually to pending instances using the Auto Scaling CLI

1. Create a notification target to receive the notification that an instance is launching.You can either
create a topic using Amazon SNS, or use an Amazon SQS queue.

After you create your target, make a note of its Amazon Resource Name (ARN). For example,
arn:aws:sns:us-west-2:123456789012:my-sns-topic.

2. Create an IAM role using the steps in Creating a Role for an AWS Service (AWS Management
Console) in the Using IAM guide. When prompted to select a role type, choose AWS Service Roles
and then select AutoScaling Notification Access.

After you create your role, make a note of its ARN. For example,
arn:aws:iam::123456789012:role/my-auto-scaling-role.

3. Create a lifecycle hook perform an action (in this case, installing additional software) on the instance
before it enters service. Create a lifecycle hook using the following as-put-lifecycle-hook
command:

as-put-lifecycle-hook ReadyForSoftwareInstall --auto-scaling-group my-asg
--lifecycle-transition autoscaling:EC2_INSTANCE_LAUNCHING --notification-
target sns-topic-arn --notification-role iam-role-arn

4. When a scale out event occurs, Auto Scaling launches an instance. If the Auto Scaling group uses
a configuration script, it is applied.When these steps are complete, the lifecycle hook puts the instance
into a Pending:Wait state and uses your notification target to inform you that the instance is ready.
You can connect to the instance and install additional software. For more information about connecting
to an EC2 instance, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux
Instances or Connecting to Your Windows Instance in the Amazon EC2 User Guide for Microsoft
Windows Instances.

5. (Optional) To keep the instances in the Pending:Wait state until you complete the software
installation, use the following as-record-lifecycle-action-heartbeat command to reset the
timeout period for the instance. Note that the lifecycle action token is included in the message sent
to your notification target.

API Version 2011-01-01
71

Auto Scaling Developer Guide
Lifecycle Hook Examples

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

as-record-lifecycle-action-heartbeat 163445fc-e180-48a4-abcc-dddec19cc2a4
--lifecycle-hook ReadyForSoftwareInstall --auto-scaling-group my-asg

6. When you finish installing the additional software, use the following
as-complete-lifecycle-action command to let Auto Scaling know it can add the instance to
the Auto Scaling group:

as-complete-lifecycle-action 163445fc-e180-48a4-abcc-dddec19cc2a4 --lifecycle-
hook ReadyForSoftwareInstall --auto-scaling-group my-asg --lifecycle-action-
result CONTINUE

Filling a Cache of Servers
You can use Auto Scaling to fill a cache of servers ahead of an expected increase in demand. For example,
you might having a schedule-based scaling policy to coincide with an upcoming marketing effort, or you
might have an application that has a monthly spike in traffic. In these types of cases, it can be helpful to
have EC2 instances ready in advance, because you can maximize application responsiveness, which in
turn provides a better customer experience.

To cache servers, add a lifecycle hook to your Auto Scaling group that notifies you when the Auto Scaling
group launches an instance.This hook applies to any new instances launched for the Auto Scaling group
and keeps them in the Pending:Wait state.

By default, the instance remains in the Pending:Wait state for one hour. If you take no action during
that time, Auto Scaling assumes that the instance was not configured correctly and terminates it. If you
need more time, you can restart the timeout period. For example, if after 30 minutes you are not ready
to add the instances to the Auto Scaling group, you can restart the timeout period, giving you a total of
90 minutes to add the instances to the Auto Scaling group. If you are ready to add the instances to the
Auto Scaling group before the timeout period ends, you can complete the lifecycle action.

Filling a Cache Using the Auto Scaling CLI

The following steps demonstrate how to create a cache of servers for your Auto Scaling group.

To fill a cache of servers using the Auto Scaling CLI

1. Create a notification target to receive the notification that an instance is launching.You can either
create a topic using Amazon SNS, or use an Amazon SQS queue.

After you create your target, make a note of its Amazon Resource Name (ARN). For example,
arn:aws:sns:us-west-2:123456789012:my-sns-topic.

2. Create an IAM role using the steps in Creating a Role for an AWS Service (AWS Management
Console) in the Using IAM guide. When prompted to select a role type, choose AWS Service Roles
and then select AutoScaling Notification Access.

After you create your role, make a note of its ARN. For example,
arn:aws:iam::123456789012:role/my-auto-scaling-role.

3. Create a lifecycle hook to perform an action (in this case, waiting until a specific period of time elapses)
on the instance before it enters service. Create a lifecycle hook using the following
as-put-lifecycle-hook command:

API Version 2011-01-01
72

Auto Scaling Developer Guide
Lifecycle Hook Examples

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html

as-put-lifecycle-hook CachedServers --auto-scaling-group my-asg --lifecycle-
transition autoscaling:EC2_INSTANCE_LAUNCHING --notification-target sns-
topic-arn --notification-role iam-role-arn

4. Increase the size of your Auto Scaling group using the following as-update-auto-scaling-group
command. This command increases the maximum size of the group to 10 and the desired capacity
to 8.

as-update-auto-scaling-group my-asg --max-size 10 --desired-capacity 8

5. (Optional) To keep the instances in the Pending:Wait state until you are ready to put them into
service, use the following as-record-lifecycle-action-heartbeat command. Note that the
lifecycle action token is included in the message sent to your notification target.

as-record-lifecycle-action-heartbeat bcd2f1b8-9a78-44d3-8a7a-4dd07d7cf635
--auto-scaling-group my-asg --lifecycle-hook CachedServers

6. When you are ready to put the instances into service, use the following
as-complete-lifecycle-action command to let Auto Scaling know that it can add the instances
to the Auto Scaling group:

as-complete-lifecycle-action bcd2f1b8-9a78-44d3-8a7a-4dd07d7cf635 --lifecycle-
hook CachedServers --auto-scaling-group my-asg -lifecycle-action-result
CONTINUE

Analyzing an Instance Before Termination
A primary benefit of Auto Scaling is the ability to scale the instances for your application dynamically on
an as-needed basis. As a result, instances frequently are launched and terminated without any need for
manual intervention. However, you might want to understand why an instance is being terminated so that
you can better configure your application's architecture.You can accomplish this by adding a lifecycle
hook to your Auto Scaling group. This hook puts the instance into a Terminating:Wait state, while
you connect to the instance and investigate the cause of the termination. The instance remains in this
state until its state is set to Terminating:Proceed.

By default, the instance remains in the Terminating:Wait state for one hour. If you take no action
during that time, Auto Scaling continues the termination process. If you need more time, you can restart
the timeout period. For example, if after 30 minutes you discover that you need more time to analyze the
instance, you can restart the timeout period, giving you a total of 90 minutes to complete your analysis.
If you are ready for the instance to terminate before the timeout period ends, you can complete the lifecycle
action, which continues the termination process.

When an instance has a terminating status (either Terminating, Terminating:Wait, or
Terminating:Proceed), it is not eligible to be put back into service. If you need to troubleshoot an
instance and then put it back into service, put it in a standby state before Auto Scaling initiates the
termination. For more information, see Troubleshooting Instances in an Auto Scaling Group (p. 95).

Analyzing Instances Using the Auto Scaling CLI

The following steps demonstrate the general process for putting instances in a Terminating:Wait
state, connecting to the instance, and analyze what might have caused the instance to fail.

API Version 2011-01-01
73

Auto Scaling Developer Guide
Lifecycle Hook Examples

To analyze an instance before it terminates using the Auto Scaling CLI

1. Create a notification target to receive the notification that an instance is terminating.You can either
create a topic using Amazon SNS, or use an Amazon SQS queue.

After you create your target, make a note of its Amazon Resource Name (ARN). For example,
arn:aws:sns:us-west-2:123456789012:my-sns-topic.

2. Create an IAM role using the steps in Creating a Role for an AWS Service (AWS Management
Console) in the Using IAM guide. When prompted to select a role type, choose AWS Service Roles
and then select AutoScaling Notification Access.

After you create your role, make a note of its ARN. For example,
arn:aws:iam::123456789012:role/my-auto-scaling-role.

3. Create a lifecycle hook to perform an action (in this case, analyze the instance) on the instance
before it terminates. Create the lifecycle hook using the following as-put-lifecycle-hook command:

as-put-lifecycle-hook WaitForDiagnostics --auto-scaling-group my-asg --life
cycle-transition autoscaling:EC2_INSTANCE_TERMINATING --notification-target
sns-topic-arn --notification-role iam-role-arn

4. When an instance in the Auto Scaling group is terminated, Auto Scaling puts the instance in a
Terminating:Wait state and sends a message to the notification target that you created. After
you receive this notification, you can connect to the instance to run any diagnostics or analysis that
you need. For more information on how to connect to an EC2 instance, see Connect to Your Linux
Instance in the Amazon EC2 User Guide for Linux Instances or Connecting to Your Windows Instance
in the Amazon EC2 User Guide for Microsoft Windows Instances.

5. (Optional) To keep the instances in the Terminating:Wait state until you complete your analysis,
use the following as-record-lifecycle-action-heartbeat command to reset the timeout
period for the instance. Note that the lifecycle action token is included in the message sent to your
notification target.

as-record-lifecycle-action-heartbeat 163445fc-e180-48a4-abcc-dddec19cc2a4
-h WaitForDiagnostics -g my-asg

6. (Optional) If you are ready for the instance to terminate before the timeout period ends, you can use
the following as-complete-lifecycle-action command to continue the termination process:

as-complete-lifecycle-action 163445fc-e180-48a4-abcc-dddec19cc2a4 --lifecycle-
hook WaitForDiagnostics --auto-scaling-group my-asg --lifecycle-action-result
 CONTINUE

Retrieving Logs from Terminating Instances
Typically, when a scale in event occurs and Auto Scaling determines that an instance is no longer
necessary, it immediately puts the instance into the Terminating state and you can no longer connect
to the instance. The instance remains in this state until it fully terminates.

If you might want to access an instance before it is terminated and retrieve log files, you can add a lifecycle
hook to your Auto Scaling group. This hook puts the instance into a Terminating:Wait state while you
connect to the instance and retrieve the log files.

API Version 2011-01-01
74

Auto Scaling Developer Guide
Lifecycle Hook Examples

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

By default, the instance remains in the Terminating:Wait state for one hour. If you take no action
during that time, Auto Scaling continues the termination process. If you need more time, you can restart
the timeout period. For example, if after 30 minutes you discover that you need more time to analyze the
instance, you can restart the timeout period, giving you a total of 90 minutes to retrieve the log files. If
you are ready for the instance to terminate before the timeout period ends, you can complete the lifecycle
action, which continues the termination process.

When an instance has a terminating status (either Terminating, Terminating:Wait, or
Terminating:Proceed), it is not eligible to be put back into service. If you need to troubleshoot an
instance and then put it back into service, put it in a standby state before Auto Scaling initiates the
termination. For more information, see Troubleshooting Instances in an Auto Scaling Group (p. 95).

Retrieving Logs Using the Auto Scaling CLI

The following steps demonstrate the general process to put instances in a Terminating:Wait state so
that you can connect to the instance and download log files.

To retrieve logs from a terminating server using the Auto Scaling CLI

1. Create a notification target to receive the notification that an instance is terminating.You can either
create a topic using Amazon SNS, or use an Amazon SQS queue.

After you create your target, make a note of its Amazon Resource Name (ARN). For example,
arn:aws:sns:us-west-2:123456789012:my-sns-topic.

2. Create an IAM role using the steps in Creating a Role for an AWS Service (AWS Management
Console) in the Using IAM guide. When prompted to select a role type, choose AWS Service Roles
and then select AutoScaling Notification Access.

After you create your role, make a note of its ARN. For example,
arn:aws:iam::123456789012:role/my-auto-scaling-role.

3. Create a lifecycle hook to perform an action (in this case, retrieve log files) on the instance before it
terminates. Create a lifecycle hook using the following as-put-lifecycle-hook command:

as-put-lifecycle-hook GetLogs --auto-scaling-group my-asg --lifecycle-
transition autoscaling:EC2_INSTANCE_TERMINATING --notification-target sns-
topic-arn --notification-role iam-role-arn

4. When an instance in the Auto Scaling group is terminated, Auto Scaling puts the instance in a
Terminating:Wait state and sends a message to the notification target that you created. After
you receive this notification, you can connect to the instance to download the logs files that you need.
For more information on how to connect to an EC2 instance, see Connect to Your Linux Instance in
the Amazon EC2 User Guide for Linux Instances or Connecting to Your Windows Instance in the
Amazon EC2 User Guide for Microsoft Windows Instances.

5. (Optional) To keep the instance in a terminating state until you have all the data you need, use the
following as-record-lifecycle-action-heartbeat command to reset the timeout period for
the instance. Note that the lifecycle action token is included in the message sent to your notification
target.

as-record-lifecycle-action-heartbeat bcd2f1b8-9a78-44d3-8a7a-4dd07d7cf635
--lifecycle-hook GetLogs --auto-scaling-group my-asg

6. (Optional) If you are ready for the instance to terminate before the timeout period ends, you can use
the following as-complete-lifecycle-action command to continue the termination process:

API Version 2011-01-01
75

Auto Scaling Developer Guide
Lifecycle Hook Examples

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/create-role-xacct.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

as-complete-lifecycle-action bcd2f1b8-9a78-44d3-8a7a-4dd07d7cf635 --lifecycle-
hook GetLogs --auto-scaling-group my-asg -lifecycle-action-result CONTINUE

Tagging Auto Scaling Groups and Instances
You can organize and manage your Auto Scaling groups by assigning your own metadata to each group
in the form of tags.You specify a key and a value for each tag. A key can be a general category, such
as "project", "owner", or "environment", with specific associated values. For example, if one of your projects
is named LIMA, you could assign a tag with a key of "project" and a value of "lima" to all Auto Scaling
groups that are part of the LIMA project. Similarly, if you want to differentiate between your development
environments, you could assign tags with a key of "environment" and a value of "test" to the Auto Scaling
groups that are used in your test environment and assign tags with a key of "environment" and a value
of "production" to Auto Scaling groups that are used in your production environment. We recommend
that you use a consistent set of tags to make it easier to track your Auto Scaling groups.

You can also specify that the tags for your Auto Scaling groups are added to the EC2 instances launched
in the group. Tagging your EC2 instances enables you to see instance cost allocation by tag in your AWS
bill. For example, you can track the cost of running Auto Scaling instances for project LIMA in a test
environment. For more information, see Use Cost Allocation Tags in the AWS Billing and Cost Management
User Guide.

Contents

• Tag Restrictions (p. 76)

• Add or Modify Tags for Your Auto Scaling Group (p. 76)

• Delete Tags (p. 77)

Tag Restrictions
The following basic restrictions apply to tags:

• The maximum number of tags per resource is 10.

• The maximum key length is 127 Unicode characters.

• The maximum value length is 255 Unicode characters.

• Tag keys and values are case sensitive.

