Amazon Simple Notification
Service

Developer Guide
APl Version 2010-03-31

amazon
webservices™

Amazon Simple Notification Service Developer Guide

Amazon Simple Notification Service: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon Simple Notification Service Developer Guide

Table of Contents

WAt IS AMEZON SN S ...ttt ettt e e e et et et e et e et et anas 1
Are You a First-Time Amazon Simple Notification Service USer?ccocoviiviiiiiiiiiiiniiiice 2
Beyond the getting Started SECHONiuiiii e 2
ACCESSING AMAZON SNS ...ttt ettt ettt 2
COMMON SCENAIIOS ...etetittete ettt et ettt e et ettt ettt et ettt et e e et ea e et e a et ea et enaeeees 3
FaNOUL ... e 3
Application and SYSIEM ALBIEScuuiei e 3

Push Email and TeXt MESSAGING ... cuuienititiie ettt e e e enas 3
Mobile PUSh NOHFICALONS 3

(CToT 1110 o JS] 7= (=T o [TP 4
BEfOre YOU BEGIN ...ttt e 4
CrEALE 8 TOPIC .. euettn ittt et ettt ettt ettt et e e et e et ettt ettt an e 4
SUDSCIDE t0 @ TOPIC ..ttt et ettt e 6
PUDIISN T0 8 TOPIC ... ettt e e et e e e e e e 6
Create Different Messages for Each ProtoCOloouiiiiiiiiiiii e 7

(O3 1= 1o T o PP PRI 9
USING the SDK fOF JAVA eniiie et e et e et e e e e e eanas 10
IMIBNAGING ACCESS ... etutenetnete et ettt et e ettt e et e e e et e et e e et e e et e e e e et et et e e anas 13
(@ T Q1 PRSPPI 14
When t0 USE ACCESS CONLIOIiuiieiiiti ettt e ens 14

[V O] g [o=T o PP 14
ATChIECTIUIAl OVEIVIEW ... et 16
Using the ACCESS POIICY LANQUAGEuvueniiiieie e e e e e 18
EVAIUALION LOGIC . vuetiteite ettt ettt ettt ettt e e e ea e eans 19
Example Cases for Amazon SNS ACCESS CONLIOliuuiiniiiiie e 22

HOW 10 WIHEE @ PONICY vttt ettt e e enas 27
BaSIC POICY STIUCKUIE ...ttt e e e e e 27
ElemMent DESCIIPLIONS ... cuuitiitit ittt et ettt et e e e 27
SUPPOTEA DALA TYPES . .etinitite ittt ettt et et et e e et et et et et et e e et an e e 37
Special Information for AMazon SNS POICIESouiuiiiii e 38
AMAazon SNS POlICY LIMILSiuiitiiii e 38

Valid Amazon SNS POlCY ACHONSiuiiii e 38
AMAZON SINS KBYS ..ottt ettt et et 39
Controlling User ACCESS 10 YOUI AWS ACCOUNTuvuuitititeiieit ettt et e an e 40
IAM and Amazon SNS PolIiCIieS TOGEINETuiiie e 40
AMAZON SNS ARNS ..ot teeeeeeeeeeeeeeeaeaas 43
AMAZON SNS ACHONS ..uiieii ittt 44
AMAZON SINS KBYS ..ottt et ettt et 44
Example Policies for AMazon SNS ... 45
Using Temporary Security CredentialSocuiiiiiiiiiii e 47
Monitoring Amazon SNS With CIOUAWALCKouieiii e 49
Access CloudWatch Metrics for AMAazon SNS ...t 49
Set CloudWatch Alarms for Amazon SNS MELTICScuuiuieiiiiiii e 50
AMAZON SNS MELTICS ...ttt ettt et et et et et et e et e n e e ees 51
Dimensions for Amazon Simple Notification Service MetriCscocoviiiiiiiiiiii s 51
AMazon SNS MODIIe PUSH ... 53
(@ T Q1 PRSPPI 53
PrEIEQUISITES ettt 54
Getting Started WIth ADIM 55
ADM PIErEQUISIEES ...t ittt ettt et e 55

Step 1: Create a Kindle Fire App with the ADM Service Enabledccccoviiiiiiiiiiiiinenennnn 55

Step 2: Obtain a Client ID and ClEeNnt SECIEtc.viuiiiiiiii e 56

Step 3: ObAIN AN APTKEY ...euit i 56

Step 4: Obtain @ REGISIratioN Dc..iiiiiiii e 56

Step 5: Sending a Message to a Kindle Fire app using Amazon SNS and ADM 57

APl Version 2010-03-31
iii

Amazon Simple Notification Service Developer Guide

Getting Started WIth APINS ... e e e 59
e N S o =T 1T U LS = 59
S =] o O = Lo T (@ 1S Y o o 60
Step 2: Obtain an APNS SSL CertifiCateociiuiiiiii e 60
Step 3: Obtain the APP Private KEYouiiiii e 60
Step 4: Verify the Certificate and App Private KeYcc.oiiiiiiii e 61
Step 5: Obtain @ DEVICE TOKENt e eeaas 61
Step 6: Send a Message to an iOS app using Amazon SNS and APNScooviiiiiiiinnnnn, 62
Getting Started With BaidU ..o e 64
BaidUu Prer@QUISITESttt 64
Step 1: Create a Baidu ACCOUNTt nene e 64
Step 2: Register as a Baidu DEVEIOPETouiinieiii e 66
Step 3: Create a Baidu Cloud PUSh Projectc.oiuiuiiiiiii e 69
Step 4: Download and Install the Android DEmMO APP . ..vvenieiiiee e 72
Step 5: Obtain a user Id and channel [d ... 76
Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and
B et 76
Getting Started WIth GCM ... e ettt e e e 80
LTI o =T =T U] (=P 81
Step 1: Create a Google API Project and Enable the GCM Servicecoeeiviiiviiiiniennannn, 81
Step 2: Obtain the Server APLKEY ... e 81
Step 3: Obtain a Registration 1D from GCM ..ot 82
Step 4: Send a Message to a Mobile Endpoint using GCMcoooiiiiiiiiiiiiii e 83
Getting Started WIth MPINS e e e 85
MPINS PrerEQUISIEES ...ttt et et e et e e e e et e e e e e ens 85
Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages 86
Step 2: Get a Push Notification URI from MPNS ... 86
Step 3: Send a Push Notification Message to a Windows Phone app using Amazon SNS and
P N S o e 86
Getting Started WIth WINS e et e 87
RV S o (=] €T [T LS (= 88
Step 1: Set Up Your App to Receive Push Notifications MeSsagescccovveiiviiniiiiienennne. 88
Step 2: Get a Push Notification URI fromWNS ... 88
Step 3: Get a Package Security Identifier from WNS ... 88
Step 4: Get a Secret Key from WINS ..o 88
Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS 88
Using Amazon SNS Mobile PUSH ... e 920
Register Your Mobile APp WIth AWS ... e 920
Add Device Tokens or Registration IDSc.oiiiiiiiiiii e 91
Send a Direct Message to @ Mobile DEVICEouieiiiiiii e 94
Send Messages to Mobile Devices Subscribed to a TOPICvevveiiiiiiiiiiiiiiie e 94
Send Custom Platform-Specific Payloads to Mobile DeViCesccocvviiiiiiiiiiiiiiiiinen, 95
AMABZON SNS T T ot ettt et 97
TTL Message Attributes for Push Notification Servicesoooiiiiiiiiiiiiiee 98
Precedence Order for Determining TTL ... e 98
Specifying TTL with the AWS Management CONSOIEoeiieiiiiiiii e 99
Specifying TTL With the AWS SDKS 99
AmMazon SNS MoDile PUSH APIS ... 99
Y e I =1 o £ PP 101
Sending Messages to AMazon SQS QUEUEScuuinitii e et e et e e e aeeenns 108
Step 1. Get the ARN of the queue and the tOPIC.vvuieiiii e 109
Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue 110
Step 3. Subscribe the queue to the AMazon SNS tOPICvuieiiiiii e 111
Step 4. Give users permissions to the appropriate topic and queue actionsccocoevviieienenn.. 111
Adding a policy t0 an TAM USEF OF GrOUDuiuuiiieiiiet et e e e e e aaene e 112
Adding a poliCy t0 @ tOPIC OF QUEBUEeuieeeeete e et e e e eneaen 112
S (=T o T T =] | N 113
Sending Messages to a Queue in a Different ACCOUNt ..o 114

APl Version 2010-03-31
iv

Amazon Simple Notification Service Developer Guide

Queue Owner Creates SUDSCIIPLIONiuii e 114
User Who Does Not Own the Queue Creates SUbSCHPtioNncocvveiiiiiiiiiiii e 116
Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
L 11T 0T 117
Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS
A CCOUNT L.ttt 118
Sending and Receiving SMS NOLIfICAtIONSo e e 123
Task 1: Assign a Topic Display NamME ... e 124
Task 2: Subscribe to a Topic Using the SMS ProtoColoviiiiiiiiii e 126
Task 3: PUDIISN @ MESSAQEviniiiie et e 128
Task 4: Cancel SMS SUDSCIIPHONSo e e e eaenas 130
Sending Messages to HTTP/HTTPS ENAPOINTSuniniiiiii et 132
Step 1: Make sure your endpoint is ready to process Amazon SNS mMesSSagescovvvevieeiienennennnns 133
Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topicCc.coeviiiiiiiiieinennns 136
Step 3: Confirm the SUDSCIIPLION e 137
Step 4: Set the delivery retry policy for the subscription (optional)ccooiiiiiiiiiias 137
Step 5: Give users permissions to publish to the topic (optional)coooviiiiiiiii 137
Step 6: Send messages to the HTTP/HTTPS endpointcouiiiiiiiiii e 139
Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpointsccocoviiiiiiiiininennn. 139
Applying Delivery Policies to Topics and SUDSCHPLONSoouiiiiiiii e 141
Setting the Maximum RECEIVE RALEiuiiiiiii e 142
IMmediate Retry Phase ..o e 145
Pre-Backoff PRASE ... 146
BaCKOMf PRASE 147
POSE-BaCKOT PRASE ...t 149
Certificate Authorities for HTTPS ENAPOINESouiiniiiiiii e 150
Verifying MeSSAgE SIGNATUIESttt et et et e et e et ee e e eneaaenes 163
Example Code for an Endpoint Java SErvIEt ..o 165
MESSAGE ALTIOULES ..ot e 170
Message Attribute Items and Validation ... 170
(D= 1= N 1Y o1 PP PPN 171
Reserved Message ALLHDULESt 171
Using Message Attributes with the AWS SDKS ... 172
Appendix: Message and JSON FOIMALS ...t e e es 173
HTTP/IHTTPS HEAUEIS ...ttt et et e 174
HTTP/HTTPS Subscription Confirmation JSON FOrMatcoouviiiuiiiiiiiiiiie e 175
HTTP/HTTPS Notification JSON FOIMALoiniiiiiiiiiiei e 177
HTTP/HTTPS Unsubscribe Confirmation JSON FOrmatccociiiiniiiiiiiiiene e 179
SetSubscriptionAttributes Delivery Policy JISON FOrmMatc.ouiiniiiiiiiieeee e 181
SetTopicAttributes Delivery Policy JSON FOIMALo.ieiiiiiiie e 182
Appendix: Large Payload and Raw Message DEelIVEIYcouiiiiiiiii e 183
Enabling Raw Message Delivery with the AWS Management Consoleccooveivviiiiniiininennen. 183
[0 o U] 0 =Y oL 1] (o Y 185

APl Version 2010-03-31
v

Amazon Simple Notification Service Developer Guide

What is Amazon Simple
Notification Service?

Amazon Simple Notification Service (Amazon SNS) is a web service that coordinates and manages the
delivery or sending of messages to subscribing endpoints or clients. In Amazon SNS, there are two types
of clients—publishers and subscribers—also referred to as producers and consumers. Publishers
communicate asynchronously with subscribers by producing and sending a message to a topic, which is
a logical access point and communication channel. Subscribers (i.e., web servers, email addresses,
Amazon SQS queues) consume or receive the message or notification over one of the supported protocols
(i.e., Amazon SQS, HTTP/S, email, SMS) when they are subscribed to the topic.

- s
=T HTTP/S
Publisher s
\ SNS topic j = Email
Amazon SNS
= sMs

Subscriber

When using Amazon SNS, you (as the owner) create a topic and control access to it by defining policies
that determine which publishers and subscribers can communicate with the topic. A publisher sends
messages to topics that they have created or to topics they have permission to publish to. Instead of
including a specific destination address in each message, a publisher sends a message to the topic.
Amazon SNS matches the topic to a list of subscribers who have subscribed to that topic, and delivers
the message to each of those subscribers. Each topic has a unique name that identifies the Amazon SNS
endpoint for publishers to post messages and subscribers to register for notifications. Subscribers receive
all messages published to the topics to which they subscribe, and all subscribers to a topic receive the
same messages.

APl Version 2010-03-31
1

Amazon Simple Notification Service Developer Guide
AreYou a First-Time Amazon Simple Notification Service
User?

AreYou a First-Time Amazon Simple Notification
Service User?

If you are a first-time user of Amazon SNS, we recommend that you begin by reading the following
sections:

¢ What is Amazon SNS — The rest of this section includes a video that introduces Amazon SNS and
walks you through the example presented in Getting Started with Amazon Simple Notification
Service (p. 4), and presents common use-case scenarios.

¢ Getting Started — The Getting Started with Amazon Simple Notification Service (p. 4) section walks
you through creating a topic, subscribing to it, publishing a message to it, unsubscribing from it, and
finally, deleting the topic.

Beyond the getting started section

Beyond the getting started section, you'll probably want to learn more about Amazon SNS operations.
The following sections provide detailed information about working with Amazon SNS:

¢ Managing Access to Your Amazon SNS Topics (p. 13)

You have detailed control over which endpoints a topic allows, who is able to publish to a topic, and
under what conditions. This section shows you how to control access through the use of access control
policies.

¢ Monitoring Amazon SNS with CloudWatch (p. 49)

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS topic.

¢ Sending Amazon SNS Messages to Amazon SQS Queues (p. 108)

You can use Amazon SNS to send messages to one or more Amazon SQS queues.
¢ Sending and Receiving SMS Notifications Using Amazon SNS (p. 123)

You can use Amazon Simple Notification Service (Amazon SNS) to send SMS notifications to
SMS-enabled mobile phones and smart phones.

¢ Sending Amazon SNS Messages to HTTP/HTTPS Endpoints (p. 132)

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.

Accessing Amazon SNS

You can access Amazon SNS using the AWS Management Console, the command line interface
(CLI)—http://aws.amazon.com/developertools/3688), and by writing code directly to the Amazon SNS
Query API—, see Amazon Simple Notification Service API Reference.

We also provide SDKs that enable you to access Amazon SNS from your preferred programming language.
The SDKs contain functionality that automatically takes care of tasks such as:

¢ Cryptographically signing your service requests
* Retrying requests
¢ Handling error responses

APl Version 2010-03-31
2

http://aws.amazon.com/developertools/3688
http://docs.aws.amazon.com/sns/latest/api/

Amazon Simple Notification Service Developer Guide
Common Scenarios

For a list of available SDKs, go to Tools for Amazon Web Services

Common Amazon SNS Scenarios

Fanout

The "fanout" scenario is when an Amazon SNS message is sent to a topic and then replicated and pushed
to multiple Amazon SQS queues, HTTP endpoints, or email addresses. This allows for parallel
asynchronous processing. For example, you could develop an application that sends an Amazon SNS
message to a topic whenever an order is placed for a product. Then, the Amazon SQS queues that are
subscribed to that topic would receive identical notifications for the new order. The Amazon EC2 server
instance attached to one of the queues could handle the processing or fulfillment of the order while the
other server instance could be attached to a data warehouse for analysis of all orders received.

[endpoints]

C_ 1

Fublisher |- S0S Queue EC2 Instance
—

(endpoint] SINS Topic

505 Queue ECZ2 Instance

Another way to use "fanout” is to replicate data sent to your production environment with your development
environment. Expanding upon the previous example, you could subscribe yet another queue to the same
topic for new incoming orders. Then, by attaching this new queue to your development environment, you
could continue to improve and test your application using data received from your production environment.
For more information about sending Amazon SNS messages to Amazon SQS queues, see Sending
Amazon SNS Messages to Amazon SQS Queues (p. 108). For more information about sending Amazon
SNS messages to HTTP/S endpoints, see Sending Amazon SNS Messages to HTTP/HTTPS
Endpoints (p. 132).

Application and System Alerts

Application and system alerts are notifications, triggered by predefined thresholds, sent to specified users
by SMS and/or email. For example, since many AWS services use Amazon SNS, you can receive
immediate notification when an event occurs, such as a specific change to your AWS Auto Scaling group.

Push Email and Text Messaging

Push email and text messaging are two ways to transmit messages to individuals or groups via email
and/or SMS. For example, you could use Amazon SNS to push targeted news headlines to subscribers
by email or SMS. Upon receiving the email or SMS text, interested readers could then choose to learn
more by visiting a website or launching an application. For more information about using Amazon SNS
to send SMS notifications, see Sending and Receiving SMS Notifications Using Amazon SNS (p. 123).

Mobile Push Notifications

Mobile push notifications enable you to send messages directly to mobile apps. For example, you could
use Amazon SNS for sending notifications to an app, indicating that an update is available. The notification
message can include a link to download and install the update. For more information about using Amazon
SNS to send direct notification messages to mobile endpoints, see Amazon SNS Mobile Push
Notifications (p. 53)

APl Version 2010-03-31
3

http://aws.amazon.com/tools/

Amazon Simple Notification Service Developer Guide
Before You Begin

Getting Started with Amazon
Simple Notification Service

This section contains information for you to understand Amazon SNS concepts and quickly set up and
use available tools and interfaces for creating and publishing to topics.

Topics
« Before You Begin (p. 4)
¢ Create a Topic (p. 4)
¢ Subscribe to a Topic (p. 6)
¢ Publish to a Topic (p. 6)
¢ Clean Up (p.9)
¢ Using the AWS SDK for Java with Amazon SNS (p. 10)

Before You Begin

To use Amazon SNS, you need an AWS account. If you don't already have one, you'll be prompted to
create one when you sign up for Amazon SNS.

To sign up for Amazon SNS

1. Go to http://aws.amazon.com/sns/ and click Sign Up for Amazon SNS.
2. Follow the on-screen instructions.

AWS will notify you by email when your account is active and available for you to use.

Create a Topic

Now that you're signed up for Amazon SNS, you're ready to create a topic. A topic is a communication
channel to send messages and subscribe to notifications. It provides an access point for publishers and
subscribers to communicate with each other. In this section you create a topic named MyTopic.

APl Version 2010-03-31
4

http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Create a Topic

To create a topic

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Click Create New Topic.
The Create New Topic dialog box appears.

F

Create New Topic

A topic name will be used to create a permanent unique identifier called an
Amazon Resource Mame (ARM).

Topic Name *:

Display Name:

| Cancel || Create Topic

[

3. Enter a topic name in the Topic Name field.
The examples that follow use the topic name MyTopic.

4. Click Create Topic.
The new topic appears in the Topic Details page.

Topic Details
Al Topic Actions |+ :ﬂ Publish to Topic

& MyTopic
Topic ARN: arn:aws:sns: R My Topic
Topic Owner: AWS Account ID
Region:
Display Name: DisplayNameHere

.ﬂ__! Create New Subscription t!

5. Copy the Topic ARN for the next task.

APl Version 2010-03-31
5

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Subscribe to a Topic

Subscribe to aTopic

To receive messages published to a topic, you have to subscribe an endpoint to that topic. An endpoint
is a web server, an email address, or an Amazon SQS queue that can receive notification messages from
Amazon SNS. Once you subscribe an endpoint to a topic and the subscription is confirmed, the endpoint
will receive all messages published to that topic.

In this section you subscribe an endpoint to the topic you just created in the previous section. You configure
the subscription to send the topic messages to your email account.

To subscribe to a topic

1.

In the AWS Management Console, click Subscriptions in the Navigation pane.
The Subscriptions page opens.

Click the Create Subscription button.
The Create Subscription dialog box appears.

Create Subscription

TopicARN: | |

Protocol: | HTTFS v

Endpoint: | |

(o
L=

hitps://company.com

w

Cancel

[

In the Topic ARN field, paste the topic ARN you created in the previous task, for example:
arn: aws: sns: us-west-2:111122223333: MyTopi c.

Select Email in the Protocol drop-down box.
Enter an email address you can use to receive the notification in the Endpoint field.

Important
Entourage Users: Entourage strips out the confirmation URL. Please enter an email address
you can access in a different email application.

Click Subscribe.

Go to your email application and open the message from AWS Notifications, and then click the link
to confirm your subscription.

Your web browser displays a confirmation response from Amazon SNS.

Publish to a Topic

Publishers send messages to topics. Once a new message is published, Amazon SNS attempts to deliver
that message to every endpoint that is subscribed to the topic. In this section you publish a message to
the email address you defined in the previous task.

APl Version 2010-03-31
6

Cancel | X

Subscribe

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide
Create Different Messages for Each Protocol

To publish to a topic

1. Inthe AWS Management Console, click the topic you want to publish to, under Topics in the
Navigation pane.

The Topic Details page opens.

2. Click the Publish to Topic button.
The Publish dialog box appears.

Publish Cancel [X

Topic Name : MyTopic
Subject :

Ip to 100 printable ASCII characters (optional)

Message : | E

Up to 256KE of Unicode text.

@ Lse same message body for all protocols
' UUse different message body for different protocols

Cancel || Publish Message

3. Enter a subject line for your message in the Subject field.
Enter a brief message in the Message field.

Click Publish Message.
A confirmation dialog box appears.

6. Click Close to close the confirmation dialog box.

You can now use your email application to open the message from AWS Notifications and read the
message.

Create Different Messages for Each Protocol

You can use message formatting support to customize the messages you send for each protocol. For
example, a notification that goes to both email and SMS subscribers can be tailored to each type of client.
SMS users can receive a version of the message formatted for the available 140 characters supported
by the SMS standard, while email users can receive a longer, more detailed version of the same content.

To publish to a topic with message formatting

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Click the topic you want to publish to, under My Topics in the Navigation pane.
The Topic Details page opens.

3. Click the Publish to Topic button.
The Publish dialog box appears.

APl Version 2010-03-31
7

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Create Different Messages for Each Protocol

Publish Cancel [X

Topic Name : MyTaopic
Subject :

Up to 100 printa

Message : | B

Up to 256KB of Unicode text.

@ IUse same message bady for all protocols
@ \Use different message body for different protocols

Cancel || Publish Message

Select Use different message body for different protocols.

Publish Cancal | X

Topic Name : MyTopic

Subject :
Up to 100 printable ASCII characters (optional)

Message © { <
"default™: "<enter your message here>",
"email™: "<enter your message here>",
"zgs": "<enter your message here>",
"sms": "<enter your message here>",
"http": "<enter your message here>",
"https": "<enter your message here>"

Up to 256KE of Unicode text.

© Use same message bady for all protocols
@ Use different message body for different protocols

Cancel || Publish Message

Enter a subject line for your message in the Subject field.
Enter a brief message in the Message field for each protocol of interest.

In the following example, messages are specified for the default, email, and sms protocols. Do not
delete any protocols from the list.

APl Version 2010-03-31
8

Amazon Simple Notification Service Developer Guide

Clean Up
Publish Cancel %
Topic Name : MyTaopic
Subject :
Up to 100 printable ASCII characters (optional)

Message : | -
"default™: "<enter your message here>" |
"email": "<enter your message here>",
"ggz™: "<enter your message here>",
|"sms™: "<enter your message here>", |
"http": "<enter your message here>",
"https": "<enter your message here>"

Up to 266KE of Unicode text.

) Use same message bady for all protocols
@ 1Use different message body for different protocols

Cancel || Publish Message

7. Click Publish Message.
A confirmation dialog box appears.

8. Click Close to close the confirmation dialog box.

Clean Up

You have created a topic, subscribed to it, and published a message to the topic. Now you clean up your
environment by unsubscribing from the topic and then deleting the topic.

To unsubscribe from a topic
1. Inthe AWS Management Console, click Subscriptions in the Navigation pane.
The Subscriptions page opens.

2. Click the checkbox next to your topic in the subscription list. This will be the only listing on the page,
unless you created more than one subscription.

3. Click the Delete Subscriptions button.
The Delete Selected Subscriptions confirmation dialog box appears.

=

Delete Selected Subscriptions Cancel | %

Are you sure you want to delete the selected subscriptions?

Cancel Yes, Delete

k -

4. Click OK.

APl Version 2010-03-31
9

https://console.aws.amazon.com/sns/home

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

To delete a topic

1. Click the topic you want to delete, under Topics in the Navigation pane.
The Topic Details page opens.

2. Click the All Topic Actions drop-down list and select Delete Topic.
The Delete Topic confirmation dialog box appears.

r &l

Delete Topic Cancal | X

Are you sure you want to delete the following topic and all its associated
subscriptions?

MyTopic

Cancel Yes, Delete

ke 4

3. Click Yes, Delete Topic.
When you delete a topic, you also delete all subscriptions to that topic.

Using the AWS SDK for Java with Amazon SNS

The SDK for Java provides a class named AmazonSNSClient that you can use to interact with Amazon
SNS. For information about downloading the AWS SDK for Java, go to AWS SDK for Java.

The AmazonSNSC i ent class defines methods that map to underlying Amazon SNS Query API actions.
(These actions are described in the Amazon SNS API Reference). When you call a method, you must
create a corresponding request object and response object. The request object includes information that
you must pass with the actual request. The response object includes information returned from Amazon
SNS in response to the request.

For example, the AmazonSNSO i ent class provides the cr eat eTopi ¢ method to create a topic to which
notifications can be published. This method maps to the underlying CreateTopic API action. You create
a CreateTopicRequest object to pass information with the cr eat eTopi ¢ method.

The following import statements are used with the provided java samples.

i mport com anmzonaws. servi ces. sns. AnazonSNSC i ent ;

i mport com amazonaws. aut h. Cl asspat hProperti esFi |l eCredenti al sProvi der;
i mport com anmzonaws. r egi ons. Regi on;

i mport com amazonaws. r egi ons. Regi ons;

i mport com amazonaws. servi ces. sns. nodel . Cr eat eTopi cRequest ;

i mport com anmzonaws. servi ces. sns. nodel . Cr eat eTopi cResul t;

i mport com anmazonaws. servi ces. sns. nodel . Subscri beRequest ;

i mport com anmzonaws. servi ces. sns. nodel . Publ i shRequest ;

i mport com anazonaws. servi ces. sns. nodel . Publ i shResul t ;

i mport com amazonaws. servi ces. sns. nodel . Del et eTopi cRequest ;

The following example shows how to create a new Amazon SNS client, set the Amazon SNS endpoint
to use, and then create a new topic.

APl Version 2010-03-31
10

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/AmazonSNSClient.html
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/sns/latest/api/API_Operations.html
http://docs.aws.amazon.com/sns/latest/api/API_CreateTopic.html
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/sns/model/CreateTopicRequest.html

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

Note

In some of the following examples, the get CachedResponseMet adat a method is used to show
how to programmatically retrieve the request ID for a previously executed successful Amazon
SNS request. This is typically used for debugging issues and is helpful when requesting assistance
from Amazon Web Services.

Create a Topic

/lcreate a new SNS client and set endpoint

AmazonSNSd i ent snsd i ent = new AnazonSNSd i ent (new Cl asspat hPropertiesFil eCre
denti al sProvider());

snsd i ent . set Regi on(Regi on. get Regi on(Regi ons. US_EAST _1));

/lcreate a new SNS topic

Creat eTopi cRequest creat eTopi cRequest = new Creat eTopi cRequest (" MyNewTopi c");
Creat eTopi cResult createTopi cResult = snsdient.createTopi c(createTopi cRequest);
//print Topi cArn

Systemout. println(createTopi cResult);

/1 get request id for CreateTopi cRequest from SNS net adat a

System out. println("CreateTopi cRequest - " + snsdient.get CachedResponse

Met adat a(cr eat eTopi cRequest));

When you run this example, the following is displayed in the console output window of your IDE, such as
Eclipse:

{Topi cArn: arn: aws: sns: us-east-1: 123456789012: MyNewTopi c}
Creat eTopi cRequest - {AWS_REQUEST_I| D=93f 7f c90- f 131- 5ca3- ab18- b741f ef 918b5}

The TopicArn is assigned to a string variable to use in additional operations.

String topi cArn = "arn: aws: sns: us- east - 1: 123456789012: MyNewTopi c";

The following examples show how to subscribe to, publish to, and delete a topic.

Subscribe to a Topic

//subscribe to an SNS topic

Subscri beRequest subRequest = new Subscri beRequest (topi cArn, "enmail",
"nanme@xanpl e. cont') ;

snsC i ent. subscri be(subRequest);

/1 get request id for SubscribeRequest from SNS net adat a

System out. println("Subscri beRequest - " + snsClient.getCachedResponse
Met adat a(subRequest));

System out . printl n("Check your email and confirm subscription.");

When you run this example, the following is displayed in the console output window of your IDE:

Subscri beRequest - {AWS_REQUEST_| D=9b7f f 59a-f 917- 533a- a6bd- be4bf 6df Oacf }
Check your emmil and confirm subscription.

Publish to a Topic

APl Version 2010-03-31
11

Amazon Simple Notification Service Developer Guide
Using the SDK for Java

//publish to an SNS topic

String msg = "My text published to SNS topic with email endpoint”;
Publ i shRequest publ i shRequest = new Publ i shRequest (topi cArn, nsg);
Publ i shResult publishResult = snsCient.publish(publishRequest);
[/ print Messageld of nessage published to SNS topic

Systemout. println("Mssageld - " + publishResult.getMessageld());

When you run this example, the following is displayed in the console output window of your IDE:

Messagel d - 9b888f 80- 15f 7- 5¢30- 81a2- c4511a3f 5229

Delete a Topic

//delete an SNS topic

Del et eTopi cRequest del et eTopi cRequest = new Del et eTopi cRequest (t opi CArn);
snsC i ent. del et eTopi c(del et eTopi cRequest);

/1 get request id for Del eteTopi cRequest from SNS net adat a

Systemout. println("Del et eTopi cRequest - " + snsdient. get CachedResponse
Met adat a(del et eTopi cRequest));

When you run this example, the following is displayed in the console output window of your IDE:

Del et eTopi cRequest - {AWS_REQUEST | D=067a4980- 4e93- 5bf c- b88c- 0251415bc852}

APl Version 2010-03-31
12

Amazon Simple Notification Service Developer Guide

Managing Access to Your Amazon
SNS Topics

Topics
e Overview (p. 14)
¢ How to Write a Policy (p. 27)
¢ Special Information for Amazon SNS Policies (p. 38)
¢ Controlling User Access to Your AWS Account (p. 40)

Amazon SNS supports other protocols beside email. You can use HTTP, HTTPS, and Amazon SQS
gueues. You have detailed control over which endpoints a topic allows, who is able to publish to a topic,
and under what conditions. This appendix shows you how to control through the use of access control
policies.

The main portion of this section includes basic concepts you need to understand, how to write a policy,
and the logic Amazon Web Services (AWS) uses to evaluate policies and decide whether to give the
requester access to the resource. Although most of the information in this section is service-agnostic,
there are some Amazon SNS-specific details you need to know. For more information, see Special
Information for Amazon SNS Policies (p. 38).

APl Version 2010-03-31
13

Amazon Simple Notification Service Developer Guide
Overview

Overview

Topics
¢ When to Use Access Control (p. 14)
e Key Concepts (p. 14)
¢ Architectural Overview (p. 16)
¢ Using the Access Policy Language (p. 18)
¢ Evaluation Logic (p. 19)
e Example Cases for Amazon SNS Access Control (p. 22)

This section describes basic concepts you need to understand to use the access policy language to write
policies. It also describes the general process for how access control works with the access policy
language, and how policies are evaluated.

When to Use Access Control

You have a great deal of flexibility in how you grant or deny access to a resource. However, the typical
use cases are fairly simple:

¢ You want to grant another AWS account a particular type of topic action (e.g., Publish). For more
information, see Allowing AWS account Access to a Topic (p. 23).

« You want to limit subscriptions to your topic to only the HTTPS protocol. For more information, see
Limiting Subscriptions to HTTPS (p. 23).

¢ You want to allow Amazon SNS to publish messages to your Amazon SQS queue. For more information,
see Publishing to an Amazon SQS Queue (p. 24).

Key Concepts

The following sections describe the concepts you need to understand to use the access policy language.
They're presented in a logical order, with the first terms you need to know at the top of the list.

Permission

A permission is the concept of allowing or disallowing some kind of access to a particular resource.
Permissions essentially follow this form: "A is/isn't allowed to do B to C where D applies." For example,
Jane (A) has permission to publish (B) to TopicA (C) as long as she uses the HTTP protocol (D). Whenever
Jane publishes to TopicA, the service checks to see if she has permission and if the request satisfies the
conditions set forth in the permission.

Statement

A statement is the formal description of a single permission, written in the access policy language. You
always write a statement as part of a broader container document known as a policy (see the next concept).

Policy

A policy is a document (written in the access policy language) that acts as a container for one or more
statements. For example, a policy could have two statements in it: one that states that Jane can subscribe
using the email protocol, and another that states that Bob cannot publish to TopicA. As shown in the
following figure, an equivalent scenario would be to have two policies, one that states that Jane can
subscribe using the email protocol, and another that states that Bob cannot publish to TopicA.

APl Version 2010-03-31
14

Amazon Simple Notification Service Developer Guide
Key Concepts

Policy A Policy A

Statement 1 Statement 1
is equivalent to

Statement 2 Policy B

Statement 2

Issuer

The issuer is the person who writes a policy to grant permissions for a resource. The issuer (by definition)
is always the resource owner. AWS does not permit AWS service users to create policies for resources
they don't own. If John is the resource owner, AWS authenticates John's identity when he submits the
policy he's written to grant permissions for that resource.

Principal

The principal is the person or persons who receive the permission in the policy. The principal is A in the
statement "A has permission to do B to C where D applies.” In a policy, you can set the principal to
"anyone” (i.e., you can specify a wildcard to represent all people). You might do this, for example, if you
don't want to restrict access based on the actual identity of the requester, but instead on some other
identifying characteristic such as the requester's IP address.

Action

The action is the activity the principal has permission to perform. The action is B in the statement "A has
permission to do B to C where D applies." Typically, the action is just the operation in the request to AWS.
For example, Jane sends a request to Amazon SNS with Act i on=Subscr i be.You can specify one or
multiple actions in a policy.

Resource

The resource is the object the principal is requesting access to. The resource is C in the statement "A
has permission to do B to C where D applies."

Conditions and Keys

The conditions are any restrictions or details about the permission. The condition is D in the statement
"A has permission to do B to C where D applies." The part of the policy that specifies the conditions can
be the most detailed and complex of all the parts. Typical conditions are related to:

« Date and time (e.g., the request must arrive before a specific day)
 IP address (e.g., the requester's IP address must be part of a particular CIDR range)

A key is the specific characteristic that is the basis for access restriction. For example, the date and time
of request.

You use both conditions and keys together to express the restriction. The easiest way to understand how
you actually implement a restriction is with an example: If you want to restrict access to before May 30,

APl Version 2010-03-31
15

Amazon Simple Notification Service Developer Guide
Architectural Overview

2010, you use the condition called Dat eLessThan. You use the key called aws: Curr ent Ti ne and set
it to the value 2010- 05- 30T00: 00: 00Z. AWS defines the conditions and keys you can use. The AWS
service itself (e.g., Amazon SQS or Amazon SNS) might also define service-specific keys. For more
information about conditions, see Condition (p. 31). For more information about the available keys, see
Available Keys (p. 33).

Requester

The requester is the person who sends a request to an AWS service and asks for access to a particular
resource. The requester sends a request to AWS that essentially says: "Will you allow me to do Bto C
where D applies?”

Evaluation

Evaluation is the process the AWS service uses to determine if an incoming request should be denied
or allowed based on the applicable policies. For information about the evaluation logic, see Evaluation
Logic (p. 19).

Effect

The effect is the result that you want a policy statement to return at evaluation time. You specify this value
when you write the statements in a policy, and the possible values are deny and allow.

For example, you could write a policy that has a statement that denies all requests that come from
Antarctica (effect=deny given that the request uses an IP address allocated to Antarctica). Alternately,
you could write a policy that has a statement that allows all requests that don't come from Antarctica
(effect=allow, given that the request doesn't come from Antarctica). Although the two statements sound
like they do the same thing, in the access policy language logic, they are different. For more information,
see Evaluation Logic (p. 19).

Although there are only two possible values you can specify for the effect (allow or deny), there can be
three different results at policy evaluation time: default deny, allow, or explicit deny. For more information,
see the following concepts and Evaluation Logic (p. 19).

Default Deny

A default deny is the default result from a policy in the absence of an allow or explicit deny.

Allow
An allow results from a statement that has effect=allow, assuming any stated conditions are met. Example:

Allow requests if they are received before 1:00 p.m. on April 30, 2010. An allow overrides all default
denies, but never an explicit deny.

Explicit Deny
An explicit deny results from a statement that has effect=deny, assuming any stated conditions are met.

Example: Deny all requests if they are from Antarctica. Any request that comes from Antarctica will always
be denied no matter what any other policies might allow.

Architectural Overview

The following figure and table describe the main components that interact to provide access control for
your resources.

APl Version 2010-03-31
16

Amazon Simple Notification Service Developer Guide
Architectural Overview

AWS Service
You (1]
Resource A Resource B Resaurce C
9 Your policy for Your policy for Your policy for
Resource A Resource B Resaurce C
Requester
Requester
Incoming | ™
mquestf - o Evaluation Code
Requester —
Requester

1 You, the resource owner.
2 Your resources (contained within the AWS service; e.g., Amazon SQS queues).

3 Your policies.

Typically you have one policy per resource, although you could have multiple. The AWS service
itself provides an API you use to upload and manage your policies. For information about the
content of the policies, see How to Write a Policy (p. 27).

4 Requesters and their incoming requests to the AWS service.

5 The access policy language evaluation code.
This is the set of code within the AWS service that evaluates incoming requests against the
applicable policies and determines whether the requester is allowed access to the resource. For
information about how the service makes the decision, see Evaluation Logic (p. 19).

APl Version 2010-03-31
17

Amazon Simple Notification Service Developer Guide
Using the Access Policy Language

Using the Access Policy Language

The following figure and table describe the general process of how access control works with the access
policy language.

You write a policy You add the policy Someone requests
— - to the system __p to use your resource

1 2 3
The AWS service The AWS service
determines the v aiustes the The AWS service
applicable policies —# policies returns the result
4 5 6

Process for Using Access Control with the Access Policy Language

1 You write a policy for your resource.

For example, you write a policy to specify permissions for your Amazon SNS topics. For more
information, see How to Write a Policy (p. 27).

2 You upload your policy to AWS.

The AWS service itself provides an API you use to upload your policies. For example, you use
the Amazon SNS Set Topi cAtt ri but es action to upload a policy for a particular Amazon SNS
topic.

3 Someone sends a request to use your resource.
For example, a user sends a request to Amazon SNS to use one of your topics.

4 The AWS service determines which policies are applicable to the request.

For example, Amazon SNS looks at all the available Amazon SNS policies and determines which
ones are applicable (based on what the resource is, who the requester is, etc.).

5 The AWS service evaluates the policies.

For example, Amazon SNS evaluates the policies and determines if the requester is allowed to
use your topic or not. For information about the decision logic, see Evaluation Logic (p. 19).

6 The AWS service either denies the request or continues to process it.

For example, based on the policy evaluation result, the service either returns an "Access denied"”
error to the requester or continues to process the request.

Related Topics

¢ Architectural Overview (p. 16)

APl Version 2010-03-31
18

Amazon Simple Notification Service Developer Guide
Evaluation Logic

Evaluation Logic

The goal at evaluation time is to decide whether a given request should be allowed or denied. The
evaluation logic follows several basic rules:

« By default, all requests to use your resource coming from anyone but you are denied
¢ An allow overrides any default denies

« An explicit deny overrides any allows

¢ The order in which the policies are evaluated is not important

The following flow chart and discussion describe in more detail how the decision is made.

Dacision

o starts at

“Deny”
(default deny)

l

Evaluate all
6 applicable

policies

Is there an Final decision = "Deny"
o . —Yes—m -
explicit deny? (explicit deny)

Q Is there an allow? L Final decision = “Allow”
No
6 Final decision =
‘Deny”
{default deny)

1 The decision starts with a default deny.

APl Version 2010-03-31
19

Amazon Simple Notification Service Developer Guide
Evaluation Logic

The enforcement code then evaluates all the policies that are applicable to the request (based
on the resource, principal, action, and conditions).

The order in which the enforcement code evaluates the policies is not important.

In all those policies, the enforcement code looks for an explicit deny instruction that would apply
to the request.

If it finds even one, the enforcement code returns a decision of "deny" and the process is finished
(this is an explicit deny; for more information, see Explicit Deny (p. 16)).

If no explicit deny is found, the enforcement code looks for any "allow" instructions that would
apply to the request.

If it finds even one, the enforcement code returns a decision of "allow" and the process is done
(the service continues to process the request).

If no allow is found, then the final decision is "deny" (because there was no explicit deny or allow,
this is considered a default deny (for more information, see Default Deny (p. 16)).

The Interplay of Explicit and Default Denials

A policy results in a default deny if it doesn't directly apply to the request. For example, if a user requests
to use Amazon SNS, but the policy on the topic doesn't refer to the user's AWS account at all, then that
policy results in a default deny.

A policy also results in a default deny if a condition in a statement isn't met. If all conditions in the statement
are met, then the policy results in either an allow or an explicit deny, based on the value of the Effect
element in the policy. Policies don't specify what to do if a condition isn't met, and so the default result in
that case is a default deny.

For example, let's say you want to prevent requests coming in from Antarctica. You write a policy (called
Policy A1) that allows a request only if it doesn't come from Antarctica. The following diagram illustrates
the policy.

Policy A1

Effect = Allow

Condition:
if request is NOT from Antarctica

If someone sends a request from the U.S., the condition is met (the request is not from Antarctica).
Therefore, the request is allowed. But, if someone sends a request from Antarctica, the condition isn't
met, and the policy's result is therefore a default deny.

You could turn the result into an explicit deny by rewriting the policy (named Policy A2) as in the following
diagram. Here, the policy explicitly denies a request if it comes from Antarctica.

APl Version 2010-03-31
20

Amazon Simple Notification Service Developer Guide
Evaluation Logic

Policy A2
Effect = Deny

Condition:
if request is from Antarctica

If someone sends a request from Antarctica, the condition is met, and the policy's result is therefore an
explicit deny.

The distinction between a default deny and an explicit deny is important because a default deny can be
overridden by an allow, but an explicit deny can't. For example, let's say there's another policy that allows
requests if they arrive on June 1, 2010. How does this policy affect the overall outcome when coupled
with the policy restricting access from Antarctica? We'll compare the overall outcome when coupling the
date-based policy (we'll call Policy B) with the preceding policies A1 and A2. Scenario 1 couples Policy
Al with Policy B, and Scenario 2 couples Policy A2 with Policy B. The following figure and discussion
show the results when a request comes in from Antarctica on June 1, 2010.

APl Version 2010-03-31
21

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

Scenario 1

Reqguest arrives from Antarctica on

Scenario 2

Request amives from Antarctica on

June 1, 2010 June 1, 2010
l Policy Evaluation l Policy Evaluation
Policy A1 Policy A2
Effect = Allow Effect = Deny
Condition; Condition;

if request is NOT from Antarctica

if request is from Antarctica

OR OR
Policy B Policy B
Effect = Allow Effect = Allow
Condition: Condition:

if request comes in on June 1, 2010 if request comes in on June 1, 2010

I Result

Policy A2 Result: Explicit Deny
OR Policy B Result: Allow

I Result

Policy A1 Result: Default Deny
OR Policy B Result: Allow

Final Result: Allow Final Result: Deny

In Scenario 1, Policy Al returns a default deny, as described earlier in this section. Policy B returns an
allow because the policy (by definition) allows requests that come in on June 1, 2010. The allow from
Policy B overrides the default deny from Policy A1, and the request is therefore allowed.

In Scenario 2, Policy B2 returns an explicit deny, as described earlier in this section. Again, Policy B
returns an allow. The explicit deny from Policy A2 overrides the allow from Policy B, and the request is
therefore denied.

Example Cases for Amazon SNS Access Control

Topics
¢ Allowing AWS account Access to a Topic (p. 23)
¢ Limiting Subscriptions to HTTPS (p. 23)

APl Version 2010-03-31
22

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

¢ Publishing to an Amazon SQS Queue (p. 24)
¢ Allowing Any AWS Resource to Publish to a Topic (p. 25)
¢ Allowing an Amazon S3 Bucket to Publish to a Topic (p. 25)

This section gives a few examples of typical use cases for access control.

Allowing AWS account Access to aTopic

Let's say you have a topic in the Amazon SNS system. In the simplest case, you want to allow one or
more AWS accounts access to a specific topic action (e.g., Publish).

You can do this by using the Amazon SNS API action AddPer mi ssi on. It takes a topic, a list of AWS
account IDs, a list of actions, and a label, and automatically creates a new statement in the topic's access
control policy. In this case, you don't write a policy yourself, because Amazon SNS automatically generates
the new policy statement for you. You can remove the policy statement later by calling RenovePer nmi ssi on
with its label.

For example, if you called AddPer i ssi on on the topic arn:aws:sns:us-east-1:444455556666:MyTopic,
with AWS account ID 1111-2222-3333, the Publ i sh action, and the label gi ve- 1234- publ i sh, Amazon
SNS would generate and insert the following access control policy statement:

{
"Version":"2012-10- 17",
"1d":" AWBAccount Topi cAccess",
"Statement" : [
{
"Sid":"give-1234-publish",
"Effect":"All ow',
"Principal" : {
"AWS': "111122223333"
b
"Action":["sns: Publish"],
"Resource": "arn:aws:sns: us-east-1: 444455556666: MyTopi c"
}
]
}

Once this statement is added, the user with AWS account 1111-2222-3333 can publish messages to the
topic.

Limiting Subscriptions to HTTPS

In this use case, you want to allow subscription requests to your topic only by HTTPS, for security.

You need to know how to write your own policy for the topic because the Amazon SNS AddPer ni ssi on
action doesn't let you specify a protocol restriction when granting someone access to your topic. In this
case, you would write your own policy, and then use the Set Topi cAt t ri but es action to set the topic's
Pol i cy attribute to your new policy.

The following example of a full policy gives the AWS account ID 1111-2222-3333 the ability to subscribe
to notifications from a topic.

Note
Subscri be and Recei ve are separate actions in the policy. You can apply different conditions
to the subscriber and the message recipient.

APl Version 2010-03-31
23

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

"Version":"2012-10-17",
"1d":"SomePolicyld",
"Statenent" : [
{
"Sid":"Statenentl",
"Effect":"A | ow',
"Principal" : {
"AWS': "111122223333"
8
"Action":["sns: Subscribe"],
"Resource": "arn:aws:sns: us-east-1:444455556666: MyTopi c",
"Condition" : {
"StringEqual s" : {
"sns: Protocol ":"https"

}

Publishing to an Amazon SQS Queue

In this use case, you want to publish messages from your topic to your Amazon SQS queue. Like Amazon
SNS, Amazon SQS uses Amazon's access control policy language. To allow Amazon SNS to send
messages, you'll need to use the Amazon SQS action Set QueueAt t ri but es to set a policy on the
queue.

Again, you'll need to know how to write your own policy because the Amazon SQS AddPer m ssi on
action doesn't create policy statements with conditions.

Note that the example presented below is an Amazon SQS policy (controlling access to your queue), not
an Amazon SNS policy (controlling access to your topic). The actions are Amazon SQS actions, and the
resource is the Amazon Resource Name (ARN) of the queue. You can determine the queue's ARN by
retrieving the queue's QueueAr n attribute with the Get QueueAt t ri but es action.

{
"Version":"2012-10-17",
"l1d":"MyQueuePol i cy",
"Statenment” : [
{

"Sid":"A | ow SNS- SendMessage”,

"Effect":"All ow',

"Principal" : {

"AWE TR
1

"Action":["sqgs: SendMessage"],

"Resource": "arn:aws:sqQs: us-east-1:444455556666: MyQueue",

"Condition" : {

"ArnEqual s" : {
"aws: Sour ceArn":"arn:aws: sns: us-east - 1: 444455556666: My Topi c"
}
}
}
]
}

APl Version 2010-03-31
24

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

This policy uses the aws: Sour ceAr n condition to restrict access to the queue based on the source of
the message being sent to the queue. You can use this type of policy to allow Amazon SNS to send
messages to your queue only if the messages are coming from one of your own topics. In this case, you
specify a particular one of your topics, whose ARN is arn:aws:sns:us-east-1:444455556666:MyTopic.

The preceding policy is an example of the Amazon SQS policy you could write and add to a specific
gueue. It would grant Amazon SNS and other AWS products access. Amazon SNS gives a default policy
to all newly created topics. The default policy gives all other AWS products access to your topic. This
default policy uses an aws: Sour ceAr n condition to ensure that AWS products access your topic only
on behalf of AWS resources you own.

Allowing Any AWS Resource to Publish to aTopic

In this case, you want to configure a topic's policy so that another AWS account's resource (e.g., Amazon
S3 bucket, Amazon EC2 instance, or Amazon SQS queue) can publish to your topic. This example
assumes that you write your own policy and then use the Set Topi cAt t ri but es action to set the topic's
Pol i cy attribute to your new policy.

In the following example statement, the topic owner in these policies is 1111-2222-3333 and the AWS
resource owner is 4444-5555-6666. The example gives the AWS account ID 4444-5555-6666 the ability
to publish to My-Topic from any AWS resource owned by the account.