• Do not use the aws: prefix in your tag names or values, because it is reserved for AWS use.You can't
edit or delete tag names or values with this prefix, and they do not count against toward your limit of
tags per Auto Scaling group.

Note that when you launch an instance in an Auto Scaling group, Auto Scaling adds a tag to the instance
with a key of aws:autoscaling:groupName and a value of the name of the Auto Scaling group.

You can create and assign tags to your Auto Scaling group when you either create or update your Auto
Scaling group.You can remove Auto Scaling group tags at any time.

Add or Modify Tags for Your Auto Scaling Group
When you add a tag to your Auto Scaling group, you can specify whether it should be added to instances
launched in your Auto Scaling group. If you modify a tag, the updated version of the tag is added to
instances launched in the Auto Scaling group after the change. If you create or modify a tag for an Auto

API Version 2011-01-01
76

Auto Scaling Developer Guide
Tagging Auto Scaling Groups and Instances

http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

Scaling group, these changes are not made to instances that are already running in the Auto Scaling
group.

Add or Modify Tags Using the Auto Scaling CLI
Use the as-create-or-update-tags command to create or modify a tag. For example, the following
command adds a tag with a key of "environment" and a value of "test" that will also be added to instances
launched in the Auto Scaling group after this change. If a tag with this key already exists, the existing tag
is replaced.

as-create-or-update-tags --tag "id=my-asg, t=auto-scaling-group, k=environment,
 v=test, p=true"

The following is an example response:

OK-Created/Updated tags

Use the following as-describe-tags command to verify that this tag is created.

as-describe-tags --filter "key=environment, value=test"

The following is an example response:

TAG my-asg auto-scaling-group environment test true

Alternatively, use the following as-describe-auto-scaling-groups command to verify that the tag
is added to the Auto Scaling group my-asg.

as-describe-auto-scaling-groups my-asg --headers

The following is an example response:

AUTO-SCALING-GROUP my-asg my-lc us-east-1a 1 1 1
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
TAG RESOURCE-ID RESOURCE-TYPE KEY VALUE PROPAGATE-AT-LAUNCH
TAG my-asg auto-scaling-group environment test true

Delete Tags
You can delete a tag associated with your Auto Scaling group at any time.

Delete Tags Using the Auto Scaling CLI
Use the as-delete-tags command to delete a tag. For example, the following command deletes a tag
with a key of "environment".

as-delete-tags --tag "id=my-asg,t=auto-scaling-group,k=environment"

Notice that you must specify the tag key, but you don't need to specify the value. If you specify a value
and the value is incorrect, the tag is not deleted.

API Version 2011-01-01
77

Auto Scaling Developer Guide
Delete Tags

Launching Spot Instances in Your Auto Scaling
Group

Spot Instances are a cost-effective choice compared to On-Demand instances, if you can be flexible
about when your applications run and if your applications can be interrupted.You can set up Auto Scaling
to launch Spot Instances instead of On-Demand instances.

Before launching Spot Instances using Auto Scaling, we recommend that you become familiar with
launching and managing Spot Instances using Amazon EC2. For more information, see Spot Instances
in the Amazon EC2 User Guide for Linux Instances.

Here's how Spot Instances work with Auto Scaling:

• Setting your bid price. When you use Auto Scaling to launch Spot Instances, you set your bid price
in the launch configuration.You can't use a single launch configuration to launch both On-Demand
instances and Spot Instances.

• Changing your bid price. To change your Spot bid price, you must create a new launch configuration
with the new bid price, and then associate it with your Auto Scaling group. Note that the existing
instances continue to run as long as the bid price specified in the launch configuration used for those
instances is higher than the current Spot market price.

• Spot market price and your bid price. If the market price for Spot Instances rises above your Spot
bid price for a running instance in your Auto Scaling group, Amazon EC2 terminates your instance. If
your Spot bid price exactly matches the Spot market price, whether your bid is fulfilled depends on
several factors—such as available Spot Instance capacity.

• Maintaining your Spot Instances. When your Spot Instance is terminated, Auto Scaling attempts to
launch a replacement instance to maintain the desired capacity for the group. If the bid price is higher
than the market price, then a Spot Instance is launched. Otherwise, no instance is launched, but Auto
Scaling keeps trying.

• Auto Scaling and Spot Instance termination. Auto Scaling can terminate or replaces Spot Instances
just as it can terminate or replace On-Demand instances. For more information, see Choosing a
Termination Policy for Your Auto Scaling Group (p. 31).

The following example shows you how to create an Auto Scaling group that launches Spot Instances.

Launching Spot Instances Using the Auto Scaling
CLI
To create an Auto Scaling group that launches Spot Instances, complete the following tasks:

Tasks

• Create a Launch Configuration (p. 79)

• Create an Auto Scaling Group (p. 79)

• Verify and Check Your Instances (p. 79)

• (Optional) Get Notifications When the Auto Scaling Group Changes (p. 82)

• (Optional) Update the Bid Price for the Spot Instances (p. 82)

• Clean Up (p. 83)

API Version 2011-01-01
78

Auto Scaling Developer Guide
Launching Spot Instances in Your Auto Scaling Group

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html

Create a Launch Configuration
To place bids for Spot Instances using Auto Scaling, specify the maximum price you are willing to pay
for an instance by using the --spot-price option with the as-create-launch-config command as
follows:

as-create-launch-config spot-lc-5cents --image-id ami-1a2bc4d --instance-type
m1.small --spot-price "0.05"

The following is example output:

OK-Created launch config

Create an Auto Scaling Group
Create your Auto Scaling group using the as-create-auto-scaling-group command with the launch
configuration that you just created. The following command launches 3 Spot Instances.

as-create-auto-scaling-group spot-asg --launch-configuration spot-lc-5cents -
-availability-zones "us-east-1a,us-east-1b" --max-size 5 --min-size 1 --desired-
capacity 3

The following is example output:

OK-Created AutoScalingGroup

For more information about the syntax of the as-create-auto-scaling-group command, see Create
an Auto Scaling Group (p. 23).

Verify and Check Your Instances
Use the as-describe-scaling-activities command to list the activities that Auto Scaling performed
for your Auto Scaling group as follows:

as-describe-scaling-activities --auto-scaling-group spot-asg --headers

If not all your bids are fulfilled, the output looks similar to the following example, where one bid is successful
and Auto Scaling is waiting for the other two bids:

ACTIVITY ACTIVITY-ID END-TIME GROUP-
NAME CODE MESSAGE
ACTIVITY 31bcbb67-7f50-4b88-ae7e-e564a8c80a90 spot-asg
 WaitingForSpotInstanceId Placed Spot instance request: sir-fc8a3014.
Waiting for instance(s)
ACTIVITY 770bbeb5-407c-404c-a826-856f65db1c57 spot-asg
 WaitingForSpotInstanceId Placed Spot instance request: sir-69101014.
Waiting for instance(s)
ACTIVITY 597e4ebd-220e-42bc-8ac9-2bae4d20b8d7 2012-05-23T17:40:22Z spot-asg
 Successful

API Version 2011-01-01
79

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

If the output of as-describe-scaling-activities includes Failed activities, check the response
for details. For example, it's possible that the AMI ID is no longer valid or that it's incompatible with the
instance type that you selected. If no reason is given, check whether your bid price is above the Spot
market price for that Availability Zone.

If you run as-describe-scaling-activities again later and the activities are successful, the output
looks similar to the following example:

ACTIVITY ACTIVITY-ID END-TIME GROUP-
NAME CODE
ACTIVITY 90630906-b40f-41a6-967a-cd6534b2dfca 2012-06-01T02:32:15Z spot-asg
 Successful
ACTIVITY a1139948-ad0c-4600-9efe-9dab8ce23615 2012-06-01T00:48:02Z spot-asg
 Successful
ACTIVITY 33001e70-6659-4494-a817-674d1b7a2f58 2012-06-01T02:31:11Z spot-asg
 Successful

Note that you can get more details about the activities and instances by using the --show-xml option
of as-describe-scaling-activities as follows:

as-describe-scaling-activities --auto-scaling-group spot-asg --show-xml

The following is example output:

<DescribeScalingActivitiesResponse xmlns="http://autoscaling.amazon
aws.com/doc/2011-01-01/">
 <DescribeScalingActivitiesResult>
 <NextToken>b5a3b43e-10c6-4b61-8e41-2756db1fb8f5</NextToken>
 <Activities>
 <member>
 <StatusCode>Successful</StatusCode>
 <Progress>0</Progress>
 <ActivityId>90630906-b40f-41a6-967a-cd6534b2dfca</ActivityId>
 <StartTime>2012-06-01T00:48:21.942Z</StartTime>
 <AutoScalingGroupName>spot-asg</AutoScalingGroupName>
 <Cause>At 2012-06-01T00:48:21Z a difference between desired and actual
 capacity changing the desired capacity, increasing the capacity from 2 to
3.</Cause>
 <Details>{}</Details>
 <Description>Launching a new EC2 instance: i-fe30d187</Description>
 <EndTime>2012-06-01T02:32:15Z</EndTime>
 </member>
 <member>
 <StatusCode>Successful</StatusCode>
 <Progress>0</Progress>
 <ActivityId>a1139948-ad0c-4600-9efe-9dab8ce23615</ActivityId>
 <StartTime>2012-06-01T00:47:51.293Z</StartTime>
 <AutoScalingGroupName>spot-asg</AutoScalingGroupName>
 <Cause>At 2012-06-01T00:47:51Z an instance was taken out of service in
 response to a system health-check.</Cause>
 <Details>{}</Details>
 <Description>Terminating EC2 instance: i-88ce28f1</Description>
 <EndTime>2012-06-01T00:48:02Z</EndTime>
 </member>
 <member>
 <StatusCode>Successful</StatusCode>

API Version 2011-01-01
80

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

 <Progress>0</Progress>
 <ActivityId>33001e70-6659-4494-a817-674d1b7a2f58</ActivityId>
 <StartTime>2012-06-01T00:46:19.723Z</StartTime>
 <AutoScalingGroupName>spot-asg</AutoScalingGroupName>
 <Cause>At 2012-06-01T00:46:19Z a difference between desired and actual
 capacity changing the desired capacity, increasing the capacity from 2 to
3.</Cause>
 <Details>{}</Details>
 <Description>Launching a new EC2 instance: i-2c30d155</Description>
 <EndTime>2012-06-01T02:31:11Z</EndTime>
 </member>
 ...
 </Activities>
 </DescribeScalingActivitiesResult>
 <ResponseMetadata>
 <RequestId>d02af4bc-ad8f-11e1-85db-83e1968c7d8d</RequestId>
 </ResponseMetadata>
</DescribeScalingActivitiesResponse>

The XML output shows more detail about the Spot Instance and Auto Scaling activity. For example:

• Cause: At 2012-06-01T00:48:21Z a difference between desired and actual capacity
changing the desired capacity, increasing the capacity from 2 to 3.
Description: Launching a new EC2 instance: i-fe30d187

If an instance is terminated and the number of instances falls below the desired capacity, Auto Scaling
launches a new instance so that the total number of your running instances rises back to the level
specified for desired capacity.

• Cause: At 2012-06-01T00:47:51Z an instance was taken out of service in response
to a system health-check. Description: Terminating EC2 instance: i-88ce28f1

Auto Scaling maintains the desired number of instances by monitoring the health status of the instances
in the Auto Scaling group. When Auto Scaling receives notification that an instance is unhealthy or
terminated, Auto Scaling launches another instance to take the place of the unhealthy instance. For
information about how Auto Scaling monitors the health status of instances, see Maintaining a Fixed
Number of EC2 Instances in Your Auto Scaling Group (p. 34).

Note
Auto Scaling provides the cause of instance termination that is not the result of a scaling
activity. This includes instances that have been terminated because the Spot market price
exceeded their bid price.

When Auto Scaling attempts to replace terminated instances resulting from the Spot market price rising
above the bid price, Auto Scaling places the bid specified in the current launch configuration and
attempts to launch another instance to maintain the desired capacity.

To view information about the instances that Auto Scaling is launching, use the
as-describe-auto-scaling-groups command as follows:

as-describe-auto-scaling-groups spot-asg --headers

The following is example output.

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-
SIZE MAX-SIZE DESIRED-CAPACITY

API Version 2011-01-01
81

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

AUTO-SCALING-GROUP spot-asg spot-lc-5cents us-east-1b,us-east-1a 1
 5 3
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-2c30d155 us-east-1a InService Healthy spot-lc-5cents
INSTANCE i-fe30d187 us-east-1a InService Healthy spot-lc-5cents
INSTANCE i-c630d1bf us-east-1a InService Healthy spot-lc-5cents

You can see that Auto Scaling launched 3 instances in us-east-1a, as you specified, and they are all
running.

For information about as-describe-auto-scaling-groups, see Verify Your Auto Scaling Group (p.24).

In addition to using as-describe-auto-scaling-groups, you can use the
as-describe-auto-scaling-instances command as follows:

as-describe-auto-scaling-instances --headers

The following is example output:

INSTANCE INSTANCE-ID GROUP-NAME AVAILABILITY-ZONE STATE STATUS
LAUNCH-CONFIG
INSTANCE i-2c30d155 spot-asg us-east-1a InService HEALTHY
spot-lc-5cents
INSTANCE i-c630d1bf spot-asg us-east-1a InService HEALTHY
spot-lc-5cents
INSTANCE i-fe30d187 spot-asg us-east-1a InService HEALTHY
spot-lc-5cents

(Optional) Get Notifications When the Auto Scaling Group
Changes
For information about setting up email notifications in Auto Scaling, see Getting Notifications When Your
Auto Scaling Group Changes (p. 106).