{
"Version":"2012-10-17",
"ld": " MyAWSPol i ey,
"Statenent” : [
{
"Sid': "My-statenent-id",
"Effect": "Al ow',
"Principal" : { "AWS": "*" }|
"Action": "sns:Publish",
"Resource": "arn:aws:sns:us-east-1:111122223333: My- Topi c",
"Condition": {
"StringEqual s": {
" AWE: Sour ceOwner ": " 444455556666"
}
}
}
]
}

Allowing an Amazon S3 Bucket to Publish to a Topic

In this case, you want to configure a topic's policy so that another AWS account's Amazon S3 bucket can
publish to your topic. For more information about publishing notifications from Amazon S3, go to Setting
Up Notifications of Bucket Events.

This example assumes that you write your own policy and then use the Set Topi cAt tri but es action
to set the topic's Pol i cy attribute to your new policy.

The following example statement uses the Ar nLi ke condition to make sure the ARN of the resource
making the request (the AW5: Sour ceARN) is an Amazon S3 ARN. You could use a similar condition to
restrict the permission to a set of Amazon S3 buckets, or even to a specific bucket. In this example, the
topic owner is 1111-2222-3333 and the Amazon S3 owner is 4444-5555-6666. The example states that
any Amazon S3 bucket owned by 4444-5555-6666 is allowed to publish to My-Topic.

APl Version 2010-03-31
25

http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html

Amazon Simple Notification Service Developer Guide
Example Cases for Amazon SNS Access Control

"Version":"2012-10-17",
“1d": " MyAWSPol i cy",
"Statenment" : [
{
"Sid': "My-statenent-id",
"Effect": "Alow',
"Principal" : { "AWS": "*" },
"Action": "sns:Publish",
"Resource": "arn:aws:sns:us-east-1:111122223333: My- Topi c",
"Condition": {
"StringEqual s": { "AWS: SourceOnner": " 444455556666" }
"ArnLike": { "AWS: SourceArn": "arn:aws:s3:*:*:*" }

APl Version 2010-03-31
26

Amazon Simple Notification Service Developer Guide
How to Write a Policy

How to Write a Policy

Topics
¢ Basic Policy Structure (p. 27)
¢ Element Descriptions (p. 27)
¢ Supported Data Types (p. 37)

This section describes how to write policies and gives reference information about each policy element.

Basic Policy Structure

Each policy is a JSON document. As illustrated in the following figure, a policy includes:

¢ Optional policy-wide information (at the top of the document)
¢ One or more individual statements

Each statement includes the core information about a single permission. If a policy includes multiple
statements, we apply a logical OR across the statements at evaluation time. If multiple policies are
applicable to a request, we apply a logical OR across the policies at evaluation time.

Optional top-level elements

Statement

Statement

Statement
Sid
Effect
Principal
Action
Resource

Condition Block

The information in a statement is contained within a series of elements. For information about these
elements, see Element Descriptions (p. 27).

Element Descriptions

Topics
¢ \ersion (p. 28)

APl Version 2010-03-31
27

Amazon Simple Notification Service Developer Guide
Element Descriptions

e Id (p. 28)

e Statement (p. 29)
¢ Sid (p. 29)

o Effect (p. 29)

¢ Principal (p. 29)

¢ NotPrincipal (p. 29)
¢ Action (p. 30)

¢ NotAction (p. 30)

¢ Resource (p. 30)

* NotResource (p. 30)
¢ Condition (p. 31)

This section describes the elements you can use in a policy and its statements. The elements are listed
here in the general order you use them in a policy. The | d, Ver si on, and St at enent are top-level policy
elements; the rest are statement-level elements. JSON examples are provided.

All elements are optional for the purposes of parsing the policy document itself. The order of the elements
doesn't matter (e.g., the Resour ce element can come before the Act i on element). You're not required
to specify any Conditions in the policy.

Version

The Ver si on element specifies the access policy language version. The only allowed values are these:

¢ 2012-10- 17.This is the current version of the policy language, and you should use this version number
for all policies.

e 2008- 10- 17.This was an earlier version of the policy language. You might see this version on existing
policies. Do not use this version for any new policies or any existing policies that you are updating.

If you do not include a Ver si on element, the value defaults to 2008- 10- 17. However, it is a good practice
to always include a Ver si on element and set it to 2012- 10- 17.

Note

If your policy includes policy variables, you must include a Ver si on element and set it to
2012- 10- 17. If you don't include a Ver si on element set to 2012- 10- 17, variables such as
${ aws: user nane} won't be recognized as variables and will instead be treated as literal strings
in the policy.

"Version":"2012-10- 17"

Id

The | d is an optional identifier for the policy. We recommend you use a UUID for the value, or incorporate
a UUID as part of the ID to ensure uniqueness.

Important

The AWS service (e.g., Amazon SNS) implementing the access policy language might require
this element and have uniqueness requirements for it. For service-specific information about
writing policies, see Special Information for Amazon SNS Policies (p. 38).

"1d":"cd3ad3d9-2776- 4ef 1- a904- 4c229d1642ee"

APl Version 2010-03-31
28

Amazon Simple Notification Service Developer Guide
Element Descriptions

Statement

The St at enment is the main element for a statement. It can include multiple elements (see the subsequent
sections in this guide).

The St at ement element contains an array of individual statements. Each individual statement is a distinct
JSON block enclosed in curly brackets { }.

"Statenent":[{...},{...}.{...}]

Sid

The Si d (statement ID) is an optional identifier you provide for the policy statement. Essentially it is just
a sub-ID of the policy document's ID.

Important

The AWS service (e.g., Amazon SNS) implementing the access policy language might require
this element and have uniqueness requirements for it. For service-specific information about
writing policies, see Special Information for Amazon SNS Policies (p. 38).

"Sid" o "1"

Effect

The Ef f ect is a required element that indicates whether you want the statement to result in an allow or
an explicit deny (for more information, see Explicit Deny (p. 16)).

Valid values for Ef f ect are Al | owand Deny.

"Effect":"Al |l ow'

Principal

The Pri nci pal is the person or persons who receive or are denied permission according to the policy.
You must specify the principal by using the principal's AWS account ID (e.g., 1234-5678-9012, with or
without the hyphens). You can specify multiple principals, or a wildcard (*) to indicate all possible users.
You can view your account ID by logging in to your AWS account at http://aws.amazon.com and clicking
Account Activity.

In JSON, you use " AWS" : as a prefix for the principal's AWS account ID. In the following example, two
principals are included in the statement.

"Principal": {
"AWB":["123456789012", "AWS":"999999999999"]}

NotPrincipal

The Not Pri nci pal element lets you specify an exception to a list of principals. For example, you can
use this to prevent all AWS accounts except a specific account from accessing a resource. Conversely,
you can deny access to all principals except the one named in the Not Pri nci pal element. As with

Pri nci pal , you specify the user or account that should be allowed or denied permission; the difference
is that Not Pri nci pal translates to everyone except that person or account.

APl Version 2010-03-31
29

http://aws.amazon.com

Amazon Simple Notification Service Developer Guide
Element Descriptions

In the following example, all users are denied access to a resource except for the user named Bob in the
AWS account 123456789012.

"Effect": "Deny",
"Not Princi pal ": {
"AWS":"arn:aws:iam:123456789012: user/ Bob"}

Action

The Act i on is the specific type or types of access allowed or denied (for example, read or write). You
can specify multiple values for this element. The values are free-form but must match values the AWS
service expects (for more information, see Special Information for Amazon SNS Policies (p. 38)). You

can use a wildcard (*) to give the principal access to all the actions the specific AWS service lets you

share with other developers.

"Action":["sns: Publish","sns: Subscribe"]

The prefix and the action name are case insensitive. For example, sns: Subscri be is equivalent to
SNS: subscri be.

NotAction

The Not Act i on element matches everything except the specified action. This is useful if you want to
make an exception to a list of actions being allowed or denied. The example below matches any action,
except Publ i sh.

"Not Action":"sns: Publish"

Resource

The Resour ce is the object or objects the policy covers. You specify the resource using the following
Amazon Resource Name (ARN) format.

arn: aws: <vendor >: <r egi on>: <nanmespace>: <rel ati ve-i d>

Where:

¢ vendor identifies the AWS product (e.g., Amazon SNS).

¢ regi on is the region the resource resides in (e.g., us-east-1), if any.

¢ nanmespace is the AWS account ID with no hyphens (e.g., 123456789012).
e rel ative-id isthe portion that identifies the specific resource.

NotResource

The Not Resour ce element is useful if you want to make an exception to a list of resources. You could
use this, for example, if you want your users to be able to access a specific Amazon SNS topic belonging
to the AWS account. If the AWS account were to create a new topic for the company, an admin wouldn't
have to update the policy with the new topic's name in order to prevent users from being able to use the
topic. By default, the users wouldn't be able to use it.

APl Version 2010-03-31
30

Amazon Simple Notification Service Developer Guide
Element Descriptions

The following example refers to all resources other than your company's topic called my_corporate_topic.
You would use this in a policy with " Ef f ect " : " Deny" to keep users from accessing any queue besides
my_corporate_topic.

"Not Resour ce": "arn: aws: sgs: *: 123456789012: ny_cor por at e_t opi c"

Condition
This section describes the Condi t i on element and the information you can use inside the element.
The Condition Block

The Condi ti on element is the most complex part of the policy statement. We refer to it as the condition
block, because although it has a single Condi t i on element, it can contain multiple conditions, and each
condition can contain multiple key-value pairs. The following figure illustrates this. Unless otherwise
specified for a particular key, all keys can have multiple values.

Condition Block

Condition 1:

Key1l: ValuelA , Valuei1B, ValuelC

Key2: Value2hA , \alueZB

Condition 2:

Keyd: Value3A

When creating a condition block, you specify the name of each condition, and at least one key-value pair
for each condition. AWS defines the conditions and keys you can use (they're listed in the subsequent
sections). An example of a condition is Nunmer i cEqual s. Let's say you have a fictional resource, and
you want to let John use it only if some particular numeric value foo equals either A or B, and another
numeric value bar equals C. Then you would create a condition block that looks like the following figure.

Condition Block

MNumericEquals;

foo: A B
har: C

Let's say you also want to restrict John's access to after January 1, 2009. Then you would add another
condition, Dat eG eat er Than, with a date equal to January 1, 2009. The condition block would then look
like the following figure.

APl Version 2010-03-31
31

Amazon Simple Notification Service Developer Guide
Element Descriptions

Condition Block

MNumericEquals:

foo: A, B
bar; C

DateGreaterThan:

date: January 1, 2009

As illustrated in the following figure, we always apply a logical AND to the conditions within a condition
block, and to the keys within a condition. We always apply a logical OR to the values for a single key. All
conditions must be met to return an allow or an explicit deny decision. If a condition isn't met, the result
is a default deny.

Condition Block

/ Condition 1;
Keyl: Valueld OR ValuelB OR Valuel1C

' AND
AND Key2: Walue2A OR Value2B

\ Condition 2
Keyd: Value3A

As mentioned, AWS defines the conditions and keys you can use (for example, one of the keys is
aws: Cur r ent Ti ne, which lets you restrict access based on the date and time). The AWS service itself
can also define its own service-specific keys. For a list of available keys, see Available Keys (p. 33).

For a concrete example that uses real keys, let's say you want to let John publish to your topic under the
following three conditions:

¢ The time is after 12:00 noon on 8/16/2010
¢ The time is before 3:00 p.m. on 8/16/2010

¢ The request comes from an IP address within the 192.168.176.0/24 range or the 192.168.143.0/24
range

Your condition block has three separate conditions, and all three of them must be met for John to have
access to your topic.

APl Version 2010-03-31
32

Amazon Simple Notification Service Developer Guide
Element Descriptions

The following shows what the condition block looks like in your policy.

"Condition" : {
"Dat eG eat er Than" : {
"aws: Current Ti me" : "2009-04-16T12: 00: 002"
},
"Dat eLessThan": {
"aws: Current Ti me" : "2009-04-16T15: 00: 002"

}

pAddress" : {
"aws: Sourcel p" : ["192.168.176.0/24","192. 168. 143. 0/ 24"]

Available Keys

AWS provides a set of common keys supported by all AWS services that adopt the access policy language
for access control. These keys are:

e aws: Cur r ent Ti me—For date/time conditions (see Date Conditions (p. 35))

¢ aws: EpochTi ne—The date in epoch or UNIX time, for use with date/time conditions (see Date
Conditions (p. 35))

e aws: Mul ti Fact or Aut hAge—Key that provides a numeric value indicating how long ago (in seconds)
the MFA-validated security credentials making the request were issued using Multi-Factor Authentication
(MFA). Unlike other keys, if MFA is not used successfully, this key is not present (see Existence of
Condition Keys (p. 36), Numeric Conditions (p. 34) and Using Multi-Factor Authentication (MFA) Devices
with AWS).

e aws: pri nci pal t ype—Jo check the type of principal (user, account, federated user, etc.) for the current
request (see String Conditions (p. 34)).

* aws: Secur eTr anspor t —Boolean representing whether the request was sent using SSL (see Boolean
Conditions (p. 35))

e aws: Sour ceAr n—Fhe Amazon Resource Name (ARN) of the source (see Amazon Resource Name
(ARN) (p. 36))

* aws: Sour cel p—Fhe requester's IP address, for use with IP address conditions (see IP Address (p. 35))

* aws: User Agent —information about the requester's client application, for use with string conditions
(see String Conditions (p. 34))

¢ aws: user i d—Jo check the requester's user ID (see String Conditions (p. 34)).
¢ aws: user nanme—o check the requester's user name (see String Conditions (p. 34)).

The key names are case insensitive. For example, aws: Cur r ent Ti ne is equivalentto AWS: current ti ne.

Note
If you use aws: Sour cel p, and the request comes from an Amazon EC2 instance, we evaluate
the instance's public IP address to determine if access is allowed.

Each AWS service that uses the access policy language might also provide service-specific keys. For a
list of any service-specific keys you can use, see Special Information for Amazon SNS Policies (p. 38).

Condition Types
These are the general types of conditions you can specify:

e String
¢ Numeric

APl Version 2010-03-31
33

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingMFA.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingMFA.html

Amazon Simple Notification Service Developer Guide

Element Descriptions

» Date and time
* Boolean
» |P address

¢ Amazon Resource Name (ARN)

 Existence of condition keys

String Conditions

String conditions let you constrain using string matching rules. The actual data type you use is a string.

Condition

StringEqual s

St ri ngNot Equal s

Stri ngEqual sl gnor eCase

St ri ngNot Equal sl gnor eCase

StringLi ke

StringNot Li ke

Numeric Conditions

Description

Strict matching
Short version: streq

Strict negated matching
Short version: st r neq

Strict matching, ignoring case
Short version: st r eqi

Strict negated matching, ignoring case
Short version: st r neqi

Loose case-sensitive matching. The values can include a
multi-character match wildcard (*) or a single-character match
wildcard (?) anywhere in the string.

Short version: st r

Negated loose case-insensitive matching. The values can include a
multi-character match wildcard (*) or a single-character match
wildcard (?) anywhere in the string.

Short version: st r nl

Numeric conditions let you constrain using numeric matching rules. You can use both whole integers or
decimal numbers. Fractional or irrational syntax is not supported.

Condition

Nurrer i cEqual s

Nurrer i cNot Equal s

Nurneri cLessThan

Nurrer i cLessThanEqual s

Description

Strict matching
Short version: nunmeq

Strict negated matching
Short version: nunmeq

"Less than" matching
Short version: nun t

"Less than or equals" matching
Short version: nuni t eq

APl Version 2010-03-31
34

Amazon Simple Notification Service Developer Guide
Element Descriptions

Condition Description
Nuneri cG eat er Than "Greater than" matching

Short version: nungt

Nuner i cG eat er ThanEqual s | "Greater than or equals" matching
Short version: nungt eq

Date Conditions

Date conditions let you constrain using date and time matching rules. You must specify all date/time
values with one of the W3C implementations of the ISO 8601 date formats (for more information, go to
http://www.w3.0rg/TR/NOTE-datetime). You use these conditions with the aws: Cur r ent Ti ne key or the
aws: EpochTi ne key to restrict access based on request time.

Note
Wildcards are not permitted for date conditions.

Condition Description

Dat eEqual s Strict matching
Short version: dat eeq

Dat eNot Equal s Strict negated matching
Short version: dat eneq

Dat eLessThan A point in time at which a key stops taking effect
Short version: dat el t

Dat eLessThanEqual s A point in time at which a key stops taking effect
Short version: dat el t eq

Dat eGr eat er Than A point in time at which a key starts taking effect
Short version: dat egt

Dat eGr eat er ThanEqual s A point in time at which a key starts taking effect
Short version: dat egt eq

Boolean Conditions

Condition Description
Bool Strict Boolean matching
IP Address

IP address conditions let you constrain based on IP address matching rules. You use these with the
aws: Sour cel p key. The value must be in the standard CIDR format (for example, 10.52.176.0/24). For
more information, go to RFC 4632.

APl Version 2010-03-31
35

http://www.w3.org/TR/NOTE-datetime
http://www.rfc-editor.org/rfc/rfc4632.txt

Amazon Simple Notification Service Developer Guide
Element Descriptions

Condition Description

| pAddr ess Approval based on the IP address or range

Not | pAddr ess Denial based on the IP address or range

Amazon Resource Name (ARN)

Amazon Resource Name (ARN) conditions let you constrain based on ARN matching rules. The actual
data type you use is a string.

Condition Description

ArnEqual s Strict matching for ARN
Ar nNot Equal s Strict negated matching for ARN

ArnLi ke Loose case-insensitive matching of the ARN. Each of the six colon-delimited
components of the ARN is checked separately and each can include a
multi-character match wildcard (*) or a single-character match wildcard (?).

ArnNot Li ke Negated loose case-insensitive matching of the ARN. The values can include a
multi-character match wildcard (*) or a single-character match wildcard (?) anywhere
in the string.

Following is an example of the kind of policy you need to attach to any queue that you want Amazon SNS
to send messages to. It gives Amazon SNS permission to send messages to the queue (or queues) of
your choice, but only if the service is sending the messages on behalf of a particular Amazon SNS topic
(or topics). You specify the queue in the Resour ce field, and the Amazon SNS topic as the value for the
Sour ceAr n key.

"Version":"2012-10-17",
"Statenment":[{
"Effect": "Alow',
"Principal": {
"AWS': "210987654321"
1
"Action": "sqgs: SendMessage",
"Resource": "arn:aws:s(s:us-east-1:01234567891: your _queue_xyz",
"Condition" : {
"ArnEqual s" : {
"aws: Sour ceArn":"arn: aws: sns: us-east-1:123456789012: your _speci al _top

}

Existence of Condition Keys

Use a Nul | condition to check if a condition key is present at the time of authorization. In the policy
statement, use either t r ue (the key doesn't exist) or f al se (the key exists and its value is not null). You
can use this condition to determine if a user has authenticated with MFA (multi-factor authentication). For

APl Version 2010-03-31
36

Amazon Simple Notification Service Developer Guide
Supported Data Types

example, the following condition states that MFA must exist (be not null) for the user to use the Amazon
EC2 API.

{
"Version":"2012-10-17",

"Statenment": [{
"Action":["ec2:*"],
"Effect":"A | ow',
"Resource":["*"],
"Condition":{
"Nul I ":{"aws: Mul ti Fact or Aut hAge": "fal se"}

Supported Data Types

This section lists the set of data types the access policy language supports. The language doesn't support
all types for each policy element (for the supported data types for each element, see Element
Descriptions (p. 27)).

The access policy language supports the following data types:

e Strings

¢ Numbers (Ints and Floats)

* Boolean

e Null

o Lists

¢ Maps

¢ Structs (which are just nested Maps)

The following table maps each data type to the serialization. Note that all policies must be in UTF-8. For
information about the JSON data types, go to RFC 4627.

Type JSON

String String

Integer Number

Float Number

Boolean true false

Null null

Date String adhering to the W3C Profile of ISO 8601
IpAddress String adhering to RFC 4632

List Array

Object Object

APl Version 2010-03-31
37

http://tools.ietf.org/html/rfc4627
http://www.w3.org/TR/NOTE-datetime
http://tools.ietf.org/html/rfc4632

Amazon Simple Notification Service Developer Guide
Special Information for Amazon SNS Policies

Special Information for Amazon SNS Policies

The following list gives information specific to the Amazon SNS implementation of access control:

¢ Each policy must cover only a single topic or queue (when writing a policy, don't include statements
that cover different topics or queues)

¢ Each policy must have a unique policy | d
¢ Each statement in a policy must have a unique statement si d

Amazon SNS Policy Limits

The following table lists the maximum limits for policy information.

Name
Bytes
Statements
Principals

Resource

Maximum Limit
20 kb

20

20

1 (its value must match the ARN of the policy's topic)

Valid Amazon SNS Policy Actions

Amazon SNS supports the actions shown in the following table.

Action
sns:AddPermission

sns:CreatePlatformApplication

sns:CreatePlatformEndpoint

sns:DeleteEndpoint

sns:DeletePlatformApplication

sns:DeleteTopic

sns:GetEndpointAttributes

Description
This grants permission to add permissions to the topic policy.

This grants permission to create a platform application object for one
of the supported push notification services, such as APNS and GCM.
For more information, see CreatePlatformApplication in the Amazon
Simple Notification Service APl Reference.

This grants permission to creates an endpoint for a device and mobile
app on one of the supported push notification services. For more
information, see CreatePlatformEndpoint in the Amazon Simple
Notification Service AP| Reference.

This grants permission to the endpoint for a device and mobile app
on one of the supported push notification services. For more
information, see DeleteEndpoint in the Amazon Simple Notification
Service API Reference.

This grants permission to delete a platform application object. For
more information, see DeletePlatformApplication in the Amazon
Simple Notification Service API Reference.

This grants permission to delete a topic.

This grants permission to retrieve the endpoint attributes for a device
and mobile app. For more information, see GetEndpointAttributes in
the Amazon Simple Notification Service API Reference.

APl Version 2010-03-31

38

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html

Amazon Simple Notification Service Developer Guide

Amazon SNS Keys

Action

sns:GetPlatformApplicationAttributes

sns:GetTopicAttributes
snsListEndpointsByPlatiormApplication

sns:ListPlatformApplications

sns:ListSubscriptionsByTopic

sns:Publish

sns:Receive
sns:RemovePermission

sns:SetEndpointAttributes

sns:SetPlatformApplicationAttributes

sns:SetTopicAttributes

sns:Subscribe

Description

This grants permission to retrieve the attributes of the platform
application object. For more information, see
GetPlatformApplicationAttributes in the Amazon Simple Notification
Service AP| Reference.

This grants permission to receive all of the topic attributes.

This grants permission to list the endpoints and endpoint attributes
for devices and mobile apps in a supported push notification service.
For more information, see ListEndpointsByPlatformApplication in the
Amazon Simple Notification Service APl Reference.

This grants permission to list the platform application objects for the
supported push notification services. For more information, see
ListPlatformApplications in the Amazon Simple Notification Service
API| Reference.

This grants permission to retrieve all the subscriptions to a specific
topic.

This grants permission to publish to a topic or endpoint. For more
information, see Publish in the Amazon Simple Notification Service
API Reference

This grants permission to receive notifications from a topic.
This grants permission to remove any permissions in the topic policy.

This grants permission to set the attributes for an endpoint for a
device and mobile app. For more information, see
SetEndpointAttributes in the Amazon Simple Notification Service API
Reference.

This grants permission to set the attributes of the platform application
object. For more information, see SetPlatformApplicationAttributes
in the Amazon Simple Notification Service API Reference.

This grants permission to set a topic's attributes.

This grants permission to subscribe to a topic.

Amazon SNS Keys

Amazon SNS uses the following service-specific keys. You can use these in policies that restrict access
to Subscr i be requests and Recei ve requests.

¢ sns:Endpoint—The URL, email address, or ARN from a Subscr i be request or a previously confirmed
subscription. Use with string conditions (see String Conditions (p. 34)) to restrict access to specific
endpoints (e.g., *@example.com).

¢ sns:Protocol—The pr ot ocol value from a Subscr i be request or a previously confirmed subscription.

Use with string conditions (see
protocols (e.g., https).

String Conditions (p. 34)) to restrict publication to specific delivery

APl Version 2010-03-31
39

http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html

Amazon Simple Notification Service Developer Guide
Controlling User Access to Your AWS Account

Important
When you use a policy to control access by sns:Endpoint, be aware that DNS issues might affect
the endpoint's name resolution in the future.

Controlling User Access to Your AWS Account

Topics
¢ |AM and Amazon SNS Policies Together (p. 40)
¢« Amazon SNS ARNSs (p. 43)
e Amazon SNS Actions (p. 44)
¢« Amazon SNS Keys (p. 44)
e Example Policies for Amazon SNS (p. 45)
¢ Using Temporary Security Credentials (p. 47)

Amazon Simple Notification Service integrates with AWS Identity and Access Management (IAM) so that
you can specify which Amazon SNS actions a user in your AWS account can perform with Amazon SNS
resources. You can specify a particular topic in the policy. For example, you could use variables when
creating an IAM policy that gives certain users in your organization permission to use the Publ i sh action
with specific topics in your AWS account. For more information, see Policy Variables in the Using IAM
guide.