(Optional) Update the Bid Price for the Spot Instances

To update the bid price for Spot Instances

1. Create a launch configuration with the same specifications as before, but with a different name and
maximum price.

as-create-launch-config spot-lc-7cents --image-id ami-1a2b3c4d --instance-
type m1.small --spot-price "0.07"

2. Modify your Auto Scaling group to use the new launch configuration, by using the
as-update-auto-scaling-group command as follows:

as-update-auto-scaling-group spot-asg --launch-configuration spot-lc-7cents

3. View your changes using the as-describe-scaling-activities command after you create
your Auto Scaling group.

API Version 2011-01-01
82

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

as-describe-scaling-activities --auto-scaling-group spot-asg --headers

If not all your bids are fulfilled, the output looks similar to the following example:

ACTIVITY ACTIVITY-ID END-TIME GROUP-
NAME CODE MESSAGE
ACTIVITY 5879cc50-1e40-4539-a754-1cb084f1aecd spot-
asg WaitingForSpotInstanceId Placed Spot instance request: sir-
93828812. Waiting for instance(s)
ACTIVITY 777fbe1b-7a24-4aaf-b7a9-d368d0511878 spot-
asg WaitingForSpotInstanceId Placed Spot instance request: sir-
016cf812. Waiting for instance(s)
ACTIVITY f4b00f81-eaea-4421-80b4-a2e3a35cc782 spot-
asg WaitingForSpotInstanceId Placed Spot instance request: sir-
cf60ea12. Waiting for instance(s)
ACTIVITY 31bcbb67-7f50-4b88-ae7e-e564a8c80a90 spot-
asg WaitingForSpotInstanceId Placed Spot instance request: sir-
fc8a3014. Waiting for instance(s)
ACTIVITY 770bbeb5-407c-404c-a826-856f65db1c57 spot-
asg WaitingForSpotInstanceId Placed Spot instance request: sir-
69101014. Waiting for instance(s)
ACTIVITY 597e4ebd-220e-42bc-8ac9-2bae4d20b8d7 2012-05-23T17:40:22Z spot-
asg Successful

ACTIVITY eca158b4-a6f9-4ec5-a813-78d42c1738e2 2012-05-23T17:40:22Z spot-
asg Successful

ACTIVITY 1a5bd6c6-0b0a-4917-8cf0-eee1044a179f 2012-05-23T17:22:19Z spot-
asg Successful

ACTIVITY c285bf16-d2c4-4ae8-acad-7450655facb5 2012-05-23T17:22:19Z spot-
asg Successful

ACTIVITY 127e3608-5911-4111-906e-31fb16d43f2e 2012-05-23T15:38:06Z spot-
asg Successful

ACTIVITY bfb548ad-8bc7-4a78-a7db-3b41f73501fc 2012-05-23T15:38:07Z spot-
asg Successful

ACTIVITY 82d2b9bb-3d64-46d9-99b6-054a9ecf5ac2 2012-05-23T15:30:28Z spot-
asg Successful

ACTIVITY 95b7589b-f8ac-49bc-8c83-514bf664b4ee 2012-05-23T15:30:28Z spot-
asg Successful

ACTIVITY 57bbf77a-99d6-4d94-a6db-76b2307fb9de 2012-05-23T15:16:34Z spot-
asg Successful

Clean Up
After you're finished using your instances and your Auto Scaling group, it is a good practice to clean up.
Use the as-delete-auto-scaling-group command as follows with the optional --force-delete
parameter, which specifies that EC2 instances that are part of the Auto Scaling group are terminated with
the Auto Scaling group, even if the instances are still running. Otherwise, you must terminate these
instances before you can delete your Auto Scaling group.

API Version 2011-01-01
83

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

as-delete-auto-scaling-group spot-asg --force-delete

You are prompted as follows to confirm that you want to delete the Auto Scaling group:

Are you sure you want to delete this AutoScalingGroup? [Ny]

After you confirm that you want to delete the Auto Scaling group, Auto Scaling deletes the group, and
displays the following output:

OK-Deleted AutoScalingGroup

API Version 2011-01-01
84

Auto Scaling Developer Guide
Launching Spot Instances Using the Auto Scaling CLI

Configuring Your Auto Scaling
Groups

After you create an Auto Scaling group within your network architecture, you may find that there are other
actions you might want to take. For example, you might want to:

Load balance your Auto Scaling group (p. 86)
A load balancer is an important part of Auto Scaling, as it allows you to distribute traffic across the
instances within the Auto Scaling group. Auto Scaling works particularly well with Elastic Load
Balancing; however, you can also use Auto Scaling with the load balancer of your choice.

Attach an existing instance to your Auto Scaling group (p. 90)
As you continue to refine and improve your application, you might want to launch and configure an
EC2 instance and then attach it to your Auto Scaling group. This is particularly useful if you want to
test certain changes before you update all of the instances in the Auto Scaling group.

Detach an instances from an Auto Scaling group (p. 92)
Occasionally, you might find that you want to move instances out of an Auto Scaling group. This
could be because you want to move the instances into a different Auto Scaling group, or because
you no longer want to use Auto Scaling in that particular area of your application.

Merge Auto Scaling groups from different Availability Zones (p. 93)
It is not uncommon to start with a couple of Auto Scaling groups, each residing in a single Availability
Zone. However, a more efficient implementation would have a single Auto Scaling group that spans
multiple Availability Zones.This involves modifying an existing Auto Scaling group and then terminating
the obsolete groups.

Temporarily remove instances from an Auto Scaling group (p. 95)
Sometimes, you might want to move an instance from your application, but still have it managed by
the Auto Scaling group. For example, you might want to install a patch to existing instances in your
Auto Scaling group, and don't want to relaunch the instances.You might want to update only a few
your instances, so you can see in real time which configuration settings work best. Auto Scaling
supports temporarily removing instances from receiving traffic, and then putting them back in service
when you're ready.

Suspend and resume your Auto Scaling group (p. 98)
Auto Scaling allows you to retain complete control over your network architecture. If you discover
that you need to investigate a configuration or other issue, you can suspend Auto Scaling actions
and then resume them again when your investigation concludes.

Shut down an Auto Scaling group (p. 100)
You can choose to shut down an Auto Scaling group at any time.

API Version 2011-01-01
85

Auto Scaling Developer Guide

If you haven't yet created an Auto Scaling group, you might want to review the following sections:

• What Is Auto Scaling? (p. 1)—Describes the core concepts that you should understand before adding
Auto Scaling to your network infrastructure.

• Getting Started with the Auto Scaling CLI (p. 22)—Create an Auto Scaling group and see how it can
help your applications become more highly available and fault tolerant.

• Planning Your Auto Scaling Group (p. 26)—Describes how to create launch configurations, build Auto
Scaling groups, and perform other tasks associated with creating Auto Scaling groups.

Load Balance Your Auto Scaling Group
When you use Auto Scaling, you can automatically increase the number of EC2 instances you’re using
when the user demand goes up, and you can decrease the number of EC2 instances when demand goes
down. As Auto Scaling dynamically adds and removes EC2 instances, you need to ensure that the traffic
coming to your web application is distributed across all of your running EC2 instances. AWS provides
the Elastic Load Balancing service to distribute the incoming web traffic (called the load) automatically
among all the EC2 instances that you are running. Elastic Load Balancing manages incoming requests
by optimally routing traffic so that no one instance is overwhelmed. Using Elastic Load Balancing with
your auto-scaled web application makes it easy to route traffic among your dynamically changing fleet of
EC2 instances.

You can use Elastic Load Balancing to route traffic to EC2 instances in your Auto Scaling group. For
more information about Elastic Load Balancing, see What Is Elastic Load Balancing? in the Elastic Load
Balancing Developer Guide.

Elastic Load Balancing uses load balancers to monitor traffic and handle requests that come through the
Internet. To use Elastic Load Balancing with your Auto Scaling group, you first create a load balancer
and then register your Auto Scaling group with the load balancer.Your load balancer acts as a single
point of contact for all incoming traffic.You can register multiple load balancers with a single Auto Scaling
group. For information about registering your load balancer with your Auto Scaling group, see Set Up a
Scaled and Load-Balanced Application (p. 87).

Elastic Load Balancing sends data about your load balancers and EC2 instances to Amazon CloudWatch.
CloudWatch collects the data and presents it as readable, near-time metrics. After registering the load
balancer with your Auto Scaling group, you can configure your Auto Scaling group to use Elastic Load
Balancing metrics (such as request latency or request count) to scale your application automatically. For
information about Elastic Load Balancing metrics, see Monitor Your Load Balancer Using Amazon
CloudWatch. For information about using CloudWatch metrics to scale automatically, see Dynamic
Scaling (p. 35).

By default, the Auto Scaling group determines the health state of each instance by periodically checking
the results of EC2 instance status checks. Elastic Load Balancing also performs health checks on the
EC2 instances that are registered with the load balancer. After you've registered your Auto Scaling group
with a load balancer, you can choose to use the results of the Elastic Load Balancing health check in
addition to the EC2 instance status checks to determine the health of the EC2 instances in your Auto
Scaling group. For information about adding an Elastic Load Balancing health check, see Add an Elastic
Load Balancing Health Check to your Auto Scaling Group (p. 88).

If connection draining is enabled for your load balancer, Auto Scaling waits for the in-flight requests to
complete or for the maximum timeout to expire, whichever comes first, before terminating instances due
to a scaling event or health check replacement. For information about connection draining, see Connection
Draining in the Elastic Load Balancing Developer Guide.

You can take advantage of the safety and reliability of geographic redundancy by spanning your Auto
Scaling groups across multiple Availability Zones within a region and then setting up load balancers to
distribute incoming traffic across those Availability Zones. For information about expanding your auto-scaled

API Version 2011-01-01
86

Auto Scaling Developer Guide
Load Balance Your Auto Scaling Group

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/SvcIntro.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_MonitoringLoadBalancerWithCW.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_MonitoringLoadBalancerWithCW.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#conn-drain
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#conn-drain

and load-balanced application to an additional Availability Zone, see Expand Your Scaled and
Load-Balanced Application to an Additional Availability Zone (p. 89).

Set Up a Scaled and Load-Balanced Application
You can register your Auto Scaling group with a load balancer to set up an auto-scaled and load-balanced
application.

Prerequisites

Before you begin, create a load balancer.You don't need to register your EC2 instances with your load
balancer, as Auto Scaling launches the instances and then attaches the group to the load balancer. For
more information about creating a load balancer, see Get Started With Elastic Load Balancing in the
Elastic Load Balancing Developer Guide.

Setting Up an Application Using the Auto Scaling CLI
Complete the following tasks to set up a scaled and load-balanced application.

Tasks

• Create a Launch Configuration (p. 87)

• Create an Auto Scaling Group with a Load Balancer (p. 87)

• (Optional) Verify That Your Auto Scaling Group Launched with a Load Balancer (p. 88)

Create a Launch Configuration

If you already have a launch configuration that you'd like to use, skip this step.

To create the launch configuration

Use the following as-create-launch-config command:

as-create-launch-config my-lc --image-id ami-514ac838 --instance-type m1.small

You should get a confirmation similar to the following example:

OK-Created launch config

Create an Auto Scaling Group with a Load Balancer

You can attach an existing load balancer to an Auto Scaling group when you create the group.

To create an Auto Scaling group with a load balancer

Use the following as-create-auto-scaling-group command with the --load-balancers option
to create a group with a load balancer:

as-create-auto-scaling-group my-lb-asg --launch-configuration my-lc --availab
ility-zones
us-west-2a, us-west-2b --load-balancers my-lb --max-size 5 --min-size 1 --de
sired-capacity 2

You should get a confirmation similar to the following example:

API Version 2011-01-01
87

Auto Scaling Developer Guide
Set Up a Scaled and Load-Balanced Application

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/GettingStarted.html

OK-Created AutoScalingGroup

(Optional) Verify That Your Auto Scaling Group Launched with a Load
Balancer

After you have created an Auto Scaling group with a load balancer, you can verify that the load balancer
has been launched with the group.

To verify that your Auto Scaling group launched with a load balancer

Use the following as-describe-auto-scaling-groups command:

as-describe-auto-scaling-groups my-lb-asg -–headers

The following is example output showing a group with a load balancer and two running instances:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES LOAD-
BALANCERS MIN-SIZE MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-lb-asg my-lc us-west-2a,us-west-2b my-
lb 1 5 2 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-78e60b1b us-west-2b InService Healthy my-lc
INSTANCE i-941599fe us-west-2a InService Healthy my-lc

Add an Elastic Load Balancing Health Check to
your Auto Scaling Group
By default, an Auto Scaling group periodically reviews the results of EC2 instance status to determine
the health state of each instance. However, if you have associated your Auto Scaling group with an Elastic
Load Balancing load balancer, you can choose to use the Elastic Load Balancing health check. In this
case, Auto Scaling determines the health status of your instances by checking the results of both the
EC2 instance status check and the Elastic Load Balancing instance health check.

For information about EC2 instance status checks, see Monitor Instances With Status Checks in the
Amazon EC2 User Guide for Linux Instances. For information about Elastic Load Balancing health checks,
see Health Check in the Elastic Load Balancing Developer Guide.

Auto Scaling marks an instance unhealthy if the calls to the Amazon EC2 action DescribeInstanceStatus
return any state other than running, the system status shows impaired, or the calls to Elastic Load
Balancing action DescribeInstanceHealth returns OutOfService in the instance state field.

If there are multiple load balancers associated with your Auto Scaling group, Auto Scaling checks the
health state of your EC2 instances by making health check calls to each load balancer. For each call, if
the Elastic Load Balancing action returns any state other than InService, the instance is marked as
unhealthy. After Auto Scaling marks an instance as unhealthy, it remains in that state, even if subsequent
calls from other load balancers return an InService state for the same instance.

Frequently, new instances need to warm up briefly before they can pass a health check.To provide ample
warm-up time, set the health check grace period of the group to cover the expected startup period of your
application. Auto Scaling waits until the grace period ends before checking the health status of the instance.
The grace period starts after the instance passes the EC2 system status check and instance status check.

The following examples shows you how to add an Elastic Load Balancing health check to your Auto
Scaling group, assuming that you have created a load balancer and have registered the load balancer

API Version 2011-01-01
88

Auto Scaling Developer Guide
Add an Elastic Load Balancing Health Check to your

Auto Scaling Group

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/TerminologyandKeyConcepts.html#healthcheck
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeInstanceStatus.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/APIReference/APIReference/API_DescribeInstanceHealth.html

with your Auto Scaling group. If you have not registered the load balancer with your Auto Scaling group,
see Set Up a Scaled and Load-Balanced Application (p. 87).

Adding a Health Check Using the Auto Scaling CLI
Use the following as-update-auto-scaling-group command to create a health check with a grace
period of 300 seconds:

as-update-auto-scaling-group my-lb-asg –-health-check-type ELB –-grace-period
300

You should get a confirmation similar to the following:

OK-Updated AutoScalingGroup

When Auto Scaling checks the health status, it ignores instances that have been in the InService state
for less than the number of seconds you specified using --grace-period.

Expand Your Scaled and Load-Balanced
Application to an Additional Availability Zone
When one Availability Zone becomes unhealthy or unavailable, Auto Scaling launches new instances in
an unaffected Availability Zone. When the unhealthy Availability Zone returns to a healthy state, Auto
Scaling automatically redistributes the application instances evenly across all of the Availability Zones
for your Auto Scaling group. Auto Scaling does this by attempting to launch new instances in the Availability
Zone with the fewest instances. If the attempt fails, however, Auto Scaling attempts to launch in other
Availability Zones until it succeeds.

An Auto Scaling group can contain EC2 instances that come from one or more Availability Zones within
the same region. However, an Auto Scaling group cannot span multiple regions.

You can set up your load balancer to distribute incoming requests across EC2 instances in a single
Availability Zone or multiple Availability Zones within a region.The load balancer does not distribute traffic
across regions. For critical applications, we recommend that you distribute incoming traffic across multiple
Availability Zones by registering your Auto Scaling group in multiple Availability Zones and then enabling
your load balancer in each of those Availability Zones. Incoming traffic is load balanced equally across
all the Availability Zones enabled for your load balancer.