Important
Using Amazon SNS with IAM doesn't change how you use Amazon SNS. There are no changes
to Amazon SNS actions, and no new Amazon SNS actions related to users and access control.

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for Amazon
SNS (p. 45).

IAM and Amazon SNS Policies Together

You use an IAM policy to restrict your users' access to Amazon SNS actions and topics. An IAM policy
can restrict access only to users within your AWS account, not to other AWS accounts.

You use an Amazon SNS policy with a particular topic to restrict who can work with that topic (e.g., who
can publish messages to it, who can subscribe to it, etc.). Amazon SNS policies can give access to other
AWS accounts, or to users within your own AWS account.

To give your users permissions for your Amazon SNS topics, you can use IAM policies, Amazon SNS
policies, or both. For the most part, you can achieve the same results with either. For example, the
following diagram shows an IAM policy and an Amazon SNS policy that are equivalent. The IAM policy
allows the Amazon SNS Subscr i be action for the topic called topic_xyz in your AWS account. The IAM
policy is attached to the users Bob and Susan (which means that Bob and Susan have the permissions
stated in the policy). The Amazon SNS policy likewise gives Bob and Susan permission to access
Subscr i be for topic_xyz.

APl Version 2010-03-31
40

http://docs.aws.amazon.com/IAM/latest/UserGuide/PolicyVariables.html

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

1AM Policy Amazon SNS Po
Allow Allow who:
Actions: User Bob
Subscribe is equivalent to User Susan
Resource: Actions:
arn:aws:sns:"; 12345678901 2topic_xyz Subscribe
Resource:
User User arn:aws:sns:": 1234567890
Bob Susan
topic_xyz

Note

The preceding example shows simple policies with no conditions. You could specify a particular
condition in either policy and get the same result.

There is one difference between AWS IAM and Amazon SNS policies: The Amazon SNS policy system
lets you grant permission to other AWS accounts, whereas the 1AM policy doesn't.

It's up to you how you use both of the systems together to manage your permissions, based on your
needs. The following examples show how the two policy systems work together.

APl Version 2010-03-31
41

Amazon Simple Notification Service Developer Guide
IAM and Amazon SNS Policies Together

Example 1

In this example, both an IAM policy and an Amazon SNS policy apply to Bob. The IAM policy gives him
permission for Subscri be on any of the AWS account's topics, whereas the Amazon SNS policy gives
him permission to use Publ i sh on a specific topic (topic_xyz). The following diagram illustrates the
concept.

IAM Policy Amazon SNS Policy
Allow Allow who:
Actions: User Bob
Subscribe Actions:
Resource: * sl
Resource:

arn:aws:sns:": 12345678901 2opic_xyz

User
Bob

topic_xyz

If Bob were to send a request to subscribe to any topic in the AWS account, the IAM policy would allow
the action. If Bob were to send a request to publish a message to topic_xyz, the Amazon SNS policy
would allow the action.

APl Version 2010-03-31
42

Amazon Simple Notification Service Developer Guide
Amazon SNS ARNs

Example 2

In this example, we build on example 1 (where Bob has two policies that apply to him). Let's say that Bob
publishes messages to topic_xyz that he shouldn't have, so you want to entirely remove his ability to
publish to topics. The easiest thing to do is to add an IAM policy that denies him access to the Publ i sh
action on all topics. This third policy overrides the Amazon SNS policy that originally gave him permission
to publish to topic_xyz, because an explicit deny always overrides an allow (for more information about
policy evaluation logic, see Evaluation Logic (p. 19)). The following diagram illustrates the concept.

IAM Policy Amazon SNS Policy
Allow Allow who:
Actions: User Bob
Subscribe Actions:
Resource: * Publish
Resource:
User arm:aws:sns:*: 12245673001 2 opic

Bob IAM Policy

Deny topic_xyz

Overrides the
Amazon SNS

Resource: * policy

Actions: FPublish

For examples of policies that cover Amazon SNS actions and resources, see Example Policies for Amazon
SNS (p. 45). For more information about writing Amazon SNS policies, go to the technical documentation
for Amazon SNS.

Amazon SNS ARNSs

For Amazon SNS, topics are the only resource type you can specify in a policy. Following is the Amazon
Resource Name (ARN) format for topics.

arn: aws: sns: regi on: account _|I D: t opi c_nane

For more information about ARNS, go to ARNSs in Using IAM.

APl Version 2010-03-31
43

http://aws.amazon.com/documentation/sns/
http://aws.amazon.com/documentation/sns/
http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_Identifiers.html#Identifiers_ARNs

Amazon Simple Notification Service Developer Guide
Amazon SNS Actions

Example

Following is an ARN for a topic named my_topic in the us-east-1 region, belonging to AWS account
123456789012.

arn: aws: sns: us-east-1:123456789012: ny_topi c

Example

If you had a topic named my_topic in each of the different Regions that Amazon SNS supports, you could
specify the topics with the following ARN.

arn: aws: sns: *: 123456789012: ny_t opi c

You can use * and ? wildcards in the topic name. For example, the following could refer to all the topics
created by Bob that he has prefixed with bob_.

arn: aws: sns: *: 123456789012: bob_*

As a convenience to you, when you create a topic, Amazon SNS returns the topic's ARN in the response.

Amazon SNS Actions

In an 1AM policy, you can specify any actions that Amazon SNS offers. However, the
ConfirnBubscri pti on and Unsubscri be actions do not require authentication, which means that
even if you specify those actions in a policy, IAM won't restrict users' access to those actions.

Each action you specify in a policy must be prefixed with the lowercase string sns: . To specify all Amazon
SNS actions, for example, you would use sns: *. For a list of the actions, go to the Amazon Simple
Notification Service API Reference.

Amazon SNS Keys

Amazon SNS implements the following AWS-wide policy keys, plus some service-specific keys. For more
information about policy keys, see Condition (p. 31).

AWS-Wide Policy Keys

e aws: Curr ent Ti me—o check for date/time conditions.
¢ aws: EpochTi ne—Jo check for date/time conditions using a date in epoch or UNIX time.

e aws: Mul ti Fact or Aut hAge—¥o check how long ago (in seconds) the MFA-validated security credentials
making the request were issued using Multi-Factor Authentication (MFA). Unlike other keys, if MFA is
not used, this key is not present.

e aws: pri nci pal t ype—Jo check the type of principal (user, account, federated user, etc.) for the current
request.

¢ aws: Secur eTr anspor t o check whether the request was sent using SSL. For services that use
only SSL, such as Amazon RDS and Amazon Route 53, the aws: Secur eTr ansport key has no
meaning.

e aws: Sour ceAr n—o check the source of the request, using the Amazon Resource Name (ARN) of
the source. (This value is available for only some services. For more information, see Amazon Resource
Name (ARN) under "Element Descriptions" in the Amazon Simple Queue Service Developer Guide.)

e aws: Sour cel p—o check the IP address of the requester. Note that if you use aws: Sour cel p, and
the request comes from an Amazon EC2 instance, the public IP address of the instance is evaluated.

APl Version 2010-03-31
44

http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/sns/latest/api/
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage_ElementDescriptions.html#Conditions_ARN

Amazon Simple Notification Service Developer Guide
Example Policies for Amazon SNS

¢ aws: User Agent —Jo check the client application that made the request.
e aws: user i d—Jo check the user ID of the requester.
¢ aws: user name—o check the user name of the requester, if available.

Note
Key names are case sensitive.

Amazon SNS Keys

Amazon SNS uses the following service-specific keys. Use these keys in policies that restrict access to
Subscri be requests.

¢ sns:Endpoint—The URL, email address, or ARN from a Subscr i be request or a previously confirmed
subscription. Use with string conditions (see String Conditions (p. 34)) to restrict access to specific
endpoints (e.g., *@yourcompany.com).

¢ sns:Protocol—The pr ot ocol value from a Subscr i be request or a previously confirmed subscription.
Use with string conditions (see String Conditions (p. 34)) to restrict publication to specific delivery
protocols (e.g., https).

Example Policies for Amazon SNS

This section shows several simple policies for controlling user access to Amazon SNS.

Note
In the future, Amazon SNS might add new actions that should logically be included in one of the
following policies, based on the policy’s stated goals.

Example 1: Allow a group to create and manage topics

In this example, we create a policy that gives access to Cr eat eTopi c, Li st Topi cs,
Set Topi cAttri but es, and Del et eTopi c.

"Version":"2012-10-17",
"Statenment": [
"Effect":"A | ow',
"Action":["sns: CreateTopic", "sns: Li st Topi cs", "sns: Set Topi cAttrib
utes", "sns: Del eteTopic"],
"Resource":"*"

}

APl Version 2010-03-31
45

Amazon Simple Notification Service Developer Guide
Example Policies for Amazon SNS

Example 2: Allow the IT group to publish messages to a particular topic

In this example, we create a group for IT, and assign a policy that gives access to Publ i sh on the specific
topic of interest.

{
"Version":"2012-10-17",
"Statement": [{
"Effect":"All ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: *: 123456789012: t opi c_xyz"
}
]
}

Example 3: Give users in the AWS account ability to subscribe to topics

In this example, we create a policy that gives access to the Subscr i beaction, with string matching
conditions for the sns: Prot ocol and sns: Endpoi nt policy keys.

{
"Version":"2012-10-17",
"Statenment":[{
"Effect":"All ow',
"Action":["sns: Subscribe"],
"Resource":"*",
"Condition":{
"StringLike": {
" SNS: Endpoi nt": "* @our conpany. cont
3
"StringEqual s": {
"sns: Protocol ":"enail"
}
}
}
]
}

APl Version 2010-03-31
46

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

Example 4: Allow a partner to publish messages to a particular topic

You can use an Amazon SNS policy or an IAM policy to allow a partner to publish to a specific topic. If
your partner has an AWS account, it might be easier to use an Amazon SNS policy. However, anyone

in the partner's company who possesses the AWS security credentials could publish messages to the

topic. This example assumes that you want to limit access to a particular person (or application). To do
this you need to treat the partner like a user within your own company, and use a IAM policy instead of
an Amazon SNS policy.

For this example, we create a group called WidgetCo that represents the partner company; we create a
user for the specific person (or application) at the partner company who needs access; and then we put
the user in the group.

We then attach a policy that gives the group Publ i sh access on the specific topic named
WidgetPartnerTopic.

We also want to prevent the WidgetCo group from doing anything else with topics, so we add a statement
that denies permission to any Amazon SNS actions other than Publ i sh on any topics other than
WidgetPartnerTopic. This is necessary only if there's a broad policy elsewhere in the system that gives
users wide access to Amazon SNS.

{
"Version":"2012-10-17",
"Statenment": [{
"Effect":"All ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: *: 123456789012: W dget Par t ner Topi c"
}
{
"Effect":"Deny",
"Not Action":"sns: Publish",
"Not Resource": "arn: aws: sns: *: 123456789012: W dget Part ner Topi c"
}
]
}

Using Temporary Security Credentials

In addition to creating IAM users with their own security credentials, IAM also enables you to grant
temporary security credentials to any user allowing this user to access your AWS services and resources.
You can manage users who have AWS accounts; these users are IAM users. You can also manage users
for your system who do not have AWS accounts; these users are called federated users. Additionally,
"users" can also be applications that you create to access your AWS resources.

You can use these temporary security credentials in making requests to Amazon SNS. The API libraries
compute the necessary signature value using those credentials to authenticate your request. If you send
requests using expired credentials Amazon SNS denies the request.

For more information about IAM support for temporary security credentials, go to Granting Temporary
Access to Your AWS Resources in Using IAM.

Example Using Temporary Security Credentials to Authenticate an Amazon SNS Request

The following example demonstrates how to obtain temporary security credentials to authenticate an
Amazon SNS request.

APl Version 2010-03-31
47

http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html

Amazon Simple Notification Service Developer Guide
Using Temporary Security Credentials

http://sns. us-east-1. anazonaws. conf

?Name=My- Topi c

&Act i on=Cr eat eTopi ¢

&Si gnat ur e=gf zI F53exFVdpSNb8AI WN3Lv¥2FNYXh6S%2Br 3yy SK700X4%3D

&Si gnat ur eVer si on=2

&Si gnat ur eMet hod=Hmac SHA256

&Ti mest anp=2010- 03- 31T12%8A00%8A00. 000Z
&SecurityToken=SecurityTokenVal ue

&AWBAccessKeyl d=Access Key | D provided by AW Security Token Service

APl Version 2010-03-31
48

Amazon Simple Notification Service Developer Guide
Access CloudWatch Metrics for Amazon SNS

Monitoring Amazon SNS with
CloudWatch

Amazon SNS and CloudWatch are integrated so you can collect, view, and analyze metrics for every
active Amazon SNS topic. Once you have configured CloudWatch for Amazon SNS, you can gain better
insight into the performance of your Amazon SNS topics and Amazon SNS push notifications. For example,
you can set an alarm to send you an email notification if a specified threshold is met for an Amazon SNS
metric, such as NumberOfNotificationsFailed. For a list of all the metrics that Amazon SNS sends to
CloudWatch, see Amazon SNS Metrics (p. 51). For more information about Amazon SNS push notifications,
see Amazon SNS Mobile Push Notifications (p. 53)

The metrics you configure with CloudWatch for your Amazon SNS topics are automatically collected and
pushed to CloudWatch every five minutes. These metrics are gathered on all topics that meet the
CloudWatch guidelines for being active. A topic is considered active by CloudWatch for up to six hours
from the last activity (i.e., any API call) on the topic.

Note

There is no charge for the Amazon SNS metrics reported in CloudWatch; they are provided as
part of the Amazon SNS service.

Access CloudWatch Metrics for Amazon SNS

You can monitor metrics for Amazon SNS using the CloudWatch console, CloudWatch's own command
line interface (CLI), or programmatically using the CloudWatch API. The following procedures show you
how to access the metrics using these different options.

To view metrics using the CloudWatch console

1. Signin to the AWS Management Console and open the Amazon CloudWatch console at
https://console.aws.amazon.com/cloudwatch/.

2. Click View Metrics.

3. From the Viewing drop-down menu select either SNS: Topic Metrics, SNS: Push Notifications
by Application, SNS: Push Notifications by Application and Platform, or SNS: Push Notifications
by Platform to show the available metrics.

4. Click a specific item to see more detail, such as a graph of the data collected. For example, the

following graph of the selected metric, NumberOfMessagesPublished, shows the average number
of published Amazon SNS messages for a five-minute period throughout the time range of 6 hours.

APl Version 2010-03-31
49

https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide
Set CloudWatch Alarms for Amazon SNS Metrics

iewing:

]
O

(]

MyTopic
MyTopic
MyTopic
MyTopic

SNS: Topic Metrics

Search
NumberOfilessagesPublished

MumberOfotificationsDeliverad

{MMN.AWWMWM

MumberOfotificationsFailed
PublishSize

Average - 5 Minutes -

[I — B e I

NumberOfMe:... =dit
1.0

Time Range
Zoom: 1h | 3h | 6h | 12h | 24h | 1W | 2w
@ Relative © Absolute

From: & hours ago -

To: 0 hours ago -

Create Alarm Copy URL Refresh

2/s 2/s 2/s 2/8 2/8 2/8
16:00 17:00

Left axis units: Count

. F e, MM oy T
(=) [=] (=) (=)
(=] r o+ (1]
-
o
[=]
[=]
ek
o
(=]
[=]
[
(=]
(=]
[=]
ra
=t
(=]
[=]
| m

B NumberofMessagesPublished (7]

1

To access metrics from the CloudWatch CLI

Call mon- get - st at s. You can learn more about this and other metrics-related functions in the
Amazon CloudWatch Developer Guide.

To access metrics from the CloudWatch API

Call Get Metri cStati sti cs.You can learn more about this and other metrics-related functions in
the Amazon CloudWatch API Reference.

Set CloudWatch Alarms for Amazon SNS Metrics

CloudWatch also allows you to set alarms when a threshold is met for a metric. For example, you could
set an alarm for the metric, NumberOfNotificationsFailed, so that when your specified threshold number
is met within the sampling period, then an email notification would be sent to inform you of the event.

To set alarms using the CloudWatch console

1.

Sign in to the AWS Management Console and open the Amazon CloudWatch console at
https://console.aws.amazon.com/cloudwatch/.

Click Alarms, and then click the Create Alarm button. This launches the Create Alarm wizard.

Scroll through the Amazon SNS metrics to locate the metric you want to place an alarm on. Select
the metric to create an alarm on and click Continue.

Fill in the Name, Description, Threshold, and Time values for the metric, and then click Continue.

Choose Alarm as the alarm state. If you want CloudWatch to send you an email when the alarm
state is reached, either select a preexisting Amazon SNS topic or click Create New Email Topic. If

APl Version 2010-03-31
50

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/cli-mon-get-stats.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/API_GetMetricStatistics.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/
https://console.aws.amazon.com/cloudwatch/

Amazon Simple Notification Service Developer Guide
Amazon SNS Metrics

you click Create New Email Topic, you can set the name and email addresses for a new topic. This
list will be saved and appear in the drop-down box for future alarms. Click Continue.

Note

If you use Create New Email Topic to create a new Amazon SNS topic, the email addresses
must be verified before they will receive notifications. Emails are sent only when the alarm
enters an alarm state. If this alarm state change happens before the email addresses are
verified, they will not receive a notification.

6. Atthis point, the Create Alarm wizard gives you a chance to review the alarm you're about to create.
If you need to make any changes, you can use the Edit links on the right. Once you are satisfied,
click Create Alarm.

For more information about using CloudWatch and alarms, see the CloudWatch Documentation.

Amazon SNS Metrics

Amazon SNS sends the following metrics to CloudWatch.

Metric Description
Nunmber Of MessagesPubl i shed The number of messages published to the topic.
Units: Count

Valid Statistics: Sum
Publ i shSi ze The size of messages published to the topic.
Units: Bytes
Valid Statistics: Minimum, Maximum, Average and Count

Nunber Of Not i fi cati onsDel i ver ed The number of messages successfully delivered to all
subscriptions of the topic.

Units: Count
Valid Statistics: Sum

Nunber Of Noti fi cati onsFail ed The number of all notification attempts to the topic that
failed delivery.

Units: Count

Valid Statistics: Sum

Dimensions for Amazon Simple Notification
Service Metrics

Amazon Simple Notification Service sends the following dimensions to CloudWatch.

APl Version 2010-03-31
51

http://aws.amazon.com/documentation/cloudwatch

Amazon Simple Notification Service Developer Guide
Dimensions for Amazon Simple Notification Service

Metrics
Dimension Description
Application Filters on application objects, which represent an app and device

registered with one of the supported push notification services, such
as APNS and GCM.

Appl i cation, Pl atform Filters on application and platform objects, where the platform objects
are for the supported push natification services, such as APNS and
GCM.

Pl atform Filters on platform objects for the push notification services, such as

APNS and GCM.

Topi cNane Filters on Amazon SNS topic names.

APl Version 2010-03-31
52

Amazon Simple Notification Service Developer Guide
Overview

Amazon SNS Mobile Push
Notifications

With Amazon SNS, you have the ability to send push notification messages directly to apps on mobile
devices. Push notification messages sent to a mobile endpoint can appear in the mobile app as message
alerts, badge updates, or even sound alerts.

Overview

You send push notification messages to mobile devices using one of the following supported push
notification services:

¢ Amazon Device Messaging (ADM)

¢ Apple Push Notification Service (APNS)

¢ Baidu Cloud Push (Baidu)

¢ Google Cloud Messaging for Android (GCM)

¢ Microsoft Push Noatification Service for Windows Phone (MPNS)
« Windows Push Notification Services (WNS)

The following figure shows an overview of how Amazon SNS is used to send a direct push naotification
message to a mobile endpoint.

ADM

APNS
lll Baidu
Publisher #) #

Amazon SNS
MENS Subscriber

WNS

@

Push Notification Services

Push notification services, such as APNS and GCM, maintain a connection with each app and associated
mobile device registered to use their service. When an app and mobile device register, the push notification

APl Version 2010-03-31
53

Amazon Simple Notification Service Developer Guide
Prerequisites

service returns a device token. Amazon SNS uses the device token to create a mobile endpoint, to which
it can send direct push notification messages. In order for Amazon SNS to communicate with the different
push natification services, you submit your push notification service credentials to Amazon SNS to be
used on your behalf.

In addition to sending direct push notification messages, you can also use Amazon SNS to send messages
to mobile endpoints subscribed to a topic. The concept is the same as subscribing other endpoint types,
such as Amazon SQS, HTTP/S, email, and SMS, to a topic, as described in What is Amazon Simple
Notification Service? (p. 1). The difference is that Amazon SNS communicates using the push notification
services in order for the subscribed mobile endpoints to receive push notification messages sent to the
topic. The following figure shows a mobile endpoint as a subscriber to an Amazon SNS topic. The mobile
endpoint communicates using push notification services where the other endpoints do not.

il

Baidu

MPNS

v
v

WNS

Publisher q

\ SNS topic /

sQs

HTTR/S

Email

VYVYY

SMS5

Subscriber

Prerequisites

To begin using Amazon SNS mobile push notifications, you first need an app for the mobile endpoints
that uses one of the supported push naotification services: ADM, APNS, Baidu, GCM, MPNS, or WNS.
After you've registered and configured the app to use one of these services, you configure Amazon SNS
to send push notification messages to the mobile endpoints.

Registering your application with a push notification service requires several steps. Amazon SNS needs
some of the information you provide to the push notification service in order to send direct push notification
messages to the mobile endpoint. Generally speaking, you need the required credentials for connecting
to the push notification service, a device token or registration id (representing your mobile device and
mobile app) received from the push notification service, and the mobile app registered with the push
notification service. The specific names will vary depending on which push notification service is being
used. For example, when using APNS as the push notification service, you need the device token.
Alternatively, when using GCM, the device token equivalent is called the registration ID. The device token
and registration ID are unique identifiers for the mobile app and device.

The following sections include the prerequisites for each of the supported push notification services. Once
you've obtained the prerequisite information, you can send a push natification message using the AWS
Management Console or the Amazon SNS mobile push APIs. For more information, see Using Amazon
SNS Mobile Push (p. 90) and Using Amazon SNS Mobile Push APIs (p. ?).

APl Version 2010-03-31
54

Amazon Simple Notification Service Developer Guide
Getting Started with ADM

Getting Started with Amazon Device Messaging

Amazon Device Messaging (ADM) is a service that enables you to send push notification messages to
Kindle Fire apps. This section describes how to obtain the ADM prerequisites and send a push notification
message using Amazon SNS and ADM.

Topics
¢ ADM Prerequisites (p. 55)
¢ Step 1: Create a Kindle Fire App with the ADM Service Enabled (p. 55)
¢ Step 2: Obtain a Client ID and Client Secret (p. 56)
¢ Step 3: Obtain an API Key (p. 56)
¢ Step 4: Obtain a Registration ID (p. 56)
¢ Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and ADM (p. 57)

ADM Prerequisites

To send push notifications to a Kindle Fire app using Amazon SNS and ADM, you need the following:

¢ Kindle Fire app with the ADM service enabled
¢ Client ID and client secret

¢ API key

« Registration ID

If you already have these prerequisites, then you can send a push notification message to a Kindle Fire
app using either the Amazon SNS console or the Amazon SNS API. For more information about using
the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). For more information about
using the Amazon SNS API, see Step 5: Sending a Push Notification Message to a Kindle Fire app using
Amazon SNS and ADM (p. 57)

Step 1: Create a Kindle Fire App with the ADM
Service Enabled

To send a push notification message to a Kindle Fire app, you must have an Amazon developer account,
set up your development environment, created a Kindle Fire app with ADM enabled, and registered the
app with ADM. For more information, see Integrating Your App with ADM.

To create a Kindle Fire app

1. Create an Amazon developer account by following the instructions at Create an Account.

2. Set up your development environment for developing mobile apps for Kindle Fire tablets. For more
information, see Setting Up Your Development Environment.

3. Create a Kindle Fire app. For more information, see Creating Your First Kindle Fire App.

Note

If you do not already have a Kindle Fire app registered with ADM, then you can use the
sample Kindle Fire app provided by AWS as a template to get started. For more information,
see Step 4: Obtain a Registration ID (p. 56).

4. Onthe Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle Fire
app, and then click Device Messaging.

APl Version 2010-03-31
55

https://developer.amazon.com/sdk/adm/integrating-app.html
https://developer.amazon.com/welcome.html
https://developer.amazon.com/sdk/fire/setup.html
https://developer.amazon.com/public/resources/development-tools/ide-tools/tech-docs/04-creating-your-first-kindle-fire-app
https://developer.amazon.com/home.html

Amazon Simple Notification Service Developer Guide
Step 2: Obtain a Client ID and Client Secret

5. Verify that ADM is enabled for the app. If your app is not listed on the Amazon App Distribution Portal,
then add it and enable ADM.

Step 2: Obtain a Client ID and Client Secret

ADM uses a client ID and client secret to verify your server's identity. For more information, Obtaining
ADM Credentials.