If your load balancer detects unhealthy EC2 instances in an enabled Availability Zone, it stops routing
traffic to those instances. Instead, it spreads the load across the remaining healthy instances. If all
instances in an Availability Zone are unhealthy, but you have instances in other Availability Zones, Elastic
Load Balancing routes traffic to your registered and healthy instances in those other Availability Zones.
It resumes load balancing to the original instances when they have been restored to a healthy state and
are registered with your load balancer.

You can expand the availability of your scaled and load-balanced application by adding a new Availability
Zone to your Auto Scaling group and then enabling that Availability Zone for your load balancer. After
you've enabled the new Availability Zone, the load balancer begins to route traffic equally among all the
enabled Availability Zones.

Expanding Applications Using the Auto Scaling CLI
In this example, you expand the availability of your application to an additional Availability Zone.

API Version 2011-01-01
89

Auto Scaling Developer Guide
Expand Your Scaled and Load-Balanced Application to

an Additional Availability Zone

To expand a scaled, load-balanced application to an additional Availability Zone

1. Update the Auto Scaling group using the following as-update-auto-scaling-group command:

as-update-auto-scaling-group my-lb-asg --availability-zones us-west-2a, us-
west-2b, us-west-2c --min-size 3

The output should contain a confirmation similar to the following:

OK-Updated AutoScalingGroup

2. Verify that the instances in the new Availability Zone are ready to accept traffic from the load balancer
using the following as-describe-auto-scaling-groups command:

as-describe-auto-scaling-groups my-lb-asg --headers

The following is example output that indicates that the instances are ready:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES LOAD-
BALANCERS MIN-SIZE MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-lb-asg my-lc us-west-2c,us-west-2b,us-
west-2c my-lb 3 6 3 Default

INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-78e60b1b us-west-2b InService Healthy my-lc
INSTANCE i-dd4b2eb2 us-west-2c InService Healthy my-lc
INSTANCE i-48a1cf29 us-west-2a InService Healthy my-lc

3. Update the load balancer to route traffic to the new Availability Zone using the following
elb-enable-zones-for-lb command. Traffic is routed equally among all the enabled Availability
Zones.

elb-enable-zones-for-lb my-lb --availability-zones us-west-2c --headers

The following is example output:

AVAILABILITY_ZONES AVAILABILITY-ZONES
AVAILABILITY_ZONES us-west-2a, us-west-2b, us-west-2c

Attach EC2 Instances to Your Auto Scaling
Group

Auto Scaling provides you with an option to enable Auto Scaling for one or more EC2 instances by
attaching them to your existing Auto Scaling group. After the instances are attached, they become a part
of the Auto Scaling group.

The instance that you want to attach must meet the following criteria:

• The instance is in the running state.

API Version 2011-01-01
90

Auto Scaling Developer Guide
Attach EC2 Instances to Your Auto Scaling Group

• The AMI used to launch the instance must still exist.

• The instance is not a member of another Auto Scaling group.

• The instance is in the same Availability Zone as the Auto Scaling group.

• If the Auto Scaling group is associated with a load balancer, the instance and the load balancer must
both be in EC2-Classic or the same VPC.

When you attach instances, Auto Scaling increases the desired capacity of the group by the number of
instances being attached. If the number of instances being attached plus the desired capacity exceeds
the maximum size of the group, the request fails.

Note that the example uses an Auto Scaling group with the following configuration:

• Auto Scaling group name = my-test-asg

• Minimum size = 1

• Maximum size = 5

• Desired capacity = 2

• Availability Zone = us-east-1a

Attaching an Instance Using the Auto Scaling CLI
To attach an instance to an Auto Scaling group using the Auto Scaling CLI

1. Describe a specific Auto Scaling group using the following as-describe-auto-scaling-groups
command:

as-describe-auto-scaling-groups my-test-asg --headers

The following example response shows that the desired capacity is 2 and the group has 2 running
instances:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1a 1
 5 2 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-a5e87793 us-east-1a InService Healthy my-test-lc
INSTANCE i-a4e87792 us-east-1a InService Healthy my-test-lc

2. Attach an instance to the Auto Scaling group using the following as-attach-instances command:

as-attach-instances i-a8e09d9c --auto-scaling-group my-test-asg

3. To verify that the instance is attached, use the following as-describe-auto-scaling-groups
command:

as-describe-auto-scaling-groups my-test-asg --headers

The following example response shows that the desired capacity has increased by 1 to 3, and that
there is a new instance, i-a8e09d9c:

API Version 2011-01-01
91

Auto Scaling Developer Guide
Attaching an Instance Using the Auto Scaling CLI

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-test-asg my-test-lc us-east-1a 1
 5 3 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-a8e09d9c us-east-1a InService Healthy my-test-lc
INSTANCE i-a4e87792 us-east-1a InService Healthy my-test-lc
INSTANCE i-a5e87793 us-east-1a InService Healthy my-test-lc

Detach EC2 Instances From Your Auto Scaling
Group

You can remove an instance from an Auto Scaling group. After the instances are detached, you can
manage them independently from the rest of the Auto Scaling group. By detaching an instance, you can:

• Move an instance out of one Auto Scaling group and attach it to a different one. For more information,
see Attach EC2 Instances to Your Auto Scaling Group (p. 90).

• Test an Auto Scaling group by creating it using existing instances running your application, and then
detach these instances from the Auto Scaling group when your tests are complete.

When you detach instances, you have the option of decrementing the desired capacity for the Auto Scaling
group by the number of instances being detached. If you choose not to decrement the capacity, Auto
Scaling launches new instances to replace the ones that you detached.

The example uses an Auto Scaling group with the following configuration:

• Auto Scaling group name = my-test-asg

• Minimum size = 1

• Maximum size = 5

• Desired capacity = 4

• Availability Zone = us-east-1a

Detaching Instances Using the Auto Scaling CLI
Use the following procedure to detach an instance from your Auto Scaling group.

To detach an instance from an existing Auto Scaling group using the Auto Scaling CLI

1. List the current instances using the following as-describe-auto-scaling-instances command:

as-describe-auto-scaling-instances

The following example response shows that the group has 4 running instances:

INSTANCE i-2a2d8978 my-test-asg us-east-1a InService HEALTHY my-test-
lc
INSTANCE i-5f2e8a0d my-test-asg us-east-1a InService HEALTHY my-test-
lc

API Version 2011-01-01
92

Auto Scaling Developer Guide
Detach EC2 Instances From Your Auto Scaling Group

INSTANCE i-a52387f7 my-test-asg us-east-1a InService HEALTHY my-test-
lc
INSTANCE i-f42d89a6 my-test-asg us-east-1a InService HEALTHY my-test-
lc

2. Detach an instance and decrement the desired capacity using the following as-detach-instances
command:

as-detach-instances i-2a2d8978 --auto-scaling-group my-test-asg --decrement-
desired-capacity

3. Verify that the instance is detached using the following as-describe-auto-scaling-instances
command:

as-describe-auto-scaling-instances

The following example response shows that there are now 3 running instances:

INSTANCE i-5f2e8a0d my-test-asg us-east-1a InService HEALTHY my-test-
lc
INSTANCE i-a52387f7 my-test-asg us-east-1a InService HEALTHY my-test-
lc
INSTANCE i-f42d89a6 my-test-asg us-east-1a InService HEALTHY my-test-
lc

Merge Your Auto Scaling Groups into a Single
Multi-Zone Group

To merge separate single-zone Auto Scaling groups into a single Auto Scaling group spanning multiple
Availability Zones, rezone one of the single-zone groups into a multi-zone group, and then delete the
other groups.This process works for groups with or without a load balancer, as long as the new multi-zone
group is in one of the same Availability Zones as the original single-zone groups.

The following examples assume that you have two identical groups in two different Availability Zones,
us-west-2a and us-west-2c. These two groups share the following specifications:

• Minimum size = 2

• Maximum size = 5

• Desired capacity = 3

Merge Zones Using the Auto Scaling CLI
Use the following procedure to merge my-group-a and my-group-c into a single group that covers
both us-west-2a and us-west-2c.

API Version 2011-01-01
93

Auto Scaling Developer Guide
Merging Auto Scaling Groups

To merge separate single-zone groups into a single multi-zone group

1. Use the following as-update-auto-scaling-group command to add the us-west-2c Availability
Zone to the supported Availability Zones for my-group-a and increase the maximum size of this
group to allow for the instances from both single-zone groups:

as-update-auto-scaling-group my-group-a --availability-zones us-west-2a,
us-west-2c –-max-size 10 –-min-size 4

The following is an example confirmation:

OK-AutoScaling Group updated

2. Use the following as-set-desired-capacity command to increase the size of my-group-a:

as-set-desired-capacity my-group-a --desired-capacity 6

3. (Optional) Use the following as-describe-auto-scaling-groups command to verify that
my-group-a is at its new size:

as-describe-auto-scaling-groups my-group-a

4. Use the following as-update-auto-scaling-group command to remove the instances from
my-group-c:

as-update-auto-scaling-group my-group-c --min-size 0 --max-size 0

The following is an example confirmation:

OK-AutoScaling Group updated

5. (Optional) Use the following as-describe-auto-scaling-groups command to verify that no
instances remain in my-group-c:

as-describe-auto-scaling-groups my-group-c --headers

The following is example output:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-
SIZE MAX-SIZE DESIRED-CAPACITY
AUTO-SCALING-GROUP my-group-c my-lc us-west-2c 0
 0 0

6. Use the as-delete-auto-scaling-group command to delete my-group-c:

as-delete-auto-scaling-group my-group-c

When prompted, enter y as follows:

API Version 2011-01-01
94

Auto Scaling Developer Guide
Merge Zones Using the Auto Scaling CLI

Are you sure you want to delete this AutoScalingGroup? [Ny] y

The following is an example confirmation:

OK-Deleted AutoScalingGroup

Temporarily Removing Instances
You can put instances that are currently in service into a standby state. Instances in this state do not
actively handle application traffic, but remain a part of the Auto Scaling group.

By default, Auto Scaling decrements the desired capacity of your Auto Scaling group for every instance
put into a standby state. When you return the instance to service, Auto Scaling increments the desired
capacity accordingly. This prevents Auto Scaling from launching additional instances while you have
instances on standby.You can change this behavior so that Auto Scaling launches additional instances
to replace the instances.

Important
You are billed for any instances in your Auto Scaling group—regardless of whether the instance
is in service or on standby.

When you return the instances back to service, Auto Scaling detects that you have more instances than
you need, and applies any termination policies to reduce the size of your Auto Scaling group.

Contents

• Troubleshooting Instances in an Auto Scaling Group (p. 95)

• Updating or Modifying Instances in an Auto Scaling Group (p. 97)

Troubleshooting Instances in an Auto Scaling
Group
If you want to troubleshoot an instance that is currently in service, put it into a Standby state. By putting
the instance into a Standby state, you can make changes to the instance and then return it to service.

When put an instance into a Standby state, you must decide whether you want Auto Scaling to launch
a replacement instance. If you don't want a replacement instance, Auto Scaling decrements the desired
capacity for the Auto Scaling group when you put an instance in a Standby state and increments the
desired capacity when you put the instance back in the InService state. Otherwise, Auto Scaling
launches an additional instance to replace the instance moved into the Standby state and follows the
group's termination policy when you put the instance back in the InService state.

The process described in the following procedures requires that an instance is currently in service (it has
a status of InService.) If an instance is already starting to terminate—for example, because it failed an
Amazon EC2 health check—you won't be able to return it to service.You can, however, put the instance
in a Terminating:Wait state to analyze why the instance failed. For more information, see Analyzing
an Instance Before Termination (p. 73).

Troubleshooting Instances Using the Auto Scaling CLI
The following steps demonstrate the general process for troubleshooting an instance that is currently in
service.

API Version 2011-01-01
95

Auto Scaling Developer Guide
Temporarily Removing Instances

To troubleshoot an instance that is currently in service using the Auto Scaling CLI

1. Use the following as-describe-auto-scaling-instances command to identify the instance to
update.

as-describe-auto-scaling-instances

The following is an example response.

INSTANCE i-694c873b my-asg us-east-1a InService HEALTHY my-lc
INSTANCE i-e116ddb3 my-asg us-east-1a InService HEALTHY my-lc

2. Move the instance into a Standby state using the following as-enter-standby command. The
--decrement-desired-capacity option decreases the desired capacity so that Auto Scaling
does not launch a replacement instance.

as-enter-standby i-e116ddb3 --auto-scaling-group my-asg --decrement-desired-
capacity

The following is an example response:

INSTANCE 0383799c-a411-432e-979b-c8af68222db3 InProgress At 2014-06-
06T16:12:28Z instance i-e116ddb3 was moved to standby
in response to a user request, shrinking the capacity from 2 to 1.

3. (Optional) Verify that the instance is in a Standby state using the following
as-describe-auto-scaling-instances command:

as-describe-auto-scaling-instances i-e116ddb3

The following is an example response. Notice that the status of the instance is now Standby.

INSTANCE i-e116ddb3 my-asg us-east-1a Standby HEALTHY my-lc

4. Connect to the instance and review logs or run diagnostics as needed.

For more information, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux
Instances or Connecting to Your Windows Instance in the Amazon EC2 User Guide for Microsoft
Windows Instances.

5. Put the instance back in service using the following as-exit-standby command:

as-exit-standby i-e116ddb3 --auto-scaling-group my-asg

The following is an example response:

INSTANCE 94a09ebc-bc7e-44a6-b33d-8ed6f4a652b0 PreInService At 2014-06-
06T16:23:00Z instance i-e116ddb3 was moved out of standby in
response to a user request, increasing the capacity from 1 to 2.

API Version 2011-01-01
96

Auto Scaling Developer Guide
Troubleshooting Instances

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

6. (Optional) Verify that the instance is back in service using the following
as-describe-auto-scaling-instances command:

as-describe-auto-scaling-instances i-e116ddb3

The following is an example response. Notice that the status of the instance is back to InService.

INSTANCE i-e116ddb3 my-asg us-east-1a InService HEALTHY my-lc

Updating or Modifying Instances in an Auto
Scaling Group
You can assign a new launch configuration to an Auto Scaling group at any time.This practice is common
when you want new instances to use an updated configuration. However, changing the launch configuration
for an Auto Scaling group does not update any instances currently in service.You can update these
instances by putting them into a Standby state, updating the software, and then putting the instances
back in service.

When put an instance into a Standby state, you must decide whether you want Auto Scaling to launch
a replacement instance. If you don't want a replacement instance, Auto Scaling decrements the desired
capacity for the Auto Scaling group when you put an instance in a Standby state and increments the
desired capacity when you put the instance back in the InService state. Otherwise, Auto Scaling
launches an additional instance to replace the instance moved into the Standby state and follows the
group's termination policy when you put the instance back in the InService state.

Updating an Instance Using the Auto Scaling CLI
The following procedure demonstrates the general process for updating an instance that is currently in
service.

To update software on an instance using the Auto Scaling CLI

1. Use the following as-describe-auto-scaling-instances command to identify the instance to
update.

as-describe-auto-scaling-instances

The following is an example response.

INSTANCE i-5b73d709 my-asg us-east-1a InService HEALTHY my-lc
INSTANCE i-dd70d48f my-asg us-east-1a InService HEALTHY my-lc
INSTANCE i-de70d48c my-asg us-east-1a InService HEALTHY my-lc
INSTANCE i-df70d48d my-asg us-east-1a InService HEALTHY my-lc

2. Move the instance into a Standby state using the following as-enter-standby command. The
--decrement-desired-capacity option decreases the desired capacity so that Auto Scaling
does not launch a replacement instance.

as-enter-standby --instances i-5b73d709 --auto-scaling-group my-asg -
-decrement-desired-capacity

API Version 2011-01-01
97

Auto Scaling Developer Guide
Updating or Modifying Instances

The following is an example response.

INSTANCE 309f9e29-4f24-44f7-bbd0-2d8a54fa3e39 InProgress At 2014-06-
13T22:21:25Z instance i-5b73d709 was moved to standby
in response to a user request, shrinking the capacity from 4 to 3.

3. (Optional) Verify that the instance is in a Standby state using the following
as-describe-auto-scaling-instances command.

as-describe-auto-scaling-instances i-5b73d709

The following is an example response. Notice that the status of the instance is now Standby.

INSTANCE i-5b73d709 my-asg us-east-1a Standby HEALTHY my-lc

4. Connect to the instance and update the software as needed.

For more information, see Connect to Your Linux Instance in the Amazon EC2 User Guide for Linux
Instances or Connecting to Your Windows Instance in the Amazon EC2 User Guide for Microsoft
Windows Instances.

5. Put the instance back in service using the following as-exit-standby command:

as-exit-standby --instances i-5b73d709 --auto-scaling-group my-asg

The following is an example response:

INSTANCE a31ac4ce-a144-488d-b112-23431e4f6fd2 PreInService At 2014-06-
13T22:24:49Z instance i-5b73d709 was moved out of standby in
response to a user request, increasing the capacity from 3 to 4.

6. (Optional) Verify that the instance is back in service using the following
as-describe-auto-scaling-instances command:

as-describe-auto-scaling-instances i-5b73d709

The following is an example response. Notice that the status of the instance is back to InService.

INSTANCE i-5b73d709 my-asg us-east-1a InService HEALTHY my-lc

Suspend and Resume Auto Scaling Processes
Auto Scaling enables you to suspend and then resume one or more of the Auto Scaling processes in
your Auto Scaling group. This can be very useful when you want to investigate a configuration problem
or other issue with your web application and then make changes to your application, without triggering
the Auto Scaling process.

Auto Scaling might suspend processes for Auto Scaling groups that repeatedly fail to launch instances.
This is known as an administrative suspension, and most commonly applies to Auto Scaling groups that

API Version 2011-01-01
98

Auto Scaling Developer Guide
Suspend and Resume Processes

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

have been trying to launch instances for over 24 hours but have not succeeded in launching any instances.
You can resume processes suspended for administrative reasons.

Contents

• Auto Scaling Processes (p. 99)

• Suspend and Resume Processes Using the Auto Scaling CLI (p. 100)

Auto Scaling Processes
Auto Scaling supports the following processes:

Launch
Adds a new EC2 instance to the group.

Warning
If you suspend Launch, this disrupts other processes.

Terminate
Removes an EC2 instance from the group.

Warning
If you suspend Terminate, this disrupts other processes.

HealthCheck
Checks the health of the instances. Auto Scaling marks an instance as unhealthy if Amazon EC2 or
Elastic Load Balancing tells Auto Scaling that the instance is unhealthy. This process can override
the health status of an instance that you set manually.

ReplaceUnhealthy
Terminates instances that are marked as unhealthy and subsequently creates new instances to
replace them. This process works with the HealthCheck process, and uses both the Terminate
and Launch processes.

AZRebalance
Balances the number of EC2 instances in the group across the Availability Zones in the region. If
you remove an Availability Zone from your Auto Scaling group or an Availability Zone otherwise
becomes unhealthy or unavailable, Auto Scaling launches new instances in an unaffected Availability
Zone before terminating the unhealthy or unavailable instances. When the unhealthy Availability
Zone returns to a healthy state, Auto Scaling automatically redistributes the instances evenly across
the Availability Zones for the group.

Note that if you suspend AZRebalance and a scale out or scale in event occurs, Auto Scaling still
tries to balance the Availability Zones. For example, during scale out, Auto Scaling launches the
instance in the Availability Zone with the fewest instances.

If you suspend Launch, AZRebalance neither launches new instances nor terminates existing
instances.This is because AZRebalance terminates instances only after launching the replacement
instances. If you suspend Terminate, your Auto Scaling group can grow up to ten percent larger
than its maximum size, because Auto Scaling allows this temporarily during rebalancing activities. If
Auto Scaling cannot terminate instances, your Auto Scaling group could remain above its maximum
size until you resume the Terminate process.

AlarmNotification
Accepts notifications from CloudWatch alarms that are associated with the group.

If you suspend AlarmNotification, Auto Scaling does not automatically execute policies that
would be triggered by an alarm. If you suspend Launch or Terminate, Auto Scaling would not be
able to execute scale-out or scale-in policies, respectively.

ScheduledActions
Performs scheduled actions that you create.

API Version 2011-01-01
99

Auto Scaling Developer Guide
Auto Scaling Processes

If you suspend Launch or Terminate, scheduled actions that involve launching or terminating
instances are affected.

AddToLoadBalancer
Adds instances to the load balancer when they are launched.

If you suspend AddToLoadBalancer, Auto Scaling launches the instances but does not add them
to the load balancer. If you resume the AddToLoadBalancer process, Auto Scaling resumes adding
instances to the load balancer when they are launched. However, Auto Scaling does not add the
instances that were launched while this process was suspended.You must register those instances
manually. For more information, see Registering Your Amazon EC2 Instances with Your Load Balancer
in the Elastic Load Balancing Developer Guide.

Suspend and Resume Processes Using the Auto
Scaling CLI
You can suspend and resume individual processes (using the --processes option) or all processes
(omit the --processes option).

To suspend all processes for an Auto Scaling group

Use the as-suspend-processes command as follows:

as-suspend-processes my-asg

Auto Scaling returns the following message on success:

OK-Processes Suspended

To resume all suspended processes for an Auto Scaling group

After concluding your investigation, use the as-resume-processes command as follows:

as-resume-processes my-asg

Auto Scaling returns the following message on success:

OK-Processes Resumed

Shut Down Auto Scaling Processes Using the
AWS CLI

To completely shut down the Auto Scaling process, complete the following tasks using the AWS CLI.

Tasks

• Delete Your Auto Scaling Group (p. 101)

• (Optional) Delete the Launch Configuration (p. 101)

• (Optional) Delete the Load Balancer (p. 101)

• (Optional) Delete CloudWatch Alarms (p. 101)

API Version 2011-01-01
100

Auto Scaling Developer Guide
Suspend and Resume Processes Using the Auto Scaling

CLI

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/US_DeReg_Reg_Instances.html#RegisteringInstances

Delete Your Auto Scaling Group
You can delete your Auto Scaling group if it has no running instances. To ensure that your Auto Scaling
group has no running instances, set its minimum size and maximum size to zero using the following
update-auto-scaling-group command:

aws autoscaling update-auto-scaling-group --auto-scaling-group-name my-asg -
-max-size 0 --min-size 0

You can verify that your Auto Scaling group has no running instances using the following
describe-auto-scaling-groups command:

aws autoscaling describe-auto-scaling-groups --auto-scaling-group-names my-asg

Auto Scaling might report that the instances are in the Terminating state because the termination
process can take a few minutes.

After the instances have terminated, use the following delete-auto-scaling-group command to delete the
Auto Scaling group:

aws autoscaling delete-auto-scaling-group --auto-scaling-group-name my-asg

(Optional) Delete the Launch Configuration
Note that you can skip this step if you want to keep the launch configuration for future use.

To delete the launch configuration associated with the Auto Scaling group, use the following
delete-launch-configuration command:

aws autoscaling delete-launch-configuration --launch-configuration-name my-lc

(Optional) Delete the Load Balancer
Note that you can skip this step if your Auto Scaling group is not registered with an Elastic Load Balancing
load balancer or you want to keep the load balancer for future use.

To delete a load balancer, use the following delete-load-balancer command:

aws elb delete-load-balancer my-load-balancer

(Optional) Delete CloudWatch Alarms
Note that you can skip this step if your Auto Scaling group is not associated with any CloudWatch alarms
or you want to keep the CloudWatch alarms for future use.

To delete CloudWatch alarms, use the delete-alarms command. For example, use the following command
to delete the AddCapacity and RemoveCapacity alarms:

aws cloudwatch delete-alarms --alarm-name AddCapacity RemoveCapacity

API Version 2011-01-01
101

Auto Scaling Developer Guide
Delete Your Auto Scaling Group

http://docs.aws.amazon.com/cli/latest/reference/autoscaling/update-auto-scaling-group.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/describe-auto-scaling-groups.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/delete-auto-scaling-group.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/delete-launch-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/elb/delete-load-balancer.html
http://docs.aws.amazon.com/cli/latest/reference/cloudwatch/delete-alarms.html

Monitoring Your Auto Scaling
Instances

Auto Scaling instances send metrics to Amazon CloudWatch. Instance metrics are the metrics that an
individual EC2 instance sends to CloudWatch. Instance metrics are the same metrics available for any
EC2 instance, whether or not it is in an Auto Scaling group.

CloudWatch offers basic or detailed monitoring. Basic monitoring sends aggregated data about each
instance to CloudWatch every five minutes. Detailed monitoring offers more frequent aggregated data
by sending data from each instance every minute.

Contents

• Amazon CloudWatch Alarms (p. 102)

• Activating Detailed Instance Monitoring for Auto Scaling (p. 103)

• Activating Basic Instance Monitoring for Auto Scaling (p. 103)

• Auto Scaling Group Metrics (p. 104)

• Health Checks (p. 105)

• Getting Notifications When Your Auto Scaling Group Changes (p. 106)

• Logging Auto Scaling API Calls By Using AWS CloudTrail (p. 109)

Amazon CloudWatch Alarms
A CloudWatch alarm is an object that monitors a single metric over a specific period. A metric is a variable
that you want to monitor, such as average CPU usage of the EC2 instances, or incoming network traffic
from many different EC2 instances. The alarm changes its state when the value of the metric breaches
a defined range and maintains the change for a specified number of periods.

An alarm has three possible states:

• OK— When the value of the metric remains within the range that you’ve specified.

• ALARM— When the value of the metric goes out of the range that you’ve specified and remains outside
of the range for a specified time duration.

• INSUFFICIENT_DATA— When the metric is not yet available or not enough data is available for the
metric to determine the alarm state.

API Version 2011-01-01
102

Auto Scaling Developer Guide
Amazon CloudWatch Alarms

When the alarm changes to the ALARM state and remains in that state for a number of periods, it invokes
one or more actions. The actions can be a message sent to an Auto Scaling group to change the desired
capacity of the group.

You configure an alarm by identifying the metrics to monitor. For example, you can configure an alarm
to watch over the average CPU usage of the EC2 instances in an Auto Scaling group.

You must use CloudWatch to identify metrics and create alarms. For more information, see Creating
CloudWatch Alarms in the Amazon CloudWatch Developer Guide.

Activating Detailed Instance Monitoring for Auto
Scaling

To enable detailed instance monitoring for a new Auto Scaling group, you don't need to take any extra
steps. One of your first steps when creating an Auto Scaling group is to create a launch configuration.
Each launch configuration contains a flag named InstanceMonitoring.Enabled. The default value
of this flag is true, so you don't need to set this flag manually if you want detailed monitoring.

If you have an Auto Scaling group for which you have explicitly selected basic monitoring, the switch to
detailed monitoring involves several steps, especially if you have CloudWatch alarms configured to scale
the group automatically.

To switch to detailed instance monitoring for an existing Auto Scaling group

1. Create a launch configuration that has the InstanceMonitoring.Enabled flag enabled. If you
are using the AWS CLI, create a launch configuration with the --instance-monitoring option.

2. Call UpdateAutoScalingGroup to update your Auto Scaling group with the launch configuration
that you created in the previous step. Auto Scaling enables detailed monitoring for new instances
that it creates.

3. Choose one of the following actions to deal with all existing EC2 instances in the Auto Scaling group:

ActionTask

Call MonitorInstances from the Amazon EC2 API for each existing
instance to enable detailed monitoring.

Preserve existing instances

Call TerminateInstanceInAutoScalingGroup from the Auto
Scaling API for each existing instance. Auto Scaling uses the updated
launch configuration to create replacement instances with detailed
monitoring enabled.

Terminate existing instances

4. If you have CloudWatch alarms associated with your Auto Scaling group, call PutMetricAlarm
from the CloudWatch API to update each alarm so that the alarm's period value is set to 60 seconds.

Activating Basic Instance Monitoring for Auto
Scaling

To create a new Auto Scaling group with basic monitoring instead of detailed monitoring, associate your
new Auto Scaling group with a launch configuration that has the InstanceMonitoring.Enabled flag
set to false.

API Version 2011-01-01
103

Auto Scaling Developer Guide
Activating Detailed Instance Monitoring for Auto Scaling

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://docs.aws.amazon.com/cli/latest/userguide/

To switch to basic instance monitoring for an existing Auto Scaling group

1. Create a launch configuration that has the InstanceMonitoring.Enabled flag disabled. If you
are using the CLI, create a launch configuration with the --monitoring-disabled option.

2. If you previously enabled group metrics with a call to EnableMetricsCollection, call
DisableMetricsCollection on your Auto Scaling group to disable collection of all group metrics.
For more information, see Auto Scaling Group Metrics (p. 104).

3. Call UpdateAutoScalingGroup to update your Auto Scaling group with the launch configuration
that you created in the previous step. Auto Scaling disables detailed monitoring for new instances
that it creates.

4. Choose one of the following actions to deal with all existing EC2 instances in the Auto Scaling group:

ActionTask

Call UnmonitorInstances from the Amazon EC2 API for each
existing instance to disable detailed monitoring.

Preserve existing instances

Call TerminateInstanceInAutoScalingGroup from the Auto
Scaling API for each existing instance. Auto Scaling uses the updated
launch configuration to create replacement instances with detailed
monitoring disabled.

Terminate existing instances

5. If you have CloudWatch alarms associated with your Auto Scaling group, call PutMetricAlarm
from the CloudWatch API to update each alarm so that the alarm's period value is set to 300 seconds.

Important
If you do not update your alarms to match the five-minute data aggregations, your alarms
continue to check for statistics every minute and might find no data available for as many
as four out of every five periods.