To obtain a client ID and client secret

1. Onthe Amazon App Distribution Portal, click Apps and Services, click the name of your Kindle Fire
app, and then click Security Profile. You should see a security profile associated with your app. If
not, click Security Profiles to create a new security profile.

2. Click View Security Profile. Make note of the client ID and client secret.

Security Profile Management

o~ admpushapp - security profile - Security Profile credentiais | spikevs

Credentials

Your security profile credentials consist of two values: a Client ID value and a Client Secret value. These two values allow your
app to securely identify itself to Amazon servers. You can copy these values for use with your app.

Display Name admpushapp - security profile
Description security profile for admpushapp
|C|ient 1D amznl.application-oa2-client. I

| Client Secret |

Edit

Step 3: Obtain an API Key

ADM uses an API key to verify your app's identity.

Note

An API key is required to use ADM with pre-release or test apps. However, it is not required
with a release or production version of your app when you allow Amazon to sign your app on
your behalf.

To obtain an API key

¢ Obtain an API key by following instructions at Getting Your OAuth Credentials and API Key.

Step 4: Obtain a Registration ID

The following steps show how to use the sample Kindle Fire app provided by AWS to obtain a registration
ID from ADM. You can use this sample Kindle Fire app as an example to help you get started with Amazon
SNS push notifications. The sample app requires that you have included the ADM JAR file,

APl Version 2010-03-31
56

https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/sdk/adm/credentials.html
https://developer.amazon.com/home.html
https://developer.amazon.com/sdk/adm/credentials.html

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle Fire app using
Amazon SNS and ADM

amazon- devi ce- messagi ng- 1. 0. 1. j ar in your development environment. For more information, see
Setting Up ADM.

To obtain a registration ID from ADM for your app

1. Download and unzip the snsmobilepush.zip file.

2. Import the Ki ndl eMobi | ePushApp folder into your IDE. In Eclipse, click File, Import, expand the
Android folder, click Existing Android Code Into Workspace, click Next, browse to the folder
Ki ndl eMobi | ePushApp, click OK, and then click Finish.

After the sample Kindle Fire app has been imported into your IDE, you need to add the API key for
your Kindle Fire app to the st ri ngs. xm file, which is included in the sample Kindle Fire app.

3. Add the API key to the stri ngs. xml file. In your IDE you will find the file included in the values
folder, which is a subfolder of res. You add the string to the following:

<string name="api _key"></string>

4. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display window.
For example, the output containing the registration ID will look similar to the following:

aneznl. admregi stration. v2. Exanpl e. .. 1lcw\ UvgkcPPYcaXCpPWhE3Bgn-
wi ql Ezp5zZ7y_j sMOPKPxKhddCzx6paEsyay9Zn3DAwWNUIb8nBHXr Bf 9dgaEw

You should now have the necessary information from ADM (client ID, client secret, API key, and registration
ID) to send push notification messages to your mobile endpoint. You can now send a push notification
message to the Kindle Fire app on your device by either using the Amazon SNS console or the Amazon
SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). To use the
Amazon SNS API, see Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon
SNS and ADM (p. 57).

Step 5: Sending a Push Notification Message to a
Kindle Fire app using Amazon SNS and ADM

This section describes how to use the prerequisite information to send a push notification message to
your Kindle Fire app using Amazon SNS and ADM. You add the gathered prerequisite information to the
AWS sample file SNSMobi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. Create a new Java project in Eclipse (File | New | Java Project).

APl Version 2010-03-31
57

https://developer.amazon.com/sdk/adm/setup.html
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 5: Sending a Message to a Kindle Fire app using
Amazon SNS and ADM

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMbbi | ePush. j ava
in Eclipse.

Uncomment sanpl e. denoKi ndl eAppNot i fi cation(); . It should look similar to the following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wi sh to use.
/'] sanpl e. denmobAndr oi dAppNotification();

sanpl e. denoKi ndl eAppNoti fication();

/1 sanpl e. denmoAppl eAppNoti fication();

/'l sanpl e. demoAppl eSandboxAppNoti fi cation();

/1 sanpl e. denoBai duAppNoti fication();

/1 sanpl e. demoWNSAppNot i fi cation();

/1 sanpl e. denoMPNSAppNoti fi cation();

Locate the denoKi ndl eAppNot i fi cati on method and enter the registration ID you received from
ADM for the value of the registration ID string. For example, it should look similar to the following:

String registrationld = = "angnl. admregi stration.v2. Exanpl e... lcwMUvgk
cPPYcaXCpPWhE3Bgn- wi ql Ezp5zZ7y_j sMIPKPxKhd
dCzx6paEsyay9Zn3D4wWNUIb8nB6HXr Bf 9dqaEwW" ;

Enter the client ID for your app. For example, it should look similar to the following:

String clientld = "anenl. application-oa2-client.EX
AMPLE7423654b79f c9f 062f EXAMPLE" ;

Enter the client secret for your app. For example, it should look similar to the following:

String clientSecret = "EXAMPLE01658e75ceb7bf 9f 71939647blaal05clc8eac
cabaf 7d41f 68EXAMPLE";

Enter a name for your app. App names must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

APl Version 2010-03-31
58

Amazon Simple Notification Service Developer Guide
Getting Started with APNS

String applicati onNane = "adnpushapp";

Run the Java application. You should see output similar to the following in the output window of your
IDE:

Getting Started with Amazon SNS

{Pl at formAppl i cati onArn: arn:aws:sns:us-west-2:111122223333: app/ ADM nypush
appnane}

{Endpoi nt Arn: arn: aws: sns: us-west-2:111122223333: endpoi nt/ ADM nypushapp
nane/ 97e9ced9- f 136- 3893- 9d60- 775467eaf ebb}

{"default":"This is the default Message","ADM:"{ \"aps\" : { \"alert\"
\"You have got emmil.\", \"badge\" : 9,\"sound\" :\"defaul t\"}}"}

Publ i shed. Messagel d=b35f b4bz- b503- 4e37-83d4-f eu4218d6dab

On your Kindle Fire device, you should see a push notification message appear within the Kindle
Fire app.

Getting Started with Apple Push Notification
Service

Apple Push Notification Service (APNS) is a service that enables you to send push notification messages
to iIOS and OS X apps. This section describes how to obtain the APNS prerequisites and send a push
notification message using Amazon SNS and APNS.

Topics

APNS Prerequisites (p. 59)

Step 1: Create an iOS App (p. 60)

Step 2: Obtain an APNS SSL Certificate (p. 60)

Step 3: Obtain the App Private Key (p. 60)

Step 4: Verify the Certificate and App Private Key (p. 61)

Step 5: Obtain a Device Token (p. 61)

Step 6: Send a Push Notification Message to an iOS app using Amazon SNS and APNS (p. 62)

APNS Prerequisites

To send push notifications to mobile devices using Amazon SNS and APNS, you need to obtain the
following:

¢ iOS app registered with APNS
¢ APNS SSL certificate

¢ App private key

« Device token

If you already have these prerequisites, you can send a push natification message to an iOS app using
either the Amazon SNS console or you the Amazon SNS API. For more information about using the

APl Version 2010-03-31
59

Amazon Simple Notification Service Developer Guide
Step 1: Create an iOS App

Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). For more information about using
the Amazon SNS API, see Step 6: Send a Push Notification Message to an iOS app using Amazon SNS
and APNS (p. 62).

Step 1. Create an iOS App

To get started with sending a push notification message to an iOS app, you must have an Apple developer
account, created an App ID (application identifier), registered your iOS device, and created an iOS
Provisioning Profile. For more information, see the Apple Local and Push Notification Programming Guide.

Note

If you do not already have an iOS app registered with APNS, then you can use the sample iOS
app provided by AWS as a template to get started. For more information, see Step 5: Obtain a
Device Token (p. 61).

Step 2: Obtain an APNS SSL Certificate

Amazon SNS requires the APNS SSL certificate of the app in the .pem format. You use the Keychain
Access application on your Mac computer to export the APNS SSL certificate. For more information about
the SSL certificate, see Provisioning and Development in the Apple Local and Push Notification
Programming Guide.

To download an APNS SSL certificate

1. Onthe Apple Developer web site, click Member Center, click Certificates, Identifiers and Profiles,
and then click Certificates.

2. Select the certificate you created for iOS APNS development, click Download, and then save the
file, which will have the .cer extension type.

To convert the APNS SSL certificate from .cer format to .pem format

The following steps use the openssl utility.

¢ Atacommand prompt, type the following command. Replace myapnsappcert. cer with the name
of the certificate you downloaded from the Apple Developer web site.

openssl x509 -in nyapnsappcert.cer -inform DER -out nyapnsappcert.pem

The newly created .pem file will be used to configure Amazon SNS for sending mobile push notification
messages.

Step 3: Obtain the App Private Key

Amazon SNS requires an app private key in the .pem format. You use the Keychain Access application
on your Mac computer to export the app private key.

To obtain the app private key

The private key associated with the SSL certificate can be exported from the Keychain Access application
on your Mac computer. This is based on the assumption that you have already imported the .cer file you
downloaded from the Apple Developer web site into Keychain Access. You can do this either by copying
the .cer file into Keychain Access or double-clicking the .cer file.

1. Open Keychain Access, select Keys, and then highlight your app private key.

APl Version 2010-03-31
60

https://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ProvisioningDevelopment.html
https://developer.apple.com/

Amazon Simple Notification Service Developer Guide
Step 4: Verify the Certificate and App Private Key

2. Click File, click Export Items..., and then enter a name in the Save As: field.
3. Accept the default .p12 file format and then click Save.

The .p12 file will then be converted to .pem file format.

To convert the app private key from .p12 format to .pem format

¢« Atacommand prompt, type the following command. Replace myapnsapppri vat ekey. p12 with
the name of the private key you exported from Keychain Access.

openssl pkcsl2 -in nyapnsappprivatekey. pl2 -out nyapnsappprivatekey. pem
-nodes -clcerts

The newly created .pem file will be used to configure Amazon SNS for sending mobile push notification
messages.

Step 4: Verify the Certificate and App Private Key

You can verify the .pem certificate and private key files by using them to connect to APNS.
To verify the certificate and private key by connecting to APNS

e Atacommand prompt, type the following command. Replace nyapnsappcert. pemand
nmyapnsapppri vat ekey. pemwith the name of your certificate and private key.

openssl s_client -connect gateway.sandbox. push. appl e.com 2195 -cert nyapns
appcert.pem -key nyapnsapppri vat ekey. pem

Step 5: Obtain a Device Token

When you register your app with APNS to receive push notification messages, a device token (64-byte
hexadecimal value) is generated. The following steps describe how to use the sample iOS app provided
by AWS to obtain a device token from APNS. You can use this sample iOS app to help you get started
with Amazon SNS push notifications. For more information, see Registering for Remote Notifications in
the Apple Local and Push Notification Programming Guide.

To obtain a device token from APNS for your app

Download and unzip the snsmobilepush.zip file.
Navigate to the Appl eMbbi | ePushApp folder.
In Xcode, add the Appl eMbbi | ePushApp folder, which contains the sample iOS app.

Run the app in Xcode. In the output window, you should see the device token displayed, which is
similar to the following:

AwdhPE

Devi ce Token = <exanple 29z6j 5c4 df 46f 809 505189c4 c83fj cgf 7f6257e9 8542d2jt
3395kj 73>

Note
Do not include spaces in the device token when submitting it to Amazon SNS.

APl Version 2010-03-31
61

http://developer.apple.com/library/mac/#documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Step 6: Send a Message to an iOS app using Amazon
SNS and APNS

You should now have the necessary information from APNS (SSL certificate, app private key, and device
token) to send push notification messages to your mobile endpoint. You can now send a notification to
the iOS app on your device by either using the Amazon SNS console or the Amazon SNS API. To use
the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). To use the Amazon SNS API,
see Step 6: Send a Push Notification Message to an iOS app using Amazon SNS and APNS (p. 62).

Step 6: Send a Push Notification Message to an
IOS app using Amazon SNS and APNS

This section describes how to use the prerequisite information to send a push notification message to
your iOS app using Amazon SNS and APNS. You add the prerequisite information to the AWS sample
file SNSMobi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. Create a new Java project in Eclipse (File | New | Java Project).

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMbbi | ePush. j ava

1. Inthe SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobi | ePush. j ava
in Eclipse.

2. Depending on which APNS you are using, uncomment either
sanpl e. demoAppl eAppNoti fication(); orsanpl e. denoAppl eSandboxAppNot i fication(); .
For example, if you're using denoAppl eSandboxAppNot i fi cati on, it should look similar to the
following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/'] sanpl e. denmbAndr oi dAppNotification();

/'] sanpl e. denoKi ndl eAppNoti fication();

/1 sanpl e. denmbAppl eAppNoti fication();

sanpl e. denmoAppl eSandboxAppNoti fi cation();

/1 sanpl e. denoBai duAppNoti fication();

/1 sanpl e. dembWNSAppNot i fication();

APl Version 2010-03-31
62

https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 6: Send a Message to an iOS app using Amazon
SNS and APNS

/1 sanpl e. denoMPNSAppNot i fi cation();

Locate the denpAppl eSandboxAppNot i fi cat i on method and enter the device token you received
from APNS for the value of the device token string. For example, it should look similar to the following:

String deviceToken = "ex
anple29z6j 5c4df 46f 809505189c4c83f j cgf 7f 6257€98542d2j t 3395kj 73" ;

Enter the APNS SSL certificate for your app. At the beginning of each new line in your certificate,
you must add \ n. For example, it should look similar to the following:

String certificate = "----- BEG N CERTI FI CATE- - - - - \' nM | G TCCAf | CCQDENYoRWOUXO
j ANBgkghki GOWOBAQUFADCBI DEL MAk GA1UEBhMC\ nVWIk Cz AJ BgNVBAgTAl d BVMRAWDg Y
DVQQHEWd TZWFOd Gx | MOBWDQYDVQQKEWZBbWF6\ nb24x FDASBgNVBAS TCOl BTSBDb25zb2x| MRl
WEAYDVQQDEW UZXNOQ2I s YWvKk Hz Ad\ nBgkghki GOWOBOQEWEGEVH 251 QGFt YXpvbi 5j b20wHheN
MIEWNDI 1M AONTI xWhc N nMTT whDI OM AONTI xW CBi DEL MAk GA1UEBhMCVWIVK Cz AJBgNVBAg TA! d
BVRAWDg YD\ nVQQHEWA TZWFOd G| MOBWDQYDVQQKEWZ BbWFEb 24 x FDASBgNVBAS TCOl BTSB
Db25z\ nb2x! MRI WEAYDVQQDEW UZXNOQ2I s YWk Hz AdBgk ghki GOWOBCQEWEGEVb251 QGFt \ nYX
pvbi 5j b20wyZ8wDQYJKoZI hvc NAQEBBQADg YOAM GJA0GBAMaKOdNn+a4GmA W\ n21uUSf w

f Evy SW C2XADZ4nB+BLYgVI k60Cpi wsZ3@3vUEI G381 yNoH f OWYK8mDT\ nr DHu
dUzZg3gX4waLGBMA3q7Wjc/ MoQ TxOUSQv7c7ugFFDz QGBz ZswY6786nB6gpE\ nl bb30Chj Zn
zcvQAaRHhdl QW Mr2nr AgMBAAEWDQYJKoZI hvc NAQEFBQADg YEAt Cu4\ nnUhVWx YUnt
neD9+h8My9g6q+auNKyExzyLwax| Aoo7TJIHi dbt S4J5i NnmZgXLOFkb\ nFFBj vS

fpJl 1 J00zbhNYS5f 6GuOEDNFJI 0ZxB

H Jnyp3780D8uTs7f Lvj x79Lj STb\ nNYi yt VbZPQUBYaxu?2j Xni m/w3r r szl aEXAMPLE=\ n- -
---END CERTI FI CATE- - - - - "

Enter the private key for your app. At the beginning of each new line in your certificate, you must add
\ n. For example, it should look similar to the following:

String privateKey = "----- BEGLN RSA PRLVATE KEY--- - - \nMJI G TCHAf I C
CQDINVoRWOUXg ANBgkghki G7wOBAQUFADCBI DEL MAk GALUEBhMC\ nW/Vk Cz AJBgNVBAGTAI dB
MRAWDg Y DVQRHEWM TZWFO d Gx 2 MBWDQYDVQRKEWZBbWF6\ nVVIk Cz AJBgNVBAgTAl dBVMRAWDgY
DVQQRHEWd TZWFOd Gx | MQBWDQYDVQRKEWZBbWF6\ n4MXNchZOFFr eg4Rr 3Xzhb9Rhv

I 1 Rgsr 3wJ4/ FYai 3z96EXAMPLE=\ n- - - - - END RSA PRLVATE KEY----- "

Enter a name for your app. App names must be made up of only uppercase and lowercase ASCII
letters, numbers, underscores, hyphens, and periods, and must be between 1 and 256 characters
long. For example, it should look similar to the following:

String applicati onNane = "mypushappnane";

Run the Java application. You should see output similar to the following in the output window of your
IDE:

Cetting Started with Amazon SNS

{PlatformApplicationArn: arn:aws:sns:us-west-2:111122223333: app/ APNS_SAND
BOX/ nypushappnane}

APl Version 2010-03-31
63

Amazon Simple Notification Service Developer Guide
Getting Started with Baidu

{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ APNS_SANDBOX/ push
app/ 97e9ced9- f 136- 3893- 9d60- 775467eaf ebb}

{"default":"This is the default Message", "APNS_SANDBOX":"{ \"aps\" : {
\"alert\" : \"You have got email.\", \"badge\" : 9,\"sound\" :\"default\"}}"}
Publ i shed. Messagel d=d65f b4bb- b903- 5e37-83d4-f eb4818d6da3

On your iOS device, you should see a message notification.

Getting Started with Baidu Cloud Push

Baidu Cloud Push is a Chinese cloud service. Using Baidu, you can send push notification messages to
mobile devices. This section describes how to obtain the Baidu prerequisites and send a push natification
message using Amazon SNS and Baidu.

Topics
¢ Baidu Prerequisites (p. 64)
¢ Step 1: Create a Baidu Account (p. 64)
¢ Step 2: Register as a Baidu Developer (p. 66)
¢ Step 3: Create a Baidu Cloud Push Project (p. 69)
¢ Step 4: Download and Install the Android Demo App from Baidu (p. 72)
e Step 5: Obtain a User Id and Channel Id from Baidu (p. 76)
¢ Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu (p. 76)

Baidu Prerequisites

To send a push notification message to mobile devices using Amazon SNS and Baidu, you need the
following:

* Baidu account

¢ Registration as a Baidu developer

¢ Baidu cloud push project

¢ API key and secret key from a Baidu cloud push project
« Baidu user ID and channel ID

¢ Android demo app

If you already have these prerequisites, then you can send a push notification message to a mobile
endpoint using the Amazon SNS API. For more information about using the Amazon SNS API, see Step
6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu (p. 76).

Step 1: Create a Baidu Account

To use Baidu, you must first create an account.

Important

In order to create a Baidu account there is a verification step where you must enter Chinese
Simplified characters. The easiest way to accomplish this task is for someone that can read
Chinese to assist. Another option is to use Amazon Mechanical Turk for creating the Baidu
account. Once you have the account and password created for Baidu, you could login and change
the password without needing to enter Chinese Simplified characters. For more information
about Mechanical Turk, see the Amazon Mechanical Turk Requester User Interface.

APl Version 2010-03-31
64

http://docs.aws.amazon.com/AWSMechTurk/latest/RequesterUI/Welcome.html

Amazon Simple Notification Service Developer Guide
Step 1: Create a Baidu Account

To create a Baidu account

1. Onthe Baidu Portal, in the top right corner, click (Registration).

HEDE | 22|

90
Bai®SE

HE ME HE AGE 5 B I hE

BE—T

2. Enter an email address, password, and verification code, and then click (Registration).

o <
K)
BailWEE mEsks j
FULEH | emailname@domain.com I
E) I password]

win MGy | o

¥ HEAEHEE cEER A

A

You should then see a page similar to the following, informing you that an activation email has been
sent to the email address you entered.

.... .
Bai®WEE mEsks I

© sz—suurmiy
NP AT @omail.comE s T —HHNEREE , & S Bt R SeRl T AR

SEMHEIhIG . 2501 LSS RS
1R S A LGIERESS e HE . 2F. BF. M2 #E

3. Login to your email account, open the activation email you received from Baidu, and click the provided
link:

APl Version 2010-03-31
65

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

BaiW&E

RO
fElF

5T 20140 05F 150 06:04 EHMEEHS Sgmail. con « EHEITEE . FARIEEHEKS

hitp:passport baidy, comi2) 37ace 15197577 4atpl=mn&u=ntpo%IA%IF L2 Fwww,
baidu com®2EAreqmerge=1Asubpro=
PO BTTIE b4

1 AT ERHESAEEY W

TEE=CI)

flieiere (gl e et TR gL e =t

2. EREEAEE. TG o s8R 06 BEEEENINERRE .
3 EMENESELRTERSE. R i, YE. B FE . lE

4. Afteryou click the provided link in the activation email from Baidu, you must then enter the verification
code (Chinese Simplified characters).

(]]
BaidsE

SHSE

ARESEIRERESN WREER PARHER - SRR ST EEm

sﬁﬁ*ﬁl:lw ETE? -k
s

2014 BBaidu

Once you have created a Baidu account, you can then register as a developer.

Step 2: Register as a Baidu Developer

You must register as a Baidu developer to use the Baidu push notification service.

To register as a Baidu developer

1. Onthe Baidu Portal, click (More).

A

90
Bai®SE

s U WP A BE ER 0 mE Bd xE[ER0
| AE-T

- —

2. Click (Baidu's Open Cloud Platform)

APl Version 2010-03-31
66

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

3.

4.

5.

By

L1)
a0) .)

BaidhBEE xia mm e i 55 ME mE em xE

| EE-T | =

SEER > R

A

ﬁ ot Eﬂ BErEE @ BER
EEBEEENHE SEENESTE EHEES L, SHRER SEREEHHPE
AREE) AEEfA) AR & BEESRE
Frabi e EiRER i FHRFNFEUER — RS R OEFFRHLETR

) anee HEms @) BE2E O EEfints |
RHETFS LR T ERMLE, LERES LIEHES. RMESE! SRR e

2 BEREREAL v BEELTE o Ba#R
BEREHNEPCH T FHRRE. FEEE FEAFHEEHIA

On the next page, near the top right corner, click (Developer Services).

EEEE -

3045

L0107 2 [=) 1) =2

Click (Start Now)

) BEANES

/N\FIFEAES

nBEER—E, HASFREEE

Enter your name, description, and mobile phone number for receiving a verification text message,
and then click (Send Verification Code).

APl Version 2010-03-31
67

Amazon Simple Notification Service Developer Guide
Step 2: Register as a Baidu Developer

HERFEEER LN BRI / EE SRS B
(A = |
=
=/

Ph—EARNEEEREREUTESR, CME EARRA MRS L RE IS = IR

- gem ® 4A O am
© AR - [F= -]o o

- FREENE l FirstName LastName I L]
= . L]
SRR Descriptive text I

ju il.com #EEL

S FS | mobile phone number I mxnirE @ @

FIREEHES : | ‘

makELOGO : 112px*54px , STHFPNG/IPG/GIFER , RIFBIRZEEPC

You should then receive a text message with a verification number, similar to the following:

osvosr204 i ¢
-8y gaERTURDLTn ;

1
3, ¢ {
T R |

Complete the developer registration by entering the verification number and then click (Submit)
on the bottom of the page.

HEFEEER Cana:es] 1RAERYF / ER RS

(A - -
7 N

&), §

Fh—EEEEERRERETEE, DAl SEREA FR s RS RS

3R @ b S|
" FRgRE - HE - @ L]

T FIEENE l FirstName LastName I L]
TR - Descriptive text I S

ju il.com #ER

CFLS | mobile phone number mxmEg e 9

FrEEET S : | ‘

mkeL0GO : 112px*54px , ZAFPNG/IPG/GIFHET , RIFHRAEEPC

APl Version 2010-03-31
68

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

Upon successful registration, you should see the following:

) BRAKS T —
WERFESER SEHIFERHE HSERTF / (EFEF IR g
=\ =\)\
4] | o o
\—/ —/ \—/

BRFRSSIERETh , S0 A EEITAE |
BERNEFPARMTEEME ARSI THSr A TTRS |, BEEhH BT 8E ,
WS A EREThhnE |

AR > >

After registering as a Baidu developer, you can then proceed to the next step to create a Baidu cloud

push project. This assumes that you are still logged in. If you are not logged in, then you can use
the following login procedure.

To login to Baidu

1. On the Baidu Portal, in the top right corner, click (Login).

uzn® [E2lim
O
BaichEE
N M@ EE E AF B2 0K #A
I S

B# ZTE haol2s | FE>

2. Enter your Baidu username (email address) and password and then click (Login).

& SIEMKS

P | Baidu username (email address) I
BEARS
password I
W ThEiHER icEaT
ur
.

4 ' SERIER

Step 3: Create a Baidu Cloud Push Project

When you create a Baidu cloud push project, you receive your app ID, API key, and secret key.

APl Version 2010-03-31
69

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

To create a Baidu cloud push project

1. Onthe Baidu Portal, click (More).

(1
.0
Bai W SE
=
i&@ﬂﬁﬂﬁmiﬁﬁﬁi@ﬁﬂﬁﬂ@ﬁﬂﬁ?ﬁ»l
BT
2. Click (Baidu's Open Cloud Platform)
0% Y
BaidhEE #a mm wE i 55 BE 09 0E xE
| AE—T | @
EEET > Rk
EAT
frani"] N EERm EsE &) EC
n EEBEERNHE FEEMESTE Eﬂ EEEE L SHREER! L - EERRTE
AezE Q EzEEL O EzME & AR
Frabi e EiRER i FHRFNFEUER — RS AR OEFFRHLETR
@ e [5x2s @ BxicE O Exfuzta|
RHETFS LR T ERMLE, LERES LIEHES. RMESE! SRR e
%, ARRERAL W BEELDPL 5 B
BETERNEPCH T FUMRE. FREE FEOIEEEHIA

WN,J‘—

3. On the next page, near the top right corner, click (Developer Services).

EifiEHE v g

B IR | FPRERS

4. Click (Cloud Push).

ZHRE (Cloud)

> ASIE(BAE)
.b FiTE. BRIRSRETING

==

SOEEA. HE. SREEERS

5. Click (Management Console).

APl Version 2010-03-31
70

http://www.baidu.com/

Amazon Simple Notification Service Developer Guide
Step 3: Create a Baidu Cloud Push Project

6.

8.

iR Eavozii] EEEHE REST API

Click (Management Console) to enter information for an Android project.

o~

) BEARKS - sieh BN
& > Zgpotsm > SRS > SHE > EEENS
=i EREHs
B Emns Wik
& FEET
BESHRIERSATESRETESERRNSASRIESEN . FIEEIEE RS HEaS -
| EmEsE SHEEEEIE, ST R
T RESTAPI = SifE%H
g sx AR R DA
. . pienE
B REES
TR, RN . ASTEEE.
B @ik R
B #mfm IR ANCOIOT SERERIRS . SEEAENHIATDS, HREASEY 025 PR L e
DT A TE RS AZEEREEYEIREEG . SEEREERSHER. i\ ERESESE SHEn
RIS » & S R AVEIRIEE

Click (Create Project).

HAREESEE

N

[RBCS) ..
BAE3.Ol im0

Enter an app name and then click (Create).

APl Version 2010-03-31
71

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

ARERSER
© R < BETE)
"HEEEERELEIC B
BREMmT , B * B PR App Name i ;
BTSN | :
e " BERAE: [are
0 aE:
BiRhE: [EEE

SitemaptEaEgg.. 03-12

9. Upon successful completion of the project, you will then see a page similar to the following with your
app ID, API Key, and Secret Key. Make note of the API key and secret key, as they will be needed
later.

+. | AppName

HIE-Z3 -1 HAss

e

& Al B ppfane 7

= e Teon:

A Frontia e z 3

‘J - API Key: nn jav
Secret Key: nUF Gutf ER

B> k=
el zknd @ 2014-05-20 12:23:09

B RoEm B) - 2014-05-20 12:23:12

Q iBsHEH

Step 4: Download and Install the Android Demo
App from Baidu

Baidu generates an Android demo app that you can download and install to your mobile device.

To download and install the Android demo app from Baidu

1. Starting from the page that displays the app ID, API Key, and Secret Key, click (Cloud Push)

APl Version 2010-03-31
72

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

ID:

A Frontia
API Key:
Secret Key:
B> Wik

2. Click (Push Settings)

+. AppName o

HE-23) <| Mg

*
&
)
U
o

{4
Hi
3
=

v
v

h
I
&
e
Y

3. Using reverse domain name notation, enter a package name inthe (App Package Name) box.

+. AppName
2 mbne < ppE P!
HERT
BmET: AppNaze
o FEaE
= = 'i Android
Frontia |E§ﬂ]ﬂ1“5:| | com.exampledomainname. examplepackagename . |
9 =i © 108
B iz biEANSE Browse. | No file selected,
0 AR EFUT: Browse. | No file selected.
Q LBsiEH
£ Hiapr BERE- FFEINT (Developaent) # 1R (Production)
v RRES

e AT S e S SN S W

4. Click (Save Settings)

APl Version 2010-03-31
73

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

5.

+. AppName
e < piinE
FEHES -

R A& : Appiame
o mmsIg
= =xn W Android
= &
ﬁ Frontia EHAE: com. exampledonainname, exanplepackagenane]
1w ¢ 108
B #ikn HEUFH-: Browse. | ¥o file selscted.
B ArRiE L= .\c: file selected
Q LBSEESH
L+ Hibarr SBERE FERT Development) £ BRI (Production)
~ GTRES

EEH S - FRF BB ERR R

. BEF |3 i iR LR R E R A Bk ETAER

You should then see the (Successfully saved!) message displayed.

Next, click (Quick Example).

+. AppName

5 e < pRE
5 RS
EME: Appliaze
o EmsIE
= zuu & Android

B

com. exampledonainname. exanplepackagenzne

You should then see a page similar to the following:

APl Version 2010-03-31
74

Amazon Simple Notification Service Developer Guide
Step 4: Download and Install the Android Demo App

x HEsfFl (Android)

ATHEENG @ T AndroidRE, RRSNER T REFHLADENAppkey THER - BRI ERTHER-

mii R R BITAR TR R A,

T ERAFEETHE | FRAPKZEH TR,

6. On the Android mobile device you want to test with, scan the QR code icon using a code scanner,
such as QR Droid, to get a link to a demo app provided by Baidu.

Note
You can also download the demo app by clicking Android (Download Android Sample)

* BRERMA (Android) g

ATHBEN, 17 » FREEMT

FiE i TR B BTRETREAEETITA,

The Baidu Push Demo app is included in the downloaded PushDenp. zi p package. You
can use the demo app as an example for creating your own app to use with Baidu. In addition,
the push service jar file (pushservi ce- 4. 0. 0. j ar) from Baidu is included in the
PushDenp. zi p package. You must use the jar file from Baidu in order to create a new app.

7. Click the link you receive after scanning the scan code. This will download the demo app provided
by Baidu onto your mobile device.

8. Aifter the download has completed, install the demo app onto your mobile device. You should then
see the following Push Demo app installed:

APl Version 2010-03-31
75

http://qrdroid.com

Amazon Simple Notification Service Developer Guide
Step 5: Obtain a user Id and channel Id

Step 5: Obtain aUser Id and Channel Id from Baidu

Baidu generates a user Id and channel Id that you will need to send a push notification message using
Baidu.

To obtain the user Id and channel Id from Baidu

1. Open Push Demo and then click, in the bottom right, (Bind Without Baidu Account).

2. Make a note of the userld and channelld, as you will be using them in the next step.

Note

For an example of Java code that is used to retrieve the userID and channelld, see the onBi nd
method in the MyPushMessageRecei ver . j ava file of the Push Demo app from Baidu. For
more information, see the Android integration guide. To translate this guide into English, you
can paste the URL, http://developer.baidu.com/wiki/index.php?title=docs/cplat/push/guide, into
Bing Translator and then click Translate.

Step 6: Send a Push Notification Message to a
Mobile Endpoint using Amazon SNS and Baidu

This section describes how to send a push notification message to your mobile endpoint. You add the
gathered prerequisite information to the AWS sample file SNSMobi | ePush. j ava, which is included in
the snsmobilepush.zip file. Included in the SNSMbbi | ePush. j ava file are examples on how to create a
mobile endpoint and use message attributes for structuring the message. For additional information and
examples on how to create mobile endpoints and use message attributes with Baidu, see Creating an
Amazon SNS Endpoint for Baidu (p. 78) and Using Message Attributes for Structuring the Message (p. 79).

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

APl Version 2010-03-31
76

http://developer.baidu.com/wiki/index.php?title=docs/cplat/push/guide
http://www.bing.com/translator/
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile
Endpoint using Amazon SNS and Baidu

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMbbi | ePush. j ava
in Eclipse and uncomment sanpl e. denoBai duAppNoti fi cati on(); . It should look similar to
the following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/I sanpl e. dembAndr oi dAppNoti fication();

/I sanpl e. denoKi ndl eAppNotification();

/| sanmpl e. dembAppl eAppNoti fication();

/I sanmpl e. denbAppl eSandboxAppNot i fi cati on();
sanpl e. denoBai duAppNot i fication();

/I sanmpl e. demdWNSAppNot i fi cation();

/I sanmpl e. dembMPNSAppNot i fi cation();

Locate the denpBai duAppNot i fi cat i on method and enter the user ID and channel ID you received
from Baidu for the value of the userld and channelld strings. For example, it should look similar to
the following:

String userld = "EXAMPLE- kKLMcheXOv3xOxW/hGETF dBp. . . KT2TGkvnKyTvLuS
pzK_gsHgxVB_UpntUa7d 6g3EXAMPLE";
String channel Id = "EXAMPLE<channel | d>EXAMPLE";

Enter the secret key for your application. For example, it should look similar to the following:

String secretKey = "EXAMPLE<secr et key>EXAMPLE";

Enter the API key for your application. For example, it should look similar to the following:

String api Key = "EXAMPLEXV2| cV2zEKTLNYs625zf k2j h4EXAMPLE" ;

Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationNane = "bai dupushapp”;

APl Version 2010-03-31
77

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile
Endpoint using Amazon SNS and Baidu

6. Run the application. You should see output similar to the following in the output window of your IDE:

CGetting Started with Amazon SNS

{Pl atformApplicati onArn: arn:aws:sns: us-west-2:111122223333: app/ BAl DU Test App}
{Endpoi nt Arn: arn: aws: sns: us-west-2:111122223333: endpoi nt/ BAl DU/ Test

App/ 8f 3f df 0d- 520b- 38d1- 8ed2- 3301a477eef 3}

{Message Body: {"BAIDU":"{\"title\":\"New Notification Received from
SNS\",\"description\":\"Hello World!'\"}"}}

{Message Attributes: ("AWS. SNS. MOBI LE. BAl DU. MessageKey": "def aul t-channel -
nsg- key"), (" AW5. SNS. MOBI LE. BAI DU. Depl oySt at us™: "1"), (" AW5. SNS. MO

Bl LE. BAI DU. MessageType": "0")}

Publ i shed!

{Messagel d=56a3a3e6- 4b4b- 59b4- 8d1d- ef f 592c0f f al}

On your Android device, you should see a push notification message appear within the Android app,
similar to the following:

TtEme R il g

- Amazon Maobile Push

Jll & 3:59 F

Welcome!
message=Hello World!
from=353185151096
collapse_key=Welcome

Creating an Amazon SNS Endpoint for Baidu

This section provides addition information and examples on how to create an Amazon SNS endpoint to
use with Baidu. You create an Amazon SNS endpoint, using the combined userld and channelld received
from Baidu, to represent the app and mobile device. The endpoint is then used by Amazon SNS for

publishing notification messages using the Baidu push notification service to the app on the mobile device.

The following Java example shows how to create an Amazon SNS endpoint for a Baidu app and mobile
device.

Map<String , String> attri butes = new HashMap<String , String>();

/1 Insert your Userld. This is a mandatory fi el d.
attributes. put("Userld", "9999999999");

/1 Insert your Channelld. This is a nmandatory field.
attributes. put ("Channel I d", "1234567890");

Creat ePl at f or rEndpoi nt Request creat ePl at f or ntEndpoi nt Request = new Creat ePl at f or
nEndpoi nt Request () ;

APl Version 2010-03-31
78

Amazon Simple Notification Service Developer Guide
Step 6: Send a Push Notification Message to a Mobile
Endpoint using Amazon SNS and Baidu

/1 Baidu endpoints are identified by a conbination of the userld and channel | d
whi ch nust be supplied as endpoint attributes,

/1 without which a valid endpoint cannot be successfully created.

creat ePl at f or nEndpoi nt Request . set Attri butes(attributes);

/1 Insert your Channelld. This is a nandatory field.
creat ePl at f or nEndpoi nt. set Pl at f or niToken(" 1234567890") ;

/'l Insert your Custonmer User Data. This is an optional field.
creat ePl at f or nEndpoi nt . set Cust onlJser Dat a(" Test Endpoi nt");

/1 Insert your Platform Application Arn. This is a mandatory fi el d.

creat ePl at f or nEndpoi nt. set Pl at f or mAppl i cati onArn("arn: aws: sns: us- east -
1:123456789012: app/ BAI DU/ Test App") ;

String endpoi nt Arn = snsClient. createPl at f or nEndpoi nt (creat ePl at f or nEndpoi nt Re
quest);

Note the following considerations when using the Amazon SNS API to create an endpoint for use with
Baidu:

* In CreateEndpointRequest, the platform token field should contain the channelld.

« If you specify the endpoint attribute "Token" in the attributes map, this field must encapsulate the
channelld as well.

» The channelld should also be specified as an endpoint attribute with the name "Channelld".

* The value of the "Channelld" endpoint attribute and the platform token field and/or "Token" endpoint
attribute must be identical to construct a successful request.

» The userld should be specified as an endpoint attribute with the name "Userld".

¢ For a successful response, the request must contain valid Userld and Channelld values in the attributes.
Also, the Channelld parameter entered using setPlatformToken(String), which is a part of
CreatePlatformEndpointRequest, must be the same as the Channelld specified in the attributes map.

Using Message Attributes for Structuring the Message

This section provides addition information and examples for using message attributes to structure a
message and send a push notification message to a mobile endpoint.

The following Java example shows how to send a push notification message to a mobile endpoint and
how to use the optional message attributes for structuring the message. If an attribute is not sent, a default
value is auto-set in its place.

Note
The push notification message cannot exceed 256 bytes, which is the maximum size allowed
by Baidu.

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<Stri ng,
MessageAt tri but eVal ue>();

/'l Insert your desired value of Deploy Status here. 1 = DEV, 2 = PROD
messageAt tri but es. put (" AWS. SNS. MOBI LE. BAI DU. Depl oySt at us”, new MessageAttri bute
Val ue().w t hDat aType("String").w thStringVal ue("1"));

/'l Insert your desired val ue of Message Type here. 0 = | N-APP MESSAGE, 1 = ALERT
NOTI FI CATI ON
messageAttri but es. put (" AWS. SNS. MOBI LE. BAI DU. MessageType", new MessageAttri bute

APl Version 2010-03-31
79

Amazon Simple Notification Service Developer Guide
Getting Started with GCM

Val ue().wi thDataType("String").w thStringVal ue("1"));

/'l Insert your desired value of Message Key
nmessageAt tri but es. put (" AWS. SNS. MOBI LE. BAI DU. MessageKey", new MessageAttribute
Val ue().w t hDat aType("String").w thStringVal ue("test-nessage"));

Publ i shRequest publ i shRequest = new Publ i shRequest ();

publ i shRequest . set MessageAt tri but es(nmessageAttri butes);

String message = "{\"title\":\"Test_Title\",\"description\":\"Test_Descrip
tion\"}";

publ i shRequest . set Message(nessage) ;

publ i shRequest . set MessageStructure("json");

publ i shRequest . set Target Arn("arn: aws: sns: us- east - 1: 999999999999: end

poi nt/ BAI DU Test App/ 309f c7d3- bc53- 3b63- ac42- e359260ac740") ;

Publ i shResult publishResult = snsCient. publish(publishRequest);

Note the following considerations when using the optional message attributes for structuring the message:
« AWS. SNS. MOBI LE. BAI DU. Depl oy St at us

Possible Values (Default = 1):

1 — Tags the notification as being sent in a development environment

2 — Tags the notification as being sent in a production environment
* AWSE. SNS. MOBI LE. BAI DU. MessageType

Possible Values (Default = 1):
0 — Generates an in-app message

1 - Generates an alert notification. Alert notifications are restricted to the following format:

{"title":"<TITLE>", "description":"<DESCRI PTI ON>"}

<TI TLE> and <DESCRI PTI ON> are the title and description you desire for your alert notification. If the
message is incorrectly formatted JSON, the request fails.

* AWS. SNS. MCBI LE. BAI DU. MessageKey

A short message identifier you can attach to your message

Getting Started with Google Cloud Messaging
for Android

Google Cloud Messaging for Android (GCM) is a service that enables you to send push notification
messages to an Android app. This section describes how to obtain the GCM prerequisites and send a
push notification message to a mobile endpoint.

Topics
¢ GCM Prerequisites (p. 81)
¢ Step 1: Create a Google API Project and Enable the GCM Service (p. 81)
¢ Step 2: Obtain the Server API Key (p. 81)
¢ Step 3: Obtain a Registration ID from GCM (p. 82)

APl Version 2010-03-31
80

Amazon Simple Notification Service Developer Guide
GCM Prerequisites

¢ Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM (p. 83)

GCM Prerequisites

To send push notification messages to an Android app, you need the following:

* Android app registered with GCM
¢ Registration ID
¢ Server API key (sender auth token)

If you already have these prerequisites, then you can either use the Amazon SNS console to send a push
notification message to the mobile endpoint or you can use the Amazon SNS API. For more information
about using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). For more information
about using the Amazon SNS API, see Step 4: Send a Push Notification Message to a Mobile Endpoint
using GCM (p. 83).

Step 1: Create a Google API Project and Enable
the GCM Service

To send an push notification message to an Android app, you must have a Google API project and enable
the GCM service.

To create a Google API project and enable the GCM service
1. If you do not already have a Google API project, then see the Creating a Google API project in the

Android developer documentation.

Note
If you do not already have an Android app registered with GCM, then you can use the sample
Android app provided by AWS as a template to get started. For more information, see Step
3: Obtain a Registration ID from GCM (p. 82).

2. Onthe Google APIs Console web site, verify that you have an Google API project.

3. Click Services, and make sure Google Cloud Messaging for Android is turned on.

= Google Cloud Messaging for Android @ END

Step 2: Obtain the Server API Key

To communicate with GCM on your behalf, Amazon SNS uses your server API key. This key will be used
in a later step to send a push notification to a mobile endpoint.

To obtain the server API key

1. Onthe Google APIs Console web site, click API Access and make note of the server API key with
the Key for server apps (with IP locking) label.

2. If you have not yet created a server API key, then click Create new Server key. This key will be
used later in this section to send a push notification to a mobile endpoint.

APl Version 2010-03-31
81

http://developer.android.com/google/gcm/gs.html
https://code.google.com/apis/console
https://code.google.com/apis/console

Amazon Simple Notification Service Developer Guide
Step 3: Obtain a Registration ID from GCM

Step 3: Obtain a Registration ID from GCM

When you register your app with GCM to receive push notification messages, a registration ID is generated.
Amazon SNS uses this value to determine which app and associated device to send mobile push
notifications to.

The following steps show how to use the sample Android app provided by AWS to obtain a registration
ID from GCM. You can use this sample Android app to help you get started with Amazon SNS push
notifications. This sample app requires the Android SDK, the Google Play Services SDK, and the Android
Support Library package. For more information about these SDKs, see Get the Android SDK and Setup
Google Play Services SDK. For more information about the Android Support Library package, see Support
Library Setup.

Note

The provided sample Android app is compatible with physical devices running Android version
2.3 or later and with virtual devices running Google API 17 or later.

To obtain a registration ID from GCM for your app

1. Download and unzip the snsmobilepush.zip file.

2. Import the Andr oi dMbbi | ePushApp folder into your IDE. In Eclipse, click File, Import, expand the
Android folder, click Existing Android Code Into Workspace, click Next, browse to the folder
Andr oi dMbbi | ePushApp, click OK, and then click Finish.

After the sample Android app has been imported into your IDE, you need to add the Project Number
for your Google API project to the st ri ngs. xm file, which is included in the sample Android app.

3. Add the Project Number for your Google API project to the st ri ngs. xni file. In your IDE, you will
find the file included in the values folder, which is a subfolder of res. The string will look similar to
the following:

<string name="project_nunber">012345678912</stri ng>

4. Add googl e- pl ay-servi ces. jar, andr oi d-support-v4.jar, and androi d. j ar to the Java
Build Path. Select googl e- pl ay- servi ces. j ar and andr oi d- support - v4. j ar for export, but
do not select andr oi d. j ar for export.

= Properties for AndroidMobilePushApp &

type filter text Java Build Path
> Resource
Amazon Mahile App SDK | 2 Source | 1=" Projects | = Libraries Gﬁ} Order and Export
Android Build class path order and exported entries:
Android Lint Preferences (Exported entries are contributed to dependent projects)
Builders [AndroidMobilePushApp/src

Java Build Path

[AndroidMobilePushApp/gen
> Java Code Style

- [[] =h Android 4.0.3
: j::: E;i:;’:”er Bk Android Private Libraries
Javadoc Location E\\Android Dependencies
(me google-play-services.jar| C:\Program Files (x86)\Android\android-sdk\extra
(o android-support-vd.jar -|C:\Program Files (x86)\Android\android-sdk\extras|
] s android.jar - C:\Progran Files (x86)\Android\android-sdk'platformstandroic

Project References
Run/Debug Settings
Task Tags

kl e

APl Version 2010-03-31
82

http://developer.android.com/sdk/index.html
http://developer.android.com/google/play-services/setup.html
http://developer.android.com/google/play-services/setup.html
http://developer.android.com/tools/support-library/setup.html
http://developer.android.com/tools/support-library/setup.html
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

5. Run the app to see the registration ID as output to the Android logging system. If you are using
Eclipse with the Android ADT plug-in, you can see the registration ID in the LogCat display window.
For example, the output containing the registration ID will look similar to the following:

06-05 11:50:43.587: V/ Registration(14146): Registered, registrationld: =

Exanpl ei 7f FachkJ1xj | qT64RaBkcGHochnf 1VQAr 9k- 1 B

Jt Kj p7f edYPzEWT_Pg3TuOl r oqr olcwW UvgkcPPYcaXCpPWrE3Bgn-

wi gl Ezp5zZ7y_j sMOPKPxKhddCzx6paEsyay9Zn3DAWNUIb8nB6HXr Bf 9dqaEw, error = nul |,
unregi stered = nul |

The installed app will appear on your Android device:

Amazan

fabile Push

You should now have a registration ID, server API key, and Android app registered with GCM. You can
now send a notification to the Android app on your device by either using the Amazon SNS console or
the Amazon SNS API. To use the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90).
To use the Amazon SNS API, see Step 4: Send a Push Notification Message to a Mobile Endpoint using
GCM (p. 83).

Step 4: Send a Push Notification Message to a
Mobile Endpoint using GCM

This section describes how to send a push notification message to your mobile endpoint. You add the
gathered prerequisite information to the AWS sample file SNSMbbi | ePush. j ava, which is included in
the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. InEclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

APl Version 2010-03-31
83

https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Step 4: Send a Message to a Mobile Endpoint using GCM

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobi | ePush. j ava
in Eclipse and uncomment sanpl e. denbAndr oi dAppNoti fi cati on(); .It should look similar to
the following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
sanpl e. demoAndr oi dAppNoti fi cation();

/'l sanpl e. denoKi ndl eAppNoti fication();

/'] sanpl e. denmoAppl eAppNoti fication();

/1 sanpl e. demoAppl eSandboxAppNoti fi cation();

/'l sanpl e. denoBai duAppNoti fication();

/1 sanpl e. demoWNSAppNot i fi cation();

/'] sanpl e. demoMPNSAppNoti fi cation();

Locate the denpAndr oi dAppNot i fi cati on method and enter the registration ID you received
from GCM for the value of the registration ID string. For example, it should look similar to the following:

String registrationld = = "EXAMPLE- KLMchc XOv3xOxWhGETF dBp. . . KT2TGkvnKy TvLuUS
pzK_gsHgxVB_UpntUa7d 6g3EXAMPLE" ;

Enter the API key for your application. For example, it should look similar to the following:

String server APl Key = "EXAMPLExV2| cV2zEKTLNYs625zf k2j hAEXAMPLE";

Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicati onNane = "gcnpushapp”;

Run the application. You should see output similar to the following in the output window of your IDE:

Getting Started with Amazon SNS

{PlatformApplicati onArn: arn:aws:sns:us-west-2:111122223333: app/ GCM gcnpush
app}

{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ GCM gcnpush

app/ 5e3e9847-3183- 3f 18- a7e8- 671c3a57d4b3}

{"default":"This is the default nes

APl Version 2010-03-31
84

Amazon Simple Notification Service Developer Guide
Getting Started with MPNS

sage","GCM':"{\"delay_while_idle\":true,\"coll apse_key\":\"Wel
cone\",\"data\": {\"nessage\":\"Visit Amazon!\" , \"url\":\"ht
tp://ww. amazon. com \ "}, \"tinme_to_live\": 125 \"dry_run\":fal se}"}
Publ i shed. Messagel d=1ca8d7d1-c261-5bfc-8689-9db269c4ed6¢c

On your Android device, you should see a push notification message appear within the Android app,
similar to the following:

atEmm t [itlgs . s 3:50 6

! Amazon Maobile Push

Welcome!
message=Hello World!
from=3531851510096
collapse_key=Welcome

Getting Started with MPNS

Microsoft Push Notification Service for Windows Phone (MPNS) is a service that enables you to send
push notification messages to Windows Phone 7 (and later) apps. This section describes how to obtain
the MPNS prerequisites and send a push notification message using Amazon SNS and MPNS.