For more information about instance metrics for EC2 instances, see the Amazon CloudWatch Developer
Guide.

Auto Scaling Group Metrics
Group metrics are metrics that Auto Scaling group sends to CloudWatch to describe the group rather
than any of its instances. If you enable group metrics, Auto Scaling sends aggregated data to CloudWatch
every minute. If you disable group metrics, Auto Scaling does not send any group metrics data to
CloudWatch.

To enable group metrics

1. Enable detailed instance monitoring for the Auto Scaling group by setting the
InstanceMonitoring.Enabled flag in the Auto Scaling group's launch configuration. For more
information, see Monitoring Your Auto Scaling Instances (p. 102).

2. Call EnableMetricsCollection. Alternatively, you can use the equivalent aws autoscaling
enable-metrics-collection command that is part of the AWS CLI.

Auto Scaling Group Metrics Table
You may enable or disable each of the following metrics, separately.

API Version 2011-01-01
104

Auto Scaling Developer Guide
Auto Scaling Group Metrics

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/enable-metrics-collection.html
http://docs.aws.amazon.com/cli/latest/reference/autoscaling/enable-metrics-collection.html

DescriptionMetric

The minimum size of the Auto Scaling group.GroupMinSize

The maximum size of the Auto Scaling group.GroupMaxSize

The number of instances that the Auto Scaling group attempts to
maintain.

GroupDesiredCapacity

The number of instances that are running as part of the Auto Scaling
group. This metric does not include instances that are pending or
terminating.

GroupInServiceInstances

The number of instances that are pending. A pending instance is not
yet in service. This metric does not include instances that are in
service or terminating.

GroupPendingInstances

The number of instances that are in a Standby state. Instances in
this state are still running but are not actively in service. This metric
is not included by default; you must request it specifically.

GroupStandbyInstances

The number of instances that are in the process of terminating. This
metric does not include instances that are in service or pending.

GroupTerminatingInstances

The total number of instances in the Auto Scaling group. This metric
identifies the number of instances that are in service, pending, and
terminating.

GroupTotalInstances

Dimensions for Auto Scaling Group Metrics
The only dimension that Auto Scaling sends to CloudWatch is the name of the Auto Scaling group. This
means that all available statistics are filtered by Auto Scaling group name.

Health Checks
Auto Scaling periodically performs health checks on the instances in your group and replaces instances
that fail these checks. By default, these health checks use the results of EC2 instance status checks to
determine the health of an instance. If you use a load balancer with your Auto Scaling group, you can
optionally choose to include the results of Elastic Load Balancing health checks.

Auto Scaling marks an instance as unhealthy if the instance status is any state other than running, the
system status is impaired, or Elastic Load Balancing reports the instance state as OutOfService. For
more information about Amazon EC2 status checks, see Monitoring the Status of your Instances in the
Amazon EC2 User Guide for Linux Instances. For more information about Elastic Load Balancing health
checks, see Elastic Load Balancing Health Check in the Elastic Load Balancing Developer Guide.

You can customize the health check conducted by your Auto Scaling group by specifying additional checks
or by having your own health check system and then sending the instance's health information directly
from your system to Auto Scaling. For more information, see Set the Health State of An Instance Using
the Auto Scaling CLI (p. 106).

After an instance is marked unhealthy because of an Amazon EC2 or Elastic Load Balancing health
check, it is scheduled for replacement. For more information, see Maintaining a Fixed Number of EC2
Instances in Your Auto Scaling Group (p. 34) and Add an Elastic Load Balancing Health Check to your
Auto Scaling Group (p. 88).

API Version 2011-01-01
105

Auto Scaling Developer Guide
Dimensions for Auto Scaling Group Metrics

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-instances-status-check.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/arch-loadbalancing.html#healthcheck

Set the Health State of An Instance Using the Auto
Scaling CLI
If you have your own health check system, you can use the information from your health check system
to determine how to set the health state of the instances in the Auto Scaling group.

You can specify the health state of an instance in your Auto Scaling group. Note that if you set the health
state of an instance to Unhealthy, Auto Scaling terminates the instance.

To configure the health state of an instance using the Auto Scaling CLI

1. Use the following as-set-instance-health command to set the health status of the specified
instance to Unhealthy:

as-set-instance-health i-123abc45d –-status Unhealthy

The following is an example response:

OK-Instance Health Set

2. Use the following as-describe-auto-scaling-groups command to verify that the instance state
is Unhealthy:

as-describe-auto-scaling-groups my-test-asg

The following is an example response that shows that the instance status is Unhealthy and that it
is terminating:

...
INSTANCE i-123abc45d us-east-1a Terminating Unhealthy my-test-lc
...

Getting Notifications When Your Auto Scaling
Group Changes

When you use Auto Scaling to scale your applications automatically, you want to know when Auto Scaling
is launching or terminating the EC2 instances in your Auto Scaling group.You can configure your Auto
Scaling group to send a notification, whenever the Auto Scaling group changes.

If configured, the Auto Scaling group uses Amazon Simple Notification Service (Amazon SNS) to send
the notifications. Amazon SNS coordinates and manages the delivery or sending of notifications to
subscribing clients or endpoints. Amazon SNS can deliver notifications as HTTP or HTTPS POST, email
(SMTP, either plain-text or in JSON format), or as a message posted to an Amazon SQS queue. For
more information, see What Is Amazon SNS in the Amazon Simple Notification Service Developer Guide.

To configure your Auto Scaling group to send email notifications whenever your Auto Scaling group
changes, complete the following tasks.

Tasks

API Version 2011-01-01
106

Auto Scaling Developer Guide
Set the Health State of An Instance Using the Auto

Scaling CLI

http://docs.aws.amazon.com/sns/latest/dg/

• Configure Amazon SNS (p. 107)

• Configure Your Auto Scaling Group to Send Notifications (p. 107)

• Test the Notification Configuration (p. 108)

• Verify That You Received Notification of the Scaling Event (p. 108)

• Delete the Notification Configuration (p. 109)

Configure Amazon SNS
To use Amazon SNS to send email notifications, you must first create a topic and then subscribe your
email addresses to the topic.

Create an Amazon SNS Topic
An SNS topic is a logical access point, a communication channel your Auto Scaling group uses to send
the notifications.You create a topic by specifying a name for your topic.

For more information, see Create a Topic in the Amazon Simple Notification Service Developer Guide.

Subscribe to the Amazon SNS Topic
To receive notifications your Auto Scaling group sends to the topic, you must subscribe an endpoint to
the topic. In this procedure, for the Endpoint field, specify the email address where you want to receive
the notifications from Auto Scaling.

For more information, see Subscribe to a Topic in the Amazon Simple Notification Service Developer
Guide.

Confirm Your Amazon SNS Subscription
Amazon SNS sends a confirmation email to the email address you specified in the previous step.

Make sure you open the email from AWS Notifications and click the link to confirm the subscription before
you continue with the next step.

You will receive an acknowledgement message from AWS. Amazon SNS is now configured to receive
notifications and send the notification as an email to the email address that you specified.

Configure Your Auto Scaling Group to Send
Notifications
You can configure your Auto Scaling group to send notifications to Amazon SNS when a scaling event,
such as launching instances or terminating instances, takes place. Amazon SNS sends a notification with
information about the instances to the email address that you specified.

When you configure your Auto Scaling group to send email notifications, you must specify the notification
types for the Auto Scaling group. Auto Scaling supports sending Amazon SNS notifications when the
following events occur:

EventNotification type

Successful instance launchautoscaling:EC2_INSTANCE_LAUNCH

Failed instance launchautoscaling:EC2_INSTANCE_LAUNCH_ERROR

API Version 2011-01-01
107

Auto Scaling Developer Guide
Configure Amazon SNS

http://docs.aws.amazon.com/sns/latest/dg/CreateTopic.html
http://docs.aws.amazon.com/sns/latest/dg/SubscribeTopic.html

EventNotification type

Successful instance terminationautoscaling:EC2_INSTANCE_TERMINATE

Failed instance terminationautoscaling:EC2_INSTANCE_TERMINATE_ER-
ROR

Validated a configured SNS topic (as a result of
calling the PutNotificationConfiguration action)

autoscaling:TEST_NOTIFICATION

For example, if you configure your Auto Scaling group to use the autoscaling:
EC2_INSTANCE_TERMINATE notification type, and your Auto Scaling group terminates an instance, it
sends an email notification.This email contains the details of the terminated instance, such as the instance
ID and the reason that the instance was terminated.

Configure Notifications Using the Auto Scaling CLI
To configure Amazon SNS notifications for your Auto Scaling group

Use the following as-put-notification-configuration command:

as-put-notification-configuration my-asg --topic-arn arn --notification-types
autoscaling:EC2_INSTANCE_LAUNCH, autoscaling:EC2_INSTANCE_TERMINATE

Auto Scaling returns the following:

OK-Put Notification Configuration

Test the Notification Configuration
To cause the changes that generate notifications, update the Auto Scaling group by changing the desired
capacity of the Auto Scaling group; for example, from 1 instance to 2 instances. After Auto Scaling launches
the EC2 instance, you'll receive the email notification with a few minutes.

To change the desired capacity using the Auto Scaling CLI

Use the following as-set-desired-capacity command:

as-set-desired-capacity my-asg --desired-capacity 2

The following is example output:

OK-Desired Capacity Set

Verify That You Received Notification of the
Scaling Event
Check your email for a message from Amazon SNS and open the email. After you receive notification of
a scaling event for your Auto Scaling group, you can confirm the scaling event by looking at the description
of your Auto Scaling group.You'll need information from the notification email, such as the ID of the
instance that was launched or terminated.

API Version 2011-01-01
108

Auto Scaling Developer Guide
Test the Notification Configuration

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_PutNotificationConfiguration.html

To verify that your Auto Scaling group has launched new instance using the Auto Scaling CLI

Use the following as-describe-auto-scaling-groups command to confirm that the size of your
Auto Scaling group has changed:

as-describe-auto-scaling-groups my-asg --headers

The following example output shows that the group has two instances. Check for the instance whose ID
you received in the notification email.

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES MIN-SIZE
 MAX-SIZE DESIRED-CAPACITY TERMINATION-POLICIES
AUTO-SCALING-GROUP my-asg my-lc us-west-2c 1 3
 2 Default
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-98e204e8 us-west-2c InService Healthy my-test-lc
INSTANCE i-d998ded1 us-west-2c InService Healthy my-test-lc

Delete the Notification Configuration
You can delete your Auto Scaling notification configuration at any time.

To delete Auto Scaling notification configuration using the Auto Scaling CLI

Use the following as-delete-notification-configuration command:

as-delete-notification-configuration my-asg --topic-arn arn:aws:sns:us-west-
2:123456789012:my-sns-topic

After confirming that you want to delete the notification configuration, Auto Scaling returns the following
output:

OK-Deleted Notification Configuration

For information about deleting the Amazon SNS topic associated with your Auto Scaling group, and also
deleting all the subscriptions to that topic, see Clean Up in the Amazon Simple Notification Service
Developer Guide.

Logging Auto Scaling API Calls By Using AWS
CloudTrail

Auto Scaling is integrated with CloudTrail, a service that captures API calls made by or on behalf of Auto
Scaling in your AWS account and delivers the log files to an Amazon S3 bucket that you specify. CloudTrail
captures API calls from the Auto Scaling console or from the Auto Scaling API. Using the information
collected by CloudTrail, you can determine what request was made to Auto Scaling, the source IP address
from which the request was made, who made the request, when it was made, and so on. For more
information about CloudTrail, including how to configure and enable it, see the AWS CloudTrail User
Guide.

API Version 2011-01-01
109

Auto Scaling Developer Guide
Delete the Notification Configuration

http://docs.aws.amazon.com/sns/latest/dg/CleanUp.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/

Auto Scaling Information in CloudTrail
When CloudTrail logging is enabled in your AWS account, API calls made to Auto Scaling actions are
tracked in log files. Auto Scaling records are written together with other AWS service records in a log file.
CloudTrail determines when to create and write to a new file based on a time period and file size.

All of the Auto Scaling actions are logged and are documented in the Auto Scaling API Reference. For
example, calls to the CreateLaunchConfiguration, DescribeAutoScalingGroup, and
UpdateAutoScalingGroup actions generate entries in the CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log helps you determine whether the request was made with account or IAM user credentials, with
temporary security credentials for a role or federated user, or by another AWS service. For more
information, see the userIdentity field in the CloudTrail Event Reference section in the AWS CloudTrail
User Guide.

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish Amazon SNS notifications when new log files are delivered
if you want to take quick action upon log file delivery. For more information, see Configuring Amazon
SNS Notifications in the AWS CloudTrail User Guide.

You can also aggregate Auto Scaling log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For more information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket in the AWS CloudTrail User Guide.

Understanding Auto Scaling Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple
JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

The following example shows a CloudTrail log entry that demonstrates the CreateLaunchConfiguration
action.

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/iamUser1",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "iamUser1"
 },
 "eventTime": "2014-06-24T16:53:14Z",
 "eventSource": "autoscaling.amazonaws.com",
 "eventName": "CreateLaunchConfiguration",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",

API Version 2011-01-01
110

Auto Scaling Developer Guide
Auto Scaling Information in CloudTrail

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

 "userAgent": "Amazon CLI/AutoScaling 1.0.61.3 API 2011-01-01",
 "requestParameters": {
 "imageId": "ami-2f726546",
 "instanceType": "m1.small",
 "launchConfigurationName": "launch_configuration_1"
 },
 "responseElements": null,
 "requestID": "07a1becf-fbc0-11e3-bfd8-a5209058e7bb",
 "eventID": "ad30abf7-57db-4a6d-93fa-13deb1fd4cff"
 },
 ...additional entries
]
}

The following example shows a CloudTrail log entry that demonstrates the DescribeAutoScalingGroups
action.

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/iamUser1",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "iamUser1"
 },
 "eventTime": "2014-06-23T23:20:56Z",
 "eventSource": "autoscaling.amazonaws.com",
 "eventName": "DescribeAutoScalingGroups",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon CLI/AutoScaling 1.0.61.3 API 2011-01-01",
 "requestParameters": {
 "maxRecords": 20
 },
 "responseElements": null,
 "requestID": "0737e2ea-fb2d-11e3-bfd8-a5209058e7bb",
 "eventID": "0353fb04-281e-47d9-93bb-588bf2256538"
 },
 ...additional entries
]
}

The following example shows a CloudTrail log entry that demonstrates the UpdateAutoScalingGroups
action.