Note

Amazon SNS currently only supports sending unauthenticated push notification messages to
MPNS. To send authenticated push notification messages to Windows Phone 8.1 devices,
consider using Windows Push Noatification Services (WNS).

Topics
¢« MPNS Prerequisites (p. 85)
e Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages (p. 86)
¢ Step 2: Get a Push Notification URI from MPNS (p. 86)

¢ Step 3: Send a Push Notification Message to a Windows Phone app using Amazon SNS and
MPNS (p. 86)

MPNS Prerequisites

To send a push notification message to a Windows Phone app using Amazon SNS and MPNS, you need
the following:

¢ Windows Phone app configured to use MPNS
¢ Push notification URI from MPNS

If you already have these prerequisites, then you can send a push notification message to a Windows
Phone app using either the Amazon SNS console or the Amazon SNS API. For more information about
using the Amazon SNS console, see Using Amazon SNS Mobile Push (p. 90). For more information

APl Version 2010-03-31
85

Amazon Simple Notification Service Developer Guide
Step 1: Set Up Your Windows Phone App to Receive
Push Notifications Messages

about using the Amazon SNS API, see Step 3: Send a Push Notification Message to a Windows Phone
app using Amazon SNS and MPNS (p. 86).

Step 1: Set Up Your Windows Phone App to
Receive Push Notifications Messages

To send a push notification message to your Windows Phone app, you must enable the app for the MPNS
service. For more information, see Setting up your app to receive push notifications for Windows Phone
8.

Step 2: Get a Push Notification URI from MPNS

To create a mobile endpoint with Amazon SNS you need a push notification URI from MPNS. For more
information, see Setting up your app to receive push notifications for Windows Phone 8.

Step 3: Send a Push Notification Message to a
Windows Phone app using Amazon SNS and MPNS

This section describes how to use the prerequisite information to send a push notification message to
your Windows Phone app using Amazon SNS and MPNS. You add the gathered prerequisite information
to the AWS sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

1. In Eclipse, create a new Java project (File | New | Java Project).

2. Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

3. In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCr edenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1. Right-click the Java project folder, click Build Path, and then click Configure Build Path...
2. Click the Libraries tab, and then click Add Library....
3. Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1. Inthe SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMbbi | ePush. j ava
in Eclipse and uncomment sanpl e. demoMPNSAppNot i fi cati on(); . It should look similar to the
following:

SNSMobi | ePush sanpl e = new SNSMbbi | ePush(sns);

APl Version 2010-03-31
86

http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
http://msdn.microsoft.com/en-us/library/windowsphone/develop/hh202940.aspx
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Getting Started with WNS

/1 TODO Unconment the services you wish to use.
/] sanpl e. dembAndr oi dAppNoti fication();

/I sanpl e. denoKi ndl eAppNoti fication();

/I sanpl e. denpAppl eAppNoti fication();

/I sanpl e. denpAppl eSandboxAppNoti fication();

/I sanpl e. denoBai duAppNoti fi cation();

/I sanpl e. denoWNSAppNot i fication();

sanpl e. denoMPNSAppNoti fication();

2. Locate the denoMPNSAppNot i f i cati on method and enter the notification URI you received from
MPNS for the value of the notificationChannelURI string.

3. Enter a name for your application. Application names must be made up of only uppercase and
lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationNane = "npnspushapp";

4. Run the application. You should see output similar to the following in the output window of your IDE:

Getting Started with Amazon SNS

{Pl at f ormAppl i cati onArn: arn: aws: sns: us-west-2: 111122223333: app/ MPNS/ Test App}
{Endpoi nt Arn: arn:aws: sns: us-west-2:111122223333: endpoi nt/ MPNS/ Test

App/ 557597f 8- beda- 3035- 8c6d- bb7f a8b20f ef }

{Message Body: {"MPNS":"<?xm version=\"1.0\" encodi ng=\"utf-8\"?><wp: Not i
fication xm ns: wp=\"WPNotifica

tion\"><wp: Ti | e><wp: Count >23</ wp: Count ><wp: Title>This is a tile notifica
tion</wp: Title></wp: Tile></wp: Notification>"}}

{Message Attributes: ("AWS. SNS. MOBI LE. MPNS. Type": "token"), (" AWS. SNS. MO
Bl LE. MPNS. Noti ficationC ass": "realtine")}

Publ i shed!

{ Messagel d=ce9855bf - 395f - 5ala- a4b9- 19ace305780d}

On your Windows Phone, you should see a push notification message appear within the app.

Getting Started with WNS

Windows Push Notification Services (WNS) is a service that enables you to send push notification
messages and updates to Windows 8 (and later) and Windows Phone 8.1 (and later) apps. This section
describes how to obtain the WNS prerequisites and send a push notification message using Amazon
SNS and WNS.

Topics
« WNS Prerequisites (p. 88)
¢ Step 1: Set Up Your App to Receive Push Notifications Messages (p. 88)
e Step 2: Get a Push Notification URI from WNS (p. 88)
¢ Step 3: Get a Package Security Identifier from WNS (p. 88)

APl Version 2010-03-31
87

Amazon Simple Notification Service Developer Guide
WNS Prerequisites

¢ Step 4: Get a Secret Key from WNS (p. 88)
e Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS (p. 88)

WNS Prerequisites

To send push notification messages to Windows devices using Amazon SNS and WNS, you need the
following:

« Windows 8 (and later) or Windows Phone 8.1 app configured to use WNS
« Push natification URI from WNS

« Package security identifier

¢ Secret key

If you already have these prerequisites, then you can send a push notification message to an app using
either the Amazon SNS console or the Amazon SNS API. For more information about using the Amazon
SNS console, see Using Amazon SNS Mobile Push (p. 90). For more information about using the Amazon
SNS AP, see Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS (p. 88).

Step 1: Set Up Your App to Receive Push
Notifications Messages

To send push notification message to your app, you must enable the app for the WNS service. For more
information, see Windows Push Notification Services.

Step 2: Get a Push Notification URI from WNS

To create a mobile endpoint with Amazon SNS, you need a push notification URI from WNS. For more
information, see Windows Push Notification Services.

Step 3: Get a Package Security Identifier from WNS

To create a mobile endpoint with Amazon SNS, you need a package security identifier from WNS. For
more information, see Windows Push Notification Services.

Step 4. Get a Secret Key from WNS

To create a mobile endpoint with Amazon SNS, you need a secret key from WNS. For more information,
see Windows Push Notification Services.

Step 5: Send a Push Notification Message to an
App using Amazon SNS and WNS

This section describes how to use the prerequisite information to send a push notification message to
your app using Amazon SNS and WNS. You add the gathered prerequisite information to the AWS sample
file SNSMobi | ePush. j ava, which is included in the snsmobilepush.zip file.

Note
The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more

APl Version 2010-03-31
88

http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh913756.aspx
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Step 5: Send a Push Notification Message to an App
using Amazon SNS and WNS

information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

To add the sample to Eclipse

In Eclipse, create a new Java project (File | New | Java Project).

Import the SNSSanpl es folder to the top-level directory of the newly created Java project. In Eclipse,
right-click the name of the Java project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open the
AwsCredenti al s. properti es file and add your AWS security credentials.

To add the AWS SDK for Java to the Build Path

1.
2.
3.

Right-click the Java project folder, click Build Path, and then click Configure Build Path...
Click the Libraries tab, and then click Add Library....
Click AWS SDK for Java, click Next, and then click Finish.

To add the prerequisite information to SNSMobi | ePush. j ava

1.

4.

In the SNSSamples\src\com\amazonaws\sns\samples\mobilepush folder, open SNSMobi | ePush. j ava
in Eclipse and uncomment sanpl e. denoVWNSAppNot i fi cati on(); . It should look similar to the
following:

SNSMobi | ePush sanpl e = new SNSMobi | ePush(sns);
/1 TODO Unconment the services you wish to use.
/I sanpl e. dembAndr oi dAppNoti fication();

/I sanpl e. denoKi ndl eAppNoti fication();

/I sanpl e. demoAppl eAppNoti fication();

/I sanpl e. denmoAppl eSandboxAppNot i fi cation();

/I sanpl e. denoBai duAppNoti fi cation();

sanpl e. dendoWNSAppNot i fication();

/I sanmpl e. demoMPNSAppNot i fi cation();

Locate the denbVWNSAppNot i fi cat i on method and enter the string values for the push notification
URI, package security identifier, and secret key.
Enter a name for your application. Application names must be made up of only uppercase and

lowercase ASCII letters, numbers, underscores, hyphens, and periods, and must be between 1 and
256 characters long. For example, it should look similar to the following:

String applicationNane = "wnspushapp";

Run the application. You should see output similar to the following in the output window of your IDE:

Getting Started with Amazon SNS

{Pl atformApplicati onArn: arn: aws: sns: us-west-2:111122223333: app/ WNS/ Test App}
{Endpoi nt Arn: arn: aws: sns: us-west-2:111122223333: endpoi nt/ WNS/ Test

APl Version 2010-03-31
89

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Amazon Simple Notification Service Developer Guide
Using Amazon SNS Mobile Push

App/ 17cc2f 2a- df a8- 3450- 90c6- elf 88d820f 3d}

{Message Body: {"WNS":"<badge version=\"1\" value=\"23\"/>"}}

{Message Attributes: ("AWS. SNS. MOBI LE. WNS. Type": "wns/ badge"), (" AWS. SNS. MO
Bl LE. WNS. CachePol i cy": "cache")}

Publ i shed!

{Messagel d=d4899281- 927e- 5f 68- 9f d0- de9248be6d47}

On your Windows device, you should see a push notification message appear within the app.

Using Amazon SNS Mobile Push

This section describes how to use the AWS Management Console with the information described in
Prerequisites (p. 54) to register your mobile app with AWS, add device tokens (also referred to as
registration IDs), send a direct message to a mobile device, and send a message to mobile devices
subscribed to an Amazon SNS topic.

Register Your Mobile App with AWS

For Amazon SNS to send notification messages to mobile endpoints, whether it is direct or with
subscriptions to a topic, you first need to register the app with AWS. To register your mobile app with
AWS, enter a name to represent your app, select the platform that will be supported, and provide your
credentials for the notification service platform. After the app is registered with AWS, the next step is to
create an endpoint for the app and mobile device. The endpoint is then used by Amazon SNS for sending
notification messages to the app and device.

To register your mobile app with AWS
1. Go to http://console.aws.amazon.com/sns/ and click Add a New App.

Getting Started 3

Amazon Simple Notification Service (SNS) is a fast, flexible, fully managed push

messaging service. SNS makes it simple and cost-effective to push messages

to mobile devices such as iPhone, iPad, Android, Kindle Fire, and Internet-

connected smart devices, as well as pushing to other distributed services.

Besides pushing directly to mobile devices, SNS can also deliver notifications

by SMS text message or email to Amazon Simple Queue Service (SQS) queus
or to any HTTP endpoint.

Add a New App to start using Mobile Push. Create a New Topic to notify
multiple recipients on any protocol.

|| | Create New Topic

| Add a New App

2. Inthe Application Name box, enter a name to represent your app.

App names must be made up of only uppercase and lowercase ASCII letters, numbers, underscores,
hyphens, and periods, and must be between 1 and 256 characters long.

3. Inthe Push Platform box, select the platform that the app is registered with and then enter the
appropriate credentials.

APl Version 2010-03-31
90

http://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

Note
If you are using one of the APNS platforms, then you can select Choose File to upload the
.p12 file (exported from Keychain Access) to Amazon SNS.

For detailed instructions on how to acquire the following information, see Getting Started with Apple
Push Notification Service (p. 59), Getting Started with Google Cloud Messaging for Android (p. 80),
or Getting Started with Amazon Device Messaging (p. 55).

Platform Credentials

ADM Client ID—Go to the Amazon Mobile App
Distribution Portal, click Apps and Services,
click the name of your Kindle Fire app, and then
click Security Profile.

Client Secret—Go to the Amazon Mobile App
Distribution Portal, click Apps and Services,
click the name of your Kindle Fire app, and then
click Security Profile.

APNS Certificate—Select the password encrypted
certificate and private key, as exported from
Keychain Access on your Mac computer in the
.p12 file format.

Certificate Password—Enter the password.
APNS_SANDBOX Certificate—Same as above for APNS.
Certificate Password—Same as above for APNS.

GCM API Key—Go to the Google APIs Console web
site, click APl Access, and make note of the
server API key with the Key for server apps
(with IP locking) label. If you have not yet
created a server API key, then click Create new
Server key....

4. After you have entered this information, then click Add New App.

This registers the app with Amazon SNS, which creates a platform application object for the selected
platform and then returns a corresponding PlatformApplicationArn.

Add Device Tokens or Registration IDs

When you first register an app and mobile device with a notification service, such as Apple Push Notification
Service (APNS) and Google Cloud Messaging for Android (GCM), device tokens or registration IDs are
returned from the notification service. When you add the device tokens or registration IDs to Amazon
SNS, they are used with the Pl at f or mAppl i cat i onAr n API to create an endpoint for the app and
device. When Amazon SNS creates the endpoint, an Endpoi nt Ar n is returned. The Endpoi nt Arn is
how Amazon SNS knows which app and mobile device to send the notification message to.

You can add device tokens and registration IDs to Amazon SNS using the following methods:

* Manually add a single token to AWS using the AWS Management Console

APl Version 2010-03-31
91

https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://developer.amazon.com/home.html
https://code.google.com/apis/console
https://code.google.com/apis/console

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

» Migrate existing tokens from a CSV file to AWS using the AWS Management Console

« Upload several tokens using the Cr eat ePl at f or rfEndpoi nt API

* Register tokens from devices that will install your apps in the future

To manually add a device token or registration ID

1. Go to http://aws.amazon.com/sns/, click Apps, click your app, and then click Add Endpoints.

2. Inthe Endpoint Token box, enter either the token ID or registration ID, depending on which notification
service. For example, with ADM and GCM you enter the registration ID.

3. (Optional) In the User Data box, enter arbitrary information to associate with the endpoint. Amazon
SNS does not use this data. The data must be in UTF-8 format and less than 2KB.

4. Finally, click Add Endpoints.

Now with the endpoint created, you can either send messages directly to a mobile device or send
messages to mobile devices that are subscribed to a topic.

To migrate existing tokens from a CSV file to AWS

You can migrate existing tokens contained in a CSV file. The CSV file cannot be larger than 2MB. When
migrating several tokens, it is recommended to use the Cr eat ePl at f or mEndpoi nt API. Each of the
tokens in the CSV file must be followed by a newline. For example, your CSV file should look similar to
the following:

anmenl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTT mWAk

WRkxMaDNST2l uZzz01, "User data with spaces requires quotes”

anmeznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTI mWAk

WRkxMaDNST2l uZz04, " Dat a, wi t h, commmas, r equi r es, quot es"

anmeznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTT mWAk

WRkxMaDNST2l uZz02, "Quot ed data requires ""escaped"" quotes"”

anmeznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTI mWAk

WRkxMaDNST2l uzz03, " {""key"": ""json is allowed"", ""value"":""endpoint"",

""nunmber"": 1}"

anznl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTI mMAKWRKXMBDNST2| uZz05, Si m

pl eDat aNoQuot es

anenl. admregi stration. vl. XpvSSWKORc3hTVWV- - TOKEN- - KMTT MM WRkx MADNST2I uZz06, " The
following line has no user data"

anmenl. admregi stration. vl. XpvSSUKORc3hTVWV- - TOKEN- - KMTI mWwwWRkx MaDNST2| uzz07

APBTKzPd CyT6E60Cf pdwLpcRNxQo5vCPFi Fer u9oZyl ¢22HvZSwQTDgmmOWINE XMer UPxm

pXowl, "Di fferent token style"

1. Go to http://aws.amazon.com/sns/, click Apps, click your app, and then click Add Endpoints.

2. Click Migrate existing tokens over to AWS, click Choose File, select your CSV file, and then click
Add Endpoints.

To upload several tokens using the Cr eat ePl at f or rEndpoi nt API

The following steps show how to use the sample Java app (bul kupl oad package) provided by AWS to
upload several tokens (device tokens or registration IDs) to Amazon SNS. You can use this sample app
to help you get started with uploading your existing tokens.

APl Version 2010-03-31
92

http://aws.amazon.com/sns/
http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Add Device Tokens or Registration IDs

Note

The following steps use the Eclipse Java IDE. The steps assume you have installed the AWS
SDK for Java and you have the AWS security credentials for your AWS account. For more
information, see AWS SDK for Java. For more information about credentials, see How Do | Get
Security Credentials? in the AWS General Reference.

1. Download and unzip the snsmobilepush.zip file.
2. Create a new Java Project in Eclipse.

3. Import the SNSSanpl es folder to the top-level directory of the newly created Java Project. In Eclipse,
right-click the name of the Java Project and then click Import, expand General, click File System,
click Next, browse to the SNSSanpl es folder, click OK, and then click Finish.

4. Download a copy of the OpenCSV library and add it to the Build Path of the bul kupl oad package.
5. Open the Bul kUpl oad. properti es file contained in the bul kupl oad package.
6. Add the following to Bul kUpl oad. properti es:

* The Appl i cat i onAr n to which you want to add endpoints.
* The absolute path for the location of your CSV file containing the tokens.

e The names for CSV files (such as goodTokens. csv and badTokens. csv) to be created for
logging the tokens that Amazon SNS parses correctly and those that fail.

* (Optional) The characters to specify the delimiter and quote in the CSV file containing the tokens.
« (Optional) The number of threads to use to concurrently create endpoints. The default is 1 thread.

Your completed Bul kUpl oad. pr operti es should look similar to the following:

applicationarn:arn: aws: sns: us-west-2:111122223333: app/ GCM gcnpushapp
csvfil enane: C:\\ nyt okendi rect ory\\ nyt okens. csv

goodfi |l ename: C:\\ nyl ogfil es\\ goodt okens. csv

badfil enane: C:\\ nyl ogfil es\\ badt okens. csv

delimterchar:’

quot echar: "

nunoft hreads: 5

7. Runthe BatchCreatePlatformEndpointSample.java application to upload the tokens to Amazon SNS.

In this example, the endpoints that were created for the tokens that were uploaded successfully to
Amazon SNS would be logged to goodTokens. csv, while the malformed tokens would be logged
to badTokens. csv. In addition, you should see STD OUT logs written to the console of Eclipse,
containing content similar to the following:

<1>[SUCCESS] The endpoint was created with Arn arn: aws: sns: us-west -
2:111122223333: app/ GCM gcnpushapp/ 165j 2214- 051z- 3176- b586- 13803d420071
<2>[ERROR: MALFORMED CSV FILE] Null token found in /nytokendirectory/ny
t okens. csv

To register tokens from devices that will install your apps in the future

You can use one of the following two options:

APl Version 2010-03-31
93

http://aws.amazon.com/sdkforjava/
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://sourceforge.net/projects/opencsv/

Amazon Simple Notification Service Developer Guide
Send a Direct Message to a Mobile Device

¢ Use a proxy server: If your application infrastructure is already set up for your mobile apps to call in
and register on each installation, you can continue to use this setup. Your server will act as a proxy
and pass the device token to Amazon SNS mobile push notifications, along with any user data you
would like to store. For this purpose, the proxy server will connect to Amazon SNS using your AWS
credentials and use the Cr eat ePl at f or ntEndpoi nt API call to upload the token information. The
newly created endpoint Amazon Resource Name (ARN) will be returned, which your server can store
for making subsequent publish calls to Amazon SNS.

¢ Use the AWS token vending service: You can also enable your app installed on the mobile device
to directly register with Amazon SNS mobile push notifications. Your mobile app will need credentials
to create endpoints associated with your Amazon SNS platform application. We recommend using
temporary credentials that expire over a period of time. These credentials can be created by implementing
a token vending machine (TVM) that uses the AWS Security Token Service. For more information
about TVM, see Authenticating Users of AWS Mobile Applications with a Token Vending Machine. For
more information about the AWS Security Token Service, see Using Temporary Security Credentials.
If you would like to be notified when an app registers with Amazon SNS, you can register to receive
an Amazon SNS event that will provide the new endpoint ARN. You can also use the
Li st Endpoi nt ByPI at f or mAppl i cat i on API to obtain the full list of endpoints registered with
Amazon SNS.

Send a Direct Message to a Mobile Device

You can send Amazon SNS push notification messages directly to an endpoint, which represents an app
and mobile device, by completing the following steps.

To send a direct message

Go to http:/aws.amazon.com/sns/.
In the left Navigation pane, click Apps and click the app that you want to send a message to.
On the Application Details screen, select Endpoint Actions and then click Publish.

On the Publish dialog box, enter the message to appear in the app on the mobile device and then
click Publish.

PwnNE

The notification message will then be sent from Amazon SNS to the platform natification service,
which will then send the message to the app.

Send Messages to Mobile Devices Subscribed to
aTopic

You can also use Amazon SNS to send messages to mobile endpoints subscribed to a topic. The concept
is the same as subscribing other endpoint types, such as Amazon SQS, HTTP/S, email, and SMS, to a
topic, as described in What is Amazon Simple Notification Service? (p. 1). The difference is that Amazon
SNS communicates through the notification services in order for the subscribed mobile endpoints to
receive notifications sent to the topic.

To send to endpoints subscribed to a topic

1. Follow the steps as described in Subscribe to a Topic (p. 6). You just need to select Application
in the Protocol drop-down menu and then enter the mobile endpoint Amazon Resource Name (ARN)
in the Endpoint box.

APl Version 2010-03-31
94

http://aws.amazon.com/articles/4611615499399490
http://docs.aws.amazon.com/STS/latest/UsingSTS/
http://aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Send Custom Platform-Specific Payloads to Mobile

Devices
Create Subscription Cancel |
Topic Name : TopicForMobileEndpoints
Protocol : Application -

Endpoint :
e.g. am:aws:sns:us-east-1:555555555555:app/ ADM/application-name

Cancel | Subscribe

2. Follow the steps to publish messages to a topic, as described in Publish to a Topic (p. 6), then all
mobile endpoints that are subscribed to the topic will be sent the message.

Send Custom Platform-Specific Payloads in
Messages to Mobile Devices

You can use either the Amazon SNS console or APIs to send custom platform-specific payloads in
messages to mobile devices. The following sections describe how to use the Amazon SNS console to
create and send custom platform-specific payloads for each of the supported notification services. For
information on using the Amazon SNS APIs, see Using Amazon SNS Mobile Push APIs (p. 99) and the
AWS sample file SNSMbbi | ePush. j ava, which is included in the snsmobilepush.zip file.

JSON Formatted Message Data

When sending platform-specific payloads in messages using the Amazon SNS console, the data must
be key-value pair strings and formatted as JSON with quotation marks escaped. The following example,
including formatting and spaces for readability, shows a sample custom message for the GCM platform
with key-value pair within the message body and formatted as JSON.

{
"GCM' "
"data":{
"message": " Check out these awesone deal s!",
"url":"ww. amazon. conf
}
3
}

When sending messages using the console quotation marks must be escaped (\"), as the following
example shows.

"GCM
\"data\":{
\"message\":\" Check out these awesone deal s!\",
\"ur V" " wwwe amazon. com ™

APl Version 2010-03-31
95

https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip

Amazon Simple Notification Service Developer Guide
Send Custom Platform-Specific Payloads to Mobile
Devices

When entered in the Amazon SNS console, the example should look similar to the following:

{

"M "{\"data\":{\"nessage\":\"Check out these awesone
deal s!'\",\"url\":\"ww. anazon. com"}}"

}

Platform-Specific Key-Value Pairs

In addition to sending custom data as key-value pairs, you can also send platform-specific key-value
pairs within the JSON payload. For example, if you wanted to includeti ne_t o_| i ve and col | apse_key
GCM parameters after the custom data key-value pairs included in the dat a GCM parameter, then the
JSON payload without escaped quotation marks would look similar to the following:

{
"CCM': " {
"data": {
"message”: " Check out these awesone deal s!",
"url":"ww. amazon. cont
3
"tinme_to_live": 3600,
"col | apse_key": "deal s"
}r
}

When entered in the Amazon SNS console, the example should look similar to the following:

{
"CGCM': "{\"data\": {\"nessage\":\"Check out these awesomne
deal s!\", \"url\":\"ww\. amazon. com "}, \"tine_to_live\": 3600,\"col
| apse_key\":\"deal s\"}"
}

For a list of the supported key-value pairs in each of the push notification services supported in Amazon
SNS, see the following links:

* APNS — Apple Push Notification Service
¢ GCM - Implementing GCM Server Message Parameters
« ADM - Sending a Message

APl Version 2010-03-31
96

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
http://developer.android.com/google/gcm/server.html#params
https://developer.amazon.com/sdk/adm/sending-message.html

Amazon Simple Notification Service Developer Guide
Amazon SNSTTL

Messages to an App on Multiple Platforms

To send a message to an app installed on devices for multiple platforms, such as GCM and APNS, you

must first subscribe the mobile endpoints to a topic in Amazon SNS and then publish the message to the
topic. The following example shows a message to send to subscribed mobile endpoints on APNS, GCM,
and ADM:

{

"default": "This is the default nessage which nust be present when publishing
a nessage to a topic. The default nessage will only be used if a nessage i s not
present for

one of the notification platforns.",

"APNS": "{\"aps\":{\"alert\": \"Check out these awesone

deal s!'\", \"url\":\"ww. amazon.com "} }",

"M "{\"data\": {\"nessage\":\"Check out these awesone

deal s!'\", \"url\":\""ww. amazon. com "} }",

"ADM': "{ \"data\": { \"nessage\": \"Check out these awesone

deal s!'\", \"url\":\"ww. amazon. com " }}"

}

Using the Amazon SNSTime To Live (TTL)
Message Attribute for Mobile Push Notifications

Amazon Simple Notification Service (Amazon SNS) provides support for setting a Time To Live (TTL)
message attribute for mobile push notifications messages. This is in addition to the existing capability of
setting TTL within the Amazon SNS message body for the mobile push notification services that support
this, such as Amazon Device Messaging (ADM) and Google Cloud Messaging for Android (GCM).