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {

API Version 2011-01-01
111

Auto Scaling Developer Guide
Understanding Auto Scaling Log File Entries

 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:user/iamUser1",
 "accountId": "123456789012",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "iamUser1"
 },
 "eventTime": "2014-06-24T16:54:46Z",
 "eventSource": "autoscaling.amazonaws.com",
 "eventName": "UpdateAutoScalingGroup",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "192.0.2.0",
 "userAgent": "Amazon CLI/AutoScaling 1.0.61.3 API 2011-01-01",
 "requestParameters": {
 "maxSize": 8,
 "minSize": 1,
 "autoScalingGroupName": "asg1"
 },
 "responseElements": null,
 "requestID": "3ed07c03-fbc0-11e3-bfd8-a5209058e7bb",
 "eventID": "b52ca0aa-5199-4873-a546-55f7c896a4ce"
 },
 ...additional entries
]

}

API Version 2011-01-01
112

Auto Scaling Developer Guide
Understanding Auto Scaling Log File Entries

Troubleshooting Auto Scaling

Amazon Web Services provides specific and descriptive errors to help you troubleshoot Auto Scaling
problems. The error messages can be retrieved from the description of the Auto Scaling activities.You
can use either the Query API or the command line interface (CLI) to retrieve an error message.

Retrieving an Error Message
To retrieve an error message from the description of Auto Scaling activities, use the
as-describe-scaling-activities command. Alternatively, you can use the
DescribeScalingActivities API action. For more information about the API action, see
DescribeScalingActivities in the Auto Scaling API Reference.

The as-describe-scaling-activities command takes the following arguments:

as-describe-scaling-activities [ActivityIds [ActivityIds...]]
[--auto-scaling-group value][--max-records value][General Options]

In this example, you'll get the XML description of the Auto Scaling activities for the MyASGroup Auto
Scaling group.

as-describe-scaling-activities --auto-scaling-group MyASGroup --show-xml

Auto Scaling returns the following:

<DescribeScalingActivitiesResponse xmlns="http://ec2.amazonaws.com/doc/2011-01-
01/">
<DescribeScalingActivitiesResult>
<Activities>
 <member>
 <StatusCode>Failed</StatusCode>
 <Progress>0</Progress>
 <ActivityId>063308ae-aa22-4a9b-94f4-9fae70b82ad0</ActivityId>
 <StartTime>2012-04-12T17:32:07.882Z</StartTime>
 <AutoScalingGroupName>MyASGroup</AutoScalingGroupName>
 <Cause>At 2012-04-12T17:31:30Z a user request created an AutoScalingGroup
 changing the desired capacity from 0 to 1. At 2012-04-12T17:32:07Z an instance
 was started in response to a difference between desired and actual capacity,

API Version 2011-01-01
113

Auto Scaling Developer Guide
Retrieving an Error Message

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_DescribeScalingActivities.html

increasing the capacity from 0 to 1.</Cause>
 <Details>{}</Details>
 <Description>Launching a new EC2 instance. Status Reason: The image id
'ami-4edb0327' does not exist. Launching EC2 instance failed.</Description>
 <EndTime>2012-04-12T17:32:08Z</EndTime>
 <StatusMessage>The image id 'ami-4edb0327' does not exist. Launching EC2
instance failed.</StatusMessage>
 </member>
</Activities>
 </DescribeScalingActivitiesResult>
 <ResponseMetadata>
 <RequestId>7a641adc-84c5-11e1-a8a5-217eb05262e2</RequestId>
 </ResponseMetadata>
</DescribeScalingActivitiesResponse>

The response includes a list of Activities associated with the MyASGroup Auto Scaling group. The
StatusCode contains the current status of the activity.The StatusMessage contains the error message,
which is the verbose description of the activity status.

Troubleshooting Auto Scaling issues involves looking at how your Amazon EC2 AMIs and instances are
configured.You can create, access, and manage your AMIs and instances using one of the Amazon EC2
interfaces: the AWS Management Console, the command line interface (CLI), or the Query API.

The following tables list the types of error messages and provide links to the troubleshooting resources
that you can use as you work with your Auto Scaling issues.

Troubleshooting Auto Scaling: Amazon EC2 Instance Launch Failure

Error MessageIssue

AutoScalingGroup <Auto Scaling group name> not found. (p. 116)Auto Scaling group

The requested Availability Zone is no longer supported. Please retry your re-
quest (p. 117)

Availability Zone

You are not subscribed to this service. Please see ht-
tp://aws.amazon.com. (p. 117)

AWS account

Invalid device name upload. Launching EC2 instance failed. (p. 117)Block device mapping

Value (<name associated with the instance storage device>) for parameter
virtualName is invalid... (p. 118)

Block device mapping

EBS block device mappings not supported for instance-store AMIs. (p. 118)Block device mapping

Your requested instance type (<instance type>) is not supported in your re-
quested Availability Zone (<instance Availability Zone>).... (p. 117)

Instance type and
Availability Zone

The key pair <key pair associated with your EC2 instance> does not exist.
Launching EC2 instance failed. (p. 116)

Key pair

The requested configuration is currently not supported. (p. 116)Launch configuration

Placement groups may not be used with instances of type 'm1.large'.
Launching EC2 instance failed. (p. 118)

Placement group

The security group <name of the security group> does not exist. Launching
EC2 instance failed. (p. 116)

Security group

API Version 2011-01-01
114

Auto Scaling Developer Guide
Retrieving an Error Message

Troubleshooting Auto Scaling: Amazon EC2 AMIs

Error MessageIssue

The AMI ID <ID of your AMI> does not exist. Launching EC2 instance
failed. (p. 119)

AMI ID

AMI <AMI ID> is pending, and cannot be run. Launching EC2 instance
failed. (p. 119)

AMI ID

Value (<ami ID>) for parameter virtualName is invalid. (p. 119)AMI ID

The requested instance type's architecture (i386) does not match the architec-
ture in the manifest for ami-6622f00f (x86_64). Launching ec2 instance
failed. (p. 120)

Architecture mismatch

Non-Windows AMIs with a virtualization type of 'hvm' currently may only be
used with Cluster Compute instance types. Launching EC2 instance
failed. (p. 119)

Virtualization type

Troubleshooting Auto Scaling: Load Balancer Configuration

Error MessageIssue

Cannot find Load Balancer <your launch environment>.Validating load balancer
configuration failed. (p. 120)

Cannot find load balan-
cer

EC2 instance <instance ID> is not in VPC. Updating load balancer configuration
failed. (p. 121)

Instances in VPC

There is no ACTIVE Load Balancer named <load balancer name>. Updating
load balancer configuration failed. (p. 121)

No active load balancer

The security token included in the request is invalid. Validating load balancer
configuration failed. (p. 121)

Security token

Troubleshooting Auto Scaling: Capacity Limits

Error MessageIssue

<number of instances> instance(s) are already running. Launching EC2 in-
stance failed. (p. 122)

Capacity limits

We currently do not have sufficient <instance type> capacity in the Availability
Zone you requested (<requested Availability Zone>).... (p. 122)

Insufficient capacity in
Availability Zone

Troubleshooting Auto Scaling: Amazon EC2
Instance Launch Failure

The following topics provide information about your EC2 instances that fail to launch, potential causes,
and the steps you can take to resolve the issues.

When your EC2 instances fail to launch, you might get one or more of the error messages covered in the
following topics. To retrieve an error message and to review the error message lists sorted by the type
of issue, see Retrieving an Error Message (p. 113).

API Version 2011-01-01
115

Auto Scaling Developer Guide
Instance Launch Failure

The security group <name of the security group>
does not exist. Launching EC2 instance failed.
• Cause: The security group specified in your launch configuration might have been deleted.

• Solution:

1. Use the DescribeSecurityGroups action or ec2-describe-group command to get the list of the security
groups associated with your account.

2. From the list, select the security groups you want to use. To create a new security group use the
CreateSecurityGroup action or the ec2-create-group command.

3. Create a new launch configuration.

4. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

The key pair <key pair associated with your EC2
instance> does not exist. Launching EC2 instance
failed.
• Cause: The key pair that was used when launching the instance might have been deleted.

• Solution:

1. Use the DescribeKeyPairs action or the ec2-describe-kepairs command to get the list of the key
pairs available to you.

2. From the list, select the key pairs you want to use. To create a new key pair, use CreateKeyPair
action or ec2-create-keypair command.

3. Create a new launch configuration.

4. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

The requested configuration is currently not
supported.
• Cause: Some fields in your launch configuration might not be currently supported.

• Solution:

1. Create a new launch configuration.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

AutoScalingGroup <Auto Scaling group name>
not found.
• Cause: The Auto Scaling group might have been deleted.

• Solution: Create a new Auto Scaling group.

API Version 2011-01-01
116

Auto Scaling Developer Guide
The security group <name of the security group> does

not exist. Launching EC2 instance failed.

http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeSecurityGroups.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-DescribeSecurityGroups.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-CreateSecurityGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-CreateSecurityGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeKeyPairs.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-DescribeKeyPairs.html
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-CreateKeyPair.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-CreateKeyPair.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html

The requested Availability Zone is no longer
supported. Please retry your request
• Error Message: The requested Availability Zone is no longer supported. Please retry your request by

not specifying an Availability Zone or choosing <list of available Availability Zones>. Launching EC2
instance failed.

• Cause: The Availability Zone associated with your Auto Scaling group might not be currently available.

• Solution: Update your Auto Scaling group with the recommendations in the error message.

Your requested instance type (<instance type>) is
not supported in your requested Availability Zone
(<instance Availability Zone>)....
• Error Message:Your requested instance type (<instance type>) is not supported in your requested

Availability Zone (<instance Availability Zone>). Please retry your request by not specifying an Availability
Zone or choosing <list of Availability Zones that supports the instance type>. Launching EC2 instance
failed.

• Cause: The instance type associated with your launch configuration might not be currently available
in the Availability Zones specified in your Auto Scaling group.

• Solution: Update your Auto Scaling group with the recommendations in the error message.

You are not subscribed to this service. Please see
http://aws.amazon.com.
• Cause:Your AWS account might have expired.

• Solution: Go to http://aws.amazon.com and click Sign Up Now to open a new account.

Invalid device name upload. Launching EC2
instance failed.
• Cause: The block device mappings in your launch configuration might contain block device names that

are not available or currently not supported.

• Solution:

1. Use the AWS Management Console, the DescribeVolumes action, or the ec2-describe-volumes
command to see how the volumes are exposed to the instance.

2. Create a new launch configuration using the device name listed in the volume description.

3. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

API Version 2011-01-01
117

Auto Scaling Developer Guide
The requested Availability Zone is no longer supported.

Please retry your request

http://aws.amazon.com
http://docs.aws.amazon.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeVolumes.html
http://docs.aws.amazon.com/AWSEC2/latest/CommandLineReference/ApiReference-cmd-DescribeVolumes.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html

Value (<name associated with the instance storage
device>) for parameter virtualName is invalid...
• Error Message:Value (<name associated with the instance storage device>) for parameter virtualName

is invalid. Expected format: 'ephemeralNUMBER'. Launching EC2 instance failed.

• Cause: The format specified for the virtual name associated with the block device is incorrect.

• Solution:

1. Create a new launch configuration by specifying the value of the virtualName parameter in the
format: ephemeral<number>. For information about the device name format, see Instance Store
Device Names in the Amazon EC2 User Guide for Linux Instances.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

EBS block device mappings not supported for
instance-store AMIs.
• Cause: The block device mappings specified in the launch configuration are not supported on your

instance.

• Solution:

1. Create a new launch configuration with block device mappings supported by your instance type. For
more information about block device mapping, see Block Device Mapping in the Amazon EC2 User
Guide for Linux Instances.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

Placement groups may not be used with instances
of type 'm1.large'. Launching EC2 instance failed.
• Cause:Your cluster placement group contains an invalid instance type.

• Solution:

1. For information about valid instance types supported by the placement groups, see Placement
Groups in the Amazon EC2 User Guide for Linux Instances.

2. Follow the instructions detailed in the Placement Groups to create a new placement group.

3. Alternatively, create a new launch configuration with the supported instance type.

4. Update your Auto Scaling group with new placement group or the new launch configuration using
the UpdateAutoScalingGroup action or the as-update-auto-scaling-group command.

Troubleshooting Auto Scaling: Amazon EC2
AMIs

The following topics provide information about the issues associated with your Amazon EC2 AMIs, potential
causes, and the steps you can take to resolve the issues.

API Version 2011-01-01
118

Auto Scaling Developer Guide
Value (<name associated with the instance storage

device>) for parameter virtualName is invalid...

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#InstanceStoreDeviceNames
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#InstanceStoreDeviceNames
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/block-device-mapping-concepts.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html

When your EC2 instances fail to launch due to issues with your AMIs, you might get one or more of the
error messages covered in the following topics. To retrieve the error message and review the error
message lists sorted by the type of issue, see Retrieving an Error Message (p. 113).

The AMI ID <ID of your AMI> does not exist.
Launching EC2 instance failed.
• Cause: The AMI might have been deleted after creating the launch configuration.

• Solution:

1. Create a new launch configuration using a valid AMI.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

AMI <AMI ID> is pending, and cannot be run.
Launching EC2 instance failed.
• Cause:You might have just created your AMI (by taking a snapshot of a running instance or any other

way), and it might not be available yet.

• Solution:You must wait for your AMI to be available and then create your launch configuration.

Non-Windows AMIs with a virtualization type of
'hvm' currently may only be used with Cluster
Compute instance types. Launching EC2 instance
failed.
• Cause: The Linux/UNIX AMI with hvm virtualization cannot be used to launch a non-cluster compute

instance.

• Solution:

1. Create a new launch configuration using an AMI with a virtualization type of paravirtual to launch a
non-cluster compute instance.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

Value (<ami ID>) for parameter virtualName is
invalid.
• Cause: Incorrect value. The virtualName parameter refers to the virtual name associated with the

device.

• Solution:

1. Create a new launch configuration by specifying the name of the virtual device of your instance for
the virtualName parameter.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

API Version 2011-01-01
119

Auto Scaling Developer Guide
The AMI ID <ID of your AMI> does not exist. Launching

EC2 instance failed.

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html

The requested instance type's architecture (i386)
does not match the architecture in the manifest
for ami-6622f00f (x86_64). Launching ec2 instance
failed.
• Cause:The architecture of the InstanceType mentioned in your launch configuration does not match

the image architecture.

• Solution:

1. Create a new launch configuration using the AMI architecture that matches the architecture of the
requested instance type.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

Troubleshooting Auto Scaling: Load Balancer
Configuration

This following topics provide information about issues caused by the load balancer associated with your
Auto Scaling group, potential causes, and the steps you can take to resolve the issues.

When your EC2 instances fail to launch due to issues with the load balancer associated with your Auto
Scaling group, you might get one or more of the error messages covered in the following topics.To retrieve
the error message and review the error message lists sorted by the type of issue, see Retrieving an Error
Message (p. 113).

Before you begin troubleshooting issues with the load balancer configurations, be sure you've installed
the Elastic Load Balancing interface you plan to use to access your load balancer. For more information,
see Get Set Up With Elastic Load Balancing Interfaces in the Elastic Load Balancing Developer Guide.

Cannot find Load Balancer <your launch
environment>. Validating load balancer
configuration failed.
• Cause 1: The load balancer has been deleted.

• Solution 1:

1. Check to see if your load balancer still exists.You can use either the DescribeLoadBalancer action
or the elb-describe-lbs command.

2. If you see your load balancer listed in the response, see Cause 2.

3. If you do not see your load balancer listed in the response, you can either create a new load balancer
and then create a new Auto Scaling group or you can create a new Auto Scaling group without the
load balancer.

• Cause 2: The load balancer name was not specified in the right order when creating the Auto Scaling
group.

• Solution 2: Create a new Auto Scaling group and specify the load balancer name at the end.

API Version 2011-01-01
120

Auto Scaling Developer Guide
The requested instance type's architecture (i386) does

not match the architecture in the manifest for
ami-6622f00f (x86_64). Launching ec2 instance failed.

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/ProgrammingGuide.html
http://docs.aws.amazon.com/ElasticLoadBalancing/latest/APIReference/API_DescribeLoadBalancers.html

There is no ACTIVE Load Balancer named <load
balancer name>. Updating load balancer
configuration failed.
• Cause: The specified load balancer might have been deleted.

• Solution:You can either create a new load balancer and then create a new Auto Scaling group or
create a new Auto Scaling group without the load balancer.

EC2 instance <instance ID> is not in VPC. Updating
load balancer configuration failed.
• Cause: The specified instance does not exist in the VPC.

• Solution:You can either delete your load balancer associated with the instance or create a new Auto
Scaling group.

EC2 instance <instance ID> is in VPC. Updating
load balancer configuration failed.
• Cause: The load balancer is in EC2-Classic but the Auto Scaling group is in a VPC.

• Solution: Ensure that the load balancer and the Auto Scaling group are in the same network
(EC2-Classic or a VPC).

The security token included in the request is
invalid. Validating load balancer configuration
failed.
• Cause:Your AWS account might have expired.

• Solution: Check if your AWS account is valid. Go to http://aws.amazon.com and click Sign Up Now
to open a new account.

Troubleshooting Auto Scaling: Capacity Limits
The following topics provide information about issues with the capacity limits of your Auto Scaling group,
potential causes, and the steps you can take to resolve the issues.

When your EC2 instances fail to launch due to issues with the capacity limits of your Auto Scaling group,
you might get one or more of the error messages covered in the following topics. To retrieve the error
message and review the error message lists sorted by the type of issue, see Retrieving an Error
Message (p. 113).

API Version 2011-01-01
121

Auto Scaling Developer Guide
There is no ACTIVE Load Balancer named <load balancer

name>. Updating load balancer configuration failed.

http://aws.amazon.com

We currently do not have sufficient <instance
type> capacity in the Availability Zone you
requested (<requested Availability Zone>)....
• Error Message: We currently do not have sufficient <instance type> capacity in the Availability Zone

you requested (<requested Availability Zone>). Our system will be working on provisioning additional
capacity.You can currently get <instance type> capacity by not specifying an Availability Zone in your
request or choosing <list of Availability Zones that currently supports the instance type>. Launching
EC2 instance failed.

• Cause: At this time, Auto Scaling cannot support your instance type in your requested Availability Zone.

• Solution:

1. Create a new launch configuration by following the recommendations in the error message.

2. Update your Auto Scaling group with the new launch configuration using the UpdateAutoScalingGroup
action or the as-update-auto-scaling-group command.

<number of instances> instance(s) are already
running. Launching EC2 instance failed.
• Cause: The Auto Scaling group has reached the limit set by the DesiredCapacity parameter.

• Solution:

• Update your Auto Scaling group by providing a new value for the DesiredCapacity parameter
using the UpdateAutoScalingGroup action or the as-update-auto-scaling-group command.

• If you've reached the limit for number of EC2 instances, see Contact Us and place a request to raise
your Amazon EC2 instance limit.

API Version 2011-01-01
122

Auto Scaling Developer Guide
We currently do not have sufficient <instance type>

capacity in the Availability Zone you requested
(<requested Availability Zone>)....

http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
http://docs.aws.amazon.com/AutoScaling/latest/APIReference/API_UpdateAutoScalingGroup.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase&limitType=service-code-ec2-instances

	Auto Scaling
	Table of Contents
	What Is Auto Scaling?
	Auto Scaling Components
	Getting Started
	Accessing Auto Scaling
	Pricing for Auto Scaling
	Related Services
	Benefits of Auto Scaling
	Example: Covering Variable Demand
	Example: Web App Architecture
	Example: Distributing Instances Across Availability Zones
	Instance Distribution
	Rebalancing Activities

	Launch Configurations
	Auto Scaling Groups
	Scaling Plans
	Auto Scaling Lifecycle
	Auto Scaling Basic Lifecycle
	Auto Scaling Instance States
	Auto Scaling Pending State
	Auto Scaling InService State
	Auto Scaling Terminating State

	Auto Scaling Limits

	Setting Up Auto Scaling
	Sign Up for AWS
	Prepare to Use Amazon EC2

	Install the Auto Scaling CLI
	Set the JAVA_HOME Environment Variable
	Install the Auto Scaling CLI
	Get the CLI
	Set the Environment Variable for the CLI
	Manage Access for the CLI
	Change the Region

	Verify that the Auto Scaling CLI is Installed
	Commands

	Getting Started with the Auto Scaling CLI
	Create a Launch Configuration
	Create an Auto Scaling Group
	Verify Your Auto Scaling Group
	(Optional) Delete Your Auto Scaling Infrastructure

	Planning Your Auto Scaling Group
	Scaling the Size of Your Auto Scaling Group
	Multiple Scaling Policies
	Understanding Auto Scaling Cooldowns
	Example: Auto Scaling Cooldowns
	Default Cooldowns
	Scaling-Specific Cooldowns
	Cooldowns and Multiple Instances
	Cooldowns and Lifecycle Hooks
	Cooldowns and Spot Instances

	Choosing a Termination Policy for Your Auto Scaling Group
	Default Termination Policy
	Customizing the Termination Policy

	Maintaining a Fixed Number of EC2 Instances in Your Auto Scaling Group
	Determining Instance Health
	Replacing Unhealthy Instances

	Manual Scaling
	Scaling Manually Using the Auto Scaling CLI

	Dynamic Scaling
	Scaling Policies
	Architectural Overview of Dynamic Scaling
	Scaling Based on Metrics
	Scaling with Metrics Using the Auto Scaling CLI
	Create a Launch Configuration
	Create an Auto Scaling Group
	(Optional) Verify Your Auto Scaling Group
	Create Scaling Policies
	Create CloudWatch Alarms
	(Optional) Verify Your Scaling Policies and CloudWatch Alarms

	Scheduled Scaling
	Programming Considerations for Scheduled Actions
	Scheduling Scaling Using the Auto Scaling CLI
	Create a Launch Configuration
	Create an Auto Scaling Group
	(Optional) Verify Your Auto Scaling Group
	Create a Schedule for Scaling Actions
	(Optional) Verify that the Auto Scaling Group is Scheduled for Scaling

	Scaling Based on Amazon SQS
	Scaling with Amazon SQS Using the Auto Scaling CLI
	Create the Scaling Policies
	Create the CloudWatch Alarms
	Verify Your Scaling Policies and CloudWatch Alarms
	Test Your Scale Out and Scale In Policies

	Controlling Access to Your Auto Scaling Resources
	Auto Scaling Actions
	Auto Scaling Resources
	Auto Scaling Keys
	Example IAM Policies for Auto Scaling
	Launch Auto Scaling Instances with an IAM Role
	Prerequisites: Using IAM
	Steps for Launching Instances with an IAM role
	Launching Instances with the CLI
	Create a Launch Configuration
	Create an Auto Scaling Group
	Verify That the EC2 Instance Launches with the IAM Role
	Clean Up

	Creating Launch Configurations
	Create a Launch Configuration
	Create a Launch Configuration Using an EC2 Instance
	Create a Launch Configuration Using an EC2 Instance
	Create a Launch Configuration from an EC2 Instance Using the Auto Scaling CLI

	Create a Launch Configuration from an Instance and Override the Block Devices
	Create a Launch Configuration and Override the Block Devices Using the Auto Scaling CLI

	Create a Launch Configuration and Override the Instance Type
	Create a Launch Configuration and Override the Instance Type Using the Auto Scaling CLI

	Creating Auto Scaling Groups
	Create an Auto Scaling Group
	Create an Auto Scaling Group from an EC2 Instance
	Create an Auto Scaling Group from an EC2 Instance Using the Auto Scaling CLI

	Auto Scaling and Amazon Virtual Private Cloud
	Default VPC
	IP Addressing in a VPC
	Instance Placement Tenancy
	Linking EC2-Classic Instances to a VPC
	Link to a VPC Using the AWS Management Console
	Link to a VPC Using the AWS CLI

	Launch Auto Scaling Instances in a VPC

	Controlling How Instances Launch and Terminate
	Introducing Lifecycle Hooks
	Adding Lifecycle Hooks
	Considerations When Using Lifecycle Hooks
	Keeping Instances in a Wait State
	Cooldowns and Custom Actions
	Abandon or Continue
	Spot Instances

	Examples of How to Use Lifecycle Hooks
	Installing Software to Pending Instances
	Adding Software Using the Auto Scaling CLI

	Filling a Cache of Servers
	Filling a Cache Using the Auto Scaling CLI

	Analyzing an Instance Before Termination
	Analyzing Instances Using the Auto Scaling CLI

	Retrieving Logs from Terminating Instances
	Retrieving Logs Using the Auto Scaling CLI

	Tagging Auto Scaling Groups and Instances
	Tag Restrictions
	Add or Modify Tags for Your Auto Scaling Group
	Add or Modify Tags Using the Auto Scaling CLI

	Delete Tags
	Delete Tags Using the Auto Scaling CLI

	Launching Spot Instances in Your Auto Scaling Group
	Launching Spot Instances Using the Auto Scaling CLI
	Create a Launch Configuration
	Create an Auto Scaling Group
	Verify and Check Your Instances
	(Optional) Get Notifications When the Auto Scaling Group Changes
	(Optional) Update the Bid Price for the Spot Instances
	Clean Up

	Configuring Your Auto Scaling Groups
	Load Balance Your Auto Scaling Group
	Set Up a Scaled and Load-Balanced Application
	Setting Up an Application Using the Auto Scaling CLI
	Create a Launch Configuration
	Create an Auto Scaling Group with a Load Balancer
	(Optional) Verify That Your Auto Scaling Group Launched with a Load Balancer

	Add an Elastic Load Balancing Health Check to your Auto Scaling Group
	Adding a Health Check Using the Auto Scaling CLI

	Expand Your Scaled and Load-Balanced Application to an Additional Availability Zone
	Expanding Applications Using the Auto Scaling CLI

	Attach EC2 Instances to Your Auto Scaling Group
	Attaching an Instance Using the Auto Scaling CLI

	Detach EC2 Instances From Your Auto Scaling Group
	Detaching Instances Using the Auto Scaling CLI

	Merge Your Auto Scaling Groups into a Single Multi-Zone Group
	Merge Zones Using the Auto Scaling CLI

	Temporarily Removing Instances
	Troubleshooting Instances in an Auto Scaling Group
	Troubleshooting Instances Using the Auto Scaling CLI

	Updating or Modifying Instances in an Auto Scaling Group
	Updating an Instance Using the Auto Scaling CLI

	Suspend and Resume Auto Scaling Processes
	Auto Scaling Processes
	Suspend and Resume Processes Using the Auto Scaling CLI

	Shut Down Auto Scaling Processes Using the AWS CLI
	Delete Your Auto Scaling Group
	(Optional) Delete the Launch Configuration
	(Optional) Delete the Load Balancer
	(Optional) Delete CloudWatch Alarms

	Monitoring Your Auto Scaling Instances
	Amazon CloudWatch Alarms
	Activating Detailed Instance Monitoring for Auto Scaling
	Activating Basic Instance Monitoring for Auto Scaling
	Auto Scaling Group Metrics
	Auto Scaling Group Metrics Table
	Dimensions for Auto Scaling Group Metrics

	Health Checks
	Set the Health State of An Instance Using the Auto Scaling CLI

	Getting Notifications When Your Auto Scaling Group Changes
	Configure Amazon SNS
	Create an Amazon SNS Topic
	Subscribe to the Amazon SNS Topic
	Confirm Your Amazon SNS Subscription

	Configure Your Auto Scaling Group to Send Notifications
	Configure Notifications Using the Auto Scaling CLI

	Test the Notification Configuration
	Verify That You Received Notification of the Scaling Event
	Delete the Notification Configuration

	Logging Auto Scaling API Calls By Using AWS CloudTrail
	Auto Scaling Information in CloudTrail
	Understanding Auto Scaling Log File Entries

	Troubleshooting Auto Scaling
	Retrieving an Error Message
	Troubleshooting Auto Scaling: Amazon EC2 Instance Launch Failure
	The security group <name of the security group> does not exist. Launching EC2 instance failed.
	The key pair <key pair associated with your EC2 instance> does not exist. Launching EC2 instance failed.
	The requested configuration is currently not supported.
	AutoScalingGroup <Auto Scaling group name> not found.
	The requested Availability Zone is no longer supported. Please retry your request
	Your requested instance type (<instance type>) is not supported in your requested Availability Zone (<instance Availability Zone>)....
	You are not subscribed to this service. Please see http://aws.amazon.com.
	Invalid device name upload. Launching EC2 instance failed.
	Value (<name associated with the instance storage device>) for parameter virtualName is invalid...
	EBS block device mappings not supported for instance-store AMIs.
	Placement groups may not be used with instances of type 'm1.large'. Launching EC2 instance failed.

	Troubleshooting Auto Scaling: Amazon EC2 AMIs
	The AMI ID <ID of your AMI> does not exist. Launching EC2 instance failed.
	AMI <AMI ID> is pending, and cannot be run. Launching EC2 instance failed.
	Non-Windows AMIs with a virtualization type of 'hvm' currently may only be used with Cluster Compute instance types. Launching EC2 instance failed.
	Value (<ami ID>) for parameter virtualName is invalid.
	The requested instance type's architecture (i386) does not match the architecture in the manifest for ami-6622f00f (x86_64). Launching ec2 instance failed.

	Troubleshooting Auto Scaling: Load Balancer Configuration
	Cannot find Load Balancer <your launch environment>. Validating load balancer configuration failed.
	There is no ACTIVE Load Balancer named <load balancer name>. Updating load balancer configuration failed.
	EC2 instance <instance ID> is not in VPC. Updating load balancer configuration failed.
	EC2 instance <instance ID> is in VPC. Updating load balancer configuration failed.
	The security token included in the request is invalid. Validating load balancer configuration failed.

	Troubleshooting Auto Scaling: Capacity Limits
	We currently do not have sufficient <instance type> capacity in the Availability Zone you requested (<requested Availability Zone>)....
	<number of instances> instance(s) are already running. Launching EC2 instance failed.