The TTL message attribute is used to specify expiration metadata about a message. This allows you to
specify the amount of time that the push naotification service, such as Apple Push Noatification Service
(APNS) or GCM, has to deliver the message to the endpoint. If for some reason (such as the mobile
device has been turned off) the message is not deliverable within the specified TTL, then the message
will be dropped and no further attempts to deliver it will be made. To specify TTL within message attributes,
you can use the AWS Management Console, AWS software development kits (SDKSs), or query API.

Topics
e TTL Message Attributes for Push Notification Services (p. 98)
* Precedence Order for Determining TTL (p. 98)
¢ Specifying TTL with the AWS Management Console (p. 99)
¢ Specifying TTL with the AWS SDKs (p. 99)

APl Version 2010-03-31
97

Amazon Simple Notification Service Developer Guide
TTL Message Attributes for Push Notification Services

TTL Message Attributes for Push Notification
Services

The following is a list of the TTL message attributes for push notification services that you can use to set
when using the AWS SDKs or query API:

Push Notification Service TTL Message Attribute

Amazon Device Messaging (ADM) AWS.SNS.MOBILE.ADM.TTL

Apple Push Notification Service (APNS) AWS.SNS.MOBILE.APNS.TTL

Apple Push Notification Service Sandbox AWS.SNS.MOBILE.APNS_SANDBOX.TTL
(APNS_SANDBOX)

Baidu Cloud Push (Baidu) AWS.SNS.MOBILE.BAIDU.TTL

Google Cloud Messaging for Android (GCM) AWS.SNS.MOBILE.GCM.TTL

Windows Push Notification Services (WNS) AWS.SNS.MOBILE.WNS.TTL

Each of the push notification services handle TTL differently. Amazon SNS provides an abstract view of
TTL over all the push naotification services, which makes it easier to specify TTL. When you use the AWS
Management Console to specify TTL (in seconds), you only have to enter the TTL value once and Amazon
SNS will then calculate the TTL for each of the selected push notification services when publishing the
message.

TTL is relative to the publish time. Before handing off a push notification message to a specific push
notification service, Amazon SNS computes the dwell time (the time between the publish timestamp and
just before handing off to a push notification service) for the push notification and passes the remaining
TTL to the specific push notification service. If TTL is shorter than the dwell time, Amazon SNS won't
attempt to publish.

If you specify a TTL for a push notification message, then the TTL value must be a positive integer, unless
the value of 0 has a specific meaning for the push notification service—such as with APNS and GCM. If
the TTL value is set to 0 and the push notification service does not have a specific meaning for 0, then
Amazon SNS will drop the message. For more information about the TTL parameter set to 0 when using
APNS, see expiration date. For more information about the TTL parameter set to 0 when using GCM,
see Setting an Expiration Date for a Message.

Precedence Order for Determining TTL

The precedence that Amazon SNS uses to determine the TTL for a push notification message is based
on the following order, where the lowest number has the highest priority:

1. Message attribute TTL

2. Message body TTL

3. Push notification service default TTL (varies per service)
4. Amazon SNS default TTL (4 weeks)

If you set different TTL values (one in message attributes and another in the message body) for the same
message, then Amazon SNS will modify the TTL in the message body to match the TTL specified in the
message attribute.

APl Version 2010-03-31
98

https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/CommunicatingWIthAPS.html
http://developer.android.com/google/gcm/adv.html#ttl

Amazon Simple Notification Service Developer Guide
Specifying TTL with the AWS Management Console

Specifying TTL with the AWS Management Console

You can specify TTL with the AWS Management Console.

1. Signinto the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Inthe left Navigation pane, click Apps, and then click the app containing the endpoints you want
to set TTL for when publishing a message.

3. Select the endpoints to publish a message to, click Endpoint Actions and then click Publish.

4. Onthe Publish dialog box, enter the number of seconds for Time to Live (TTL) and then click Publish
Message.

Specifying TTL with the AWS SDKs

The AWS SDKs provide APlIs in several languages for using TTL with Amazon SNS.
For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

The following Java example shows how to configure a TTL message attribute and publish the message
to an endpoint, which in this example is registered with Baidu Cloud Push:

Map<String, MessageAttributeVal ue> nessageAttributes = new HashMap<Stri ng,
MessageAt tri but eVal ue>();

/'l Insert your desired value (in seconds) of TTL here. For exanple, a TTL of 1
day woul d be 86,400 seconds.

messageAttri but es. put (" AWS. SNS. MOBI LE. BAI DU. TTL", new MessageAttribute

Val ue().w t hDat aType("String").w thStringVal ue("86400"));

Publ i shRequest publ i shRequest = new Publ i shRequest ();

publ i shRequest . set MessageAt tri but es(messageAttri butes);

String message = "{\"title\":\"Test_Title\",\"description\":\"Test_Descrip
tion\"}";

publ i shRequest . set Message(nmessage) ;

publ i shRequest . set MessageStructure("json");

publ i shRequest . set Tar get Arn("arn: aws: sns: us- east - 1: 999999999999: end

poi nt/ BAl DU/ Test App/ 318f c7b3- bc53- 3d63- ac42- e359468ac730") ;

Publ i shResult publishResult = snsCient.publish(publishRequest);

For more information about using message attributes with Amazon SNS, see Using Amazon SNS Message
Attributes (p. 170).

Using Amazon SNS Mobile Push APIs

To use the Amazon SNS mobile push APIs, you must first meet the prerequisites for the push notification
service, such as Apple Push Notification Service (APNS) and Google Cloud Messaging for Android (GCM).
For more information about the prerequisites, see Prerequisites (p. 54).

To send a push notification message to a mobile app and device using the APIs, you must first use the
Cr eat ePl at f or mAppl i cat i on action, which returns a Pl at f or mAppl i cat i onAr n attribute. The

Pl at f or mAppl i cat i onAr n attribute is then used by Cr eat ePl at f or mEndpoi nt, which returns an
Endpoi nt Ar n attribute. You can then use the Endpoi nt Ar n attribute with the Publ i sh action to send

APl Version 2010-03-31
99

https://console.aws.amazon.com/sns/
http://aws.amazon.com/tools/
http://aws.amazon.com/articles/Java/3586

Amazon Simple Notification Service Developer Guide
Amazon SNS Mobile Push APIs

a notification message to a mobile app and device, or you could use the Endpoi nt Ar n attribute with the
Subscr i be action for subscription to a topic.

The following is a list and description of the Amazon SNS mobile push APIs:

API Description

CreatePl at formApplication Creates a platform application object for one of the
supported push notification services, such as APNS
and GCM, to which devices and mobile apps may
register. Returns a Pl at f or mAppl i cati onArn
attribute, which is used by the
Cr eat ePl at f or nEndpoi nt action. For more
information, see CreatePlatformApplication in the
Amazon Simple Notification Service API Reference.

Set Pl at f or mAppl i cati onAttri butes Sets the attributes of the platform application object.
For more information, see
SetPlatformApplicationAttributes in the Amazon
Simple Notification Service API Reference.

Get Pl at f or mAppl i cati onAttri butes Retrieves the attributes of the platform application
object. For more information, see
GetPlatformApplicationAttributes in the Amazon
Simple Notification Service API Reference.

Li st Pl at f or mAppl i cati ons Lists the platform application objects for the
supported push notification services. For more
information, see ListPlatformApplications in the
Amazon Simple Notification Service API Reference.

Del et ePl at f or mAppl i cati on Deletes a platform application object. For more
information, see DeletePlatformApplication in the
Amazon Simple Notification Service API Reference.

Cr eat ePl at f or mEndpoi nt Creates an endpoint for a device and mobile app
on one of the supported push notification services.
Cr eat ePl at f or nEndpoi nt uses the
Pl at f or mAppl i cati onAr n attribute returned
from the Cr eat ePl at f or MAppl i cat i on action.
The Endpoi nt Ar n attribute, which is returned
when using Cr eat ePl at f or nEndpoi nt, is then
used with the Publ i sh action to send a notification
message to a mobile app and device. For more
information, see CreatePlatformEndpoint in the
Amazon Simple Notification Service API Reference.

Set Endpoi nt Attri butes Sets the attributes for an endpoint for a device and
mobile app. For more information, see
SetEndpointAttributes in the Amazon Simple
Notification Service API Reference.

Get Endpoi nt Attri butes Retrieves the endpoint attributes for a device and
mobile app. For more information, see
GetEndpointAttributes in the Amazon Simple
Notification Service API Reference.

APl Version 2010-03-31
100

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_SetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetPlatformApplicationAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_ListPlatformApplications.html
http://docs.aws.amazon.com/sns/latest/api/API_DeletePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_SetEndpointAttributes.html
http://docs.aws.amazon.com/sns/latest/api/API_GetEndpointAttributes.html

Amazon Simple Notification Service Developer Guide

API Errors

API

Li st Endpoi nt sByPI at f or mAppl i cati on

Del et eEndpoi nt

Description

Lists the endpoints and endpoint attributes for
devices and mobile apps in a supported push
notification service. For more information, see
ListEndpointsByPlatformApplication in the Amazon
Simple Notification Service API Reference.

Deletes the endpoint for a device and mobile app
on one of the supported push notification services.
For more information, see DeleteEndpoint in the

Amazon Simple Notification Service API Reference.

API Errors for Amazon SNS Mobile Push

Errors that are returned by the Amazon SNS APIs for mobile push are listed in the following table. For
more information about the Amazon SNS APIs for mobile push, see Using Amazon SNS Mobile Push

APIs (p. 99).

Error

Application Name is null
string

Platform Name is null
string

Platform Name is invalid

APNS — Principal is not
a valid certificate

APNS — Principal is a
valid cert but not in a
.pem format

APNS — Prinicipal is an
expired certificate

Description

The required application
name is set to null.

The required platform
name is set to null.

An invalid or
out-of-range value was
supplied for the platform
name.

An invalid certificate was
supplied for the APNS
principal, which is the
"SSL certificate". For
more information, see
CreatePlatformApplication
in the Amazon Simple
Noatification Service API
Reference.

A valid certificate that is
not in the .pem format
was supplied for the
APNS principal, which is
the "SSL certificate".

An expired certificate
was supplied for the
APNS principal, which is
the "SSL certificate".

HTTPS Status Code

400

400

400

400

400

400

Action that Returns
this Error

Geatef atformppli cation

GeateH atformdppl i cation

GeateH atformdppl i cation

Geatef atformppl i cation

GeateR aformppication

Geater atformppli cation

APl Version 2010-03-31

101

http://docs.aws.amazon.com/sns/latest/api/API_ListEndpointsByPlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_DeleteEndpoint.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

APNS — Principal is not

an Apple issued
certificate

APNS — Principal is not

provided

APNS — Credential is
not provided

APNS — Credential are

not in a valid .pem
format

GCM — serverAPIKey
is not provided

GCM — serverAPIKey
is empty

GCM — serverAPIKey
is a null string

GCM — serverAPIKey
is invalid

ADM — clientsecret is
not provided

ADM — clientsecret is a

null string

ADM — client_secret is
empty string

Description

A non-Apple issued
certificate was supplied
for the APNS principal,
which is the "SSL
certificate".

The APNS principal,
which is the "SSL
certificate", was not
provided.

The APNS credential,
which is the "private
key", was not provided.
For more information,
see

CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

The APNS credential,
which is the "private
key", is not in a valid
.pem format.

The GCM credential,

which is the "API key",
was not provided. For
more information, see

CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

The GCM credential,
which is the "API key",
is empty.

The GCM credential,
which is the "API key",
is null.

The GCM credential,
which is the "API key",
is invalid.

The required client
secret is not provided.

The required string for
the client secret is null.

The required string for
the client secret is
empty.

HTTPS Status Code

400

400

400

400

400

400

400

400

400

400

400

Action that Returns
this Error

GeateH atformdppl i cation

Geatef atformppli cation

GeateH atformdppl i cation

GeateH atformdppl i cation

Geatefatformppli cation

GeateH atformdppl i cation

Geatef atformppli cation

GeateH atformdpplication

Geatef atformppli cation

GeateH atformdppl i cation

APl Version 2010-03-31

102

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

ADM — client_secret is
not valid

ADM — client_id is
empty string

ADM — clientld is not
provided

ADM — clientid is a null
string

ADM — client_id is not
valid

EventEndpointCreated
has invalid ARN format

EventEndpointDeleted
has invalid ARN format

EventEndpointUpdated
has invalid ARN format

EventDeliveryAttemptiailure
has invalid ARN format

EventDeliveryFailure
has invalid ARN format

EventEndpointCreated
is not an existing Topic

EventEndpointDeleted
is not an existing Topic

EventEndpointUpdated
is not an existing Topic

EventDeliveryAttemptiailure
is not an existing Topic

EventDeliveryFailure is
not an existing Topic

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Description

The required string for
the client secret is not
valid.

The required string for
the client ID is empty.

The required string for
the client ID is not
provided.

The required string for
the client ID is null.

The required string for
the client ID is not valid.

EventEndpointCreated
has invalid ARN format.

EventEndpointDeleted
has invalid ARN format.

EventEndpointUpdated
has invalid ARN format.

EventDeliveryAttemptailure
has invalid ARN format.

EventDeliveryFailure
has invalid ARN format.

EventEndpointCreated
is not an existing topic.

EventEndpointDeleted
is not an existing topic.

EventEndpointUpdated
is not an existing topic.

EventDeliveryAttemptFailure
is not an existing topic.

EventDeliveryFailure is
not an existing topic.

Platform ARN is invalid.

Platform ARN is valid
but does not belong to
the user.

HTTPS Status Code

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

Action that Returns
this Error

GeateH atformdppl i cation

Geatef atformppli cation

GeateH atformdppl i cation

GeateH atformdppl i cation

Geatef atformppl i cation

GeateH atformdppl i cation

Geatef atformppli cation

GeateH atformdppl i cation

GeateH atformdppl i cation

Geatef atformppli cation

GeateH atformdppl i cation

GeateH atformdppl i cation

Geatefatformppli cation

GeateH atformdppl i cation

Geatef atformppli cation

SetP atformittributes

SetP atformittributes

APl Version 2010-03-31

103

Amazon Simple Notification Service Developer Guide

API Errors

Error

APNS — Principal is not
a valid certificate

APNS — Principal is a
valid cert but not in a
.pem format

APNS — Prinicipal is an
expired certificate

APNS — Principal is not
an Apple issued
certificate

APNS — Principal is not
provided

APNS — Credential is
not provided

APNS — Credential are
not in a valid .pem
format

GCM — serverAPIKey
is not provided

Description

An invalid certificate was | 400
supplied for the APNS
principal, which is the

"SSL certificate". For

more information, see
CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

A valid certificate that is | 400
not in the .pem format

was supplied for the

APNS principal, which is

the "SSL certificate".

An expired certificate 400
was supplied for the

APNS principal, which is

the "SSL certificate".

A non-Apple issued 400
certificate was supplied

for the APNS principal,

which is the "SSL

certificate".

The APNS principal, 400
which is the "SSL

certificate”, was not

provided.

The APNS credential, 400
which is the "private

key", was not provided.

For more information,

see

CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

The APNS credential, 400
which is the "private

key", is not in a valid

.pem format.

The GCM credential, 400
which is the "API key",

was not provided. For

more information, see
CreatePlatformApplication

in the Amazon Simple
Notification Service API
Reference.

HTTPS Status Code

Action that Returns
this Error

SetPl atformittributes

SetP atformittributes

SetP atformittributes

SetPl atformfttributes

SetP atformittributes

SetPl atformittributes

SetPl atformfttributes

SetP atformittributes

APl Version 2010-03-31
104

http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html
http://docs.aws.amazon.com/sns/latest/api/API_CreatePlatformApplication.html

Amazon Simple Notification Service Developer Guide

API Errors

Error

GCM — serverAPIKey
is a null string

ADM — clientld is not
provided

ADM — clientid is a null
string

ADM — clientsecret is
not provided

ADM — clientsecret is a
null string

EventEndpointUpdated
has invalid ARN format

EventEndpointDeleted
has invalid ARN format

EventEndpointUpdated
has invalid ARN format

EventDeliveryAttemptiailure
has invalid ARN format

EventDeliveryFailure
has invalid ARN format

EventEndpointCreated
is not an existing Topic

EventEndpointDeleted
is not an existing Topic

EventEndpointUpdated
is not an existing Topic

EventDeliveryAttemptiailure
is not an existing Topic

EventDeliveryFailure is
not an existing Topic

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Token specified is
invalid

Platform ARN is invalid

Description

The GCM credential,
which is the "API key",
is null.

The required string for
the client ID is not
provided.

The required string for
the client ID is null.

The required client
secret is not provided.

The required string for
the client secret is null.

EventEndpointUpdated
has invalid ARN format.

EventEndpointDeleted
has invalid ARN format.

EventEndpointUpdated
has invalid ARN format.

EventDeliveryAttemptailure
has invalid ARN format.

EventDeliveryFailure
has invalid ARN format.

EventEndpointCreated
is not an existing topic.

EventEndpointDeleted
is not an existing topic.

EventEndpointUpdated
is not an existing topic.

EventDeliveryAttemptFailure
is not an existing topic.

EventDeliveryFailure is
not an existing topic.

The platform ARN is
invalid.

The platform ARN is
valid, but does not
belong to the user.

The specified token is
invalid.

The platform ARN is
invalid.

HTTPS Status Code

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

400

403

400

400

Action that Returns
this Error

SetPl atformittributes

SetP atformittributes

SetP atformittributes

SetPl atformfttributes

SetP atformittributes

SetPl atformittributes

SetPl atformfttributes

SetP atformittributes

SetPl atformfttributes

SetP atformittributes

SetP atformittributes

SetPl atformfttributes

SetP atformittributes

SetPl atformittributes

SetP atformfttributes

G Pafangdicti aitrihtes

@ PRafarAdicianitrihtes

Li stA atforndppl i cati ons

LB rtsBRafamigi cticn

APl Version 2010-03-31

105

Amazon Simple Notification Service Developer Guide

API Errors

Error

Platform ARN is valid
but does not belong to
the user

Token specified is
invalid

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Platform ARN is invalid

Platform ARN is valid
but does not belong to
the user

Token is not specified

Token is not of correct
length

Customer User data is
too large

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Token is not specified

Token is not of correct
length

Customer User data is
too large

Description HTTPS Status Code

The platform ARN is 404
valid, but does not

belong to the user.

The specified token is | 400

invalid.

The platform ARN is
invalid.

400

The platform ARN is
valid, but does not
belong to the user.

403

The platform ARN is
invalid.

400

The platform ARN is
valid, but does not
belong to the user.

404

The token is not 400

specified.

The token is not the 400

correct length.

The customer user data | 400
cannot be more than
2048 bytes long in

UTF-8 encoding.

The endpoint ARN is
invalid.

400

The endpoint ARN is 403
valid, but does not

belong to the user.

The endpoint ARN is 400

invalid.

The endpoint ARN is
valid, but does not
belong to the user.

403

The token is not 400

specified.

The token is not the 400

correct length.

The customer user data | 400
cannot be more than

2048 bytes long in

UTF-8 encoding.

Action that Returns
this Error

L ntsBRafamgictia

it ErpirtsBRafamigiction

Dl et efl atf ornppl i cati on

Dol et efl atfornppl i cati on

G eat e at f or nindpoi nt

Q eat eM at f or nindpoi nt

Q eat e at f or nEndpoi nt

Q eat eM at f or nindpoi nt

Q eat eM at f or nindpoi nt

Del et eEndpoi nt

Del et eEndpoi nt

Set Endpoi nt At t ri but es

Set Endpoi nt At tri but es

Set Endpoi nt At tri but es

Set Endpoi nt Attri but es

Set Endpoi nt At tri but es

APl Version 2010-03-31
106

Amazon Simple Notification Service Developer Guide

API Errors

Error

Endpoint ARN is invalid

Endpoint ARN is valid
but does not belong to
the user

Target ARN is invalid

Target ARN is valid but
does not belong to the
user

Message format is
invalid

Message size is larger
than supported by
protocol/end-service

Description

The endpoint ARN is
invalid.

The endpoint ARN is
valid, but does not
belong to the user.

The target ARN is
invalid.

The target ARN is valid,
but does not belong to
the user.

The message format is
invalid.

The message size is
larger than supported by
the protocol/end-service.

HTTPS Status Code

400

403

400

403

400

400

Action that Returns
this Error

Get Endpoi nt At t ri but es

Get Endpoi nt Attri but es

Publ i sh
Publ i sh
Publ i sh
Publ i sh

APl Version 2010-03-31

107

Amazon Simple Notification Service Developer Guide

Sending Amazon SNS Messages
to Amazon SQS Queues

Amazon SNS works closely with Amazon Simple Queue Service (Amazon SQS). Both services provide
different benefits for developers. Amazon SNS allows applications to send time-critical messages to
multiple subscribers through a “push” mechanism, eliminating the need to periodically check or “poll” for
updates. Amazon SQS is a message queue service used by distributed applications to exchange messages
through a polling model, and can be used to decouple sending and receiving components—without
requiring each component to be concurrently available. By using Amazon SNS and Amazon SQS together,
messages can be delivered to applications that require immediate notification of an event, and also
persisted in an Amazon SQS queue for other applications to process at a later time.

When you subscribe an Amazon SQS queue to an Amazon SNS topic, you can publish a message to
the topic and Amazon SNS sends an Amazon SQS message to the subscribed queue. The Amazon SQS
message contains the subject and message that were published to the topic along with metadata about
the message in a JSON document. The Amazon SQS message will look similar to the following JSON

document.
{
"Type" : "Notification",
"Messagel d" : "63a3f 6b6-d533-4a47-aef 9-fcf5cf758¢c76",
"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",
"Subject" : "Testing publish to subscribed queues",
"Message" : "Hello world!",
"Ti mestanp" : "2012-03-29T05: 12: 16.901Z2",
" Si gnat ureVersion" : "1",
"Signature" : "EXAMPLEnTr FPa37t nVOOFF9I au3Mzj | JLRf ySEoW 4uZHS] 6ycK4ph71Zm

dvONt J4dC/ El 9FOGp3VuvchpaTr aNHWhhg/ GsN1HVz20zxnF9b88R8G qj f KB5SwWoZZnme 87Hi M6CY
DTo3l 7LMM-T4VU7ELt yaBBaf hPTg9ObCnKkg=",

"SigningCert URL" : "https://sns.us-east-1. amazonaws. conl Si npl eNoti fi cati onSer
vi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns. us-east-1. anazonaws. conl ?Act i on=Unsubscri be&Sub

scri pti onArn=arn: aws: sns: us- east - 1: 123456789012: MyTopi c: c7f e3a54- abOe- 4ec2- 88e0-
db410a0f 2bee"

}

APl Version 2010-03-31
108

Amazon Simple Notification Service Developer Guide
Step 1. Get the ARN of the queue and the topic.

Note

Instead of following the steps listed below, you can now subscribe an Amazon SQS queue to
an Amazon SNS topic using the Amazon SQS console, which simplifies the process. For more
information, see Subscribe Queue to Amazon SNS Topic

To enable an Amazon SNS topic to send messages to an Amazon SQS queue, follow these steps:

1. Get the Amazon Resource Name (ARN) of the queue you want to send messages to and the topic to
which you want to subscribe the queue. (p. 109)

2. Give sgs: SendMessage permission to the Amazon SNS topic so that it can send messages to the
queue. (p. 110)

3. Subscribe the queue to the Amazon SNS topic. (p. 111)

4. Give IAM users or AWS accounts the appropriate permissions to publish to the Amazon SNS topic
and read messages from the Amazon SQS queue. (p. 111)

5. Test it out by publishing a message to the topic and reading the message from the queue. (p. 113)

To learn about how to set up a topic to send messages to a queue that is in a different AWS account,
see Sending Amazon SNS messages to an Amazon SQS queue in a different account (p. 114).

To see an AWS CloudFormation template that creates a topic that sends messages to two queues, see
Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS
Queues (p. 117).

Step 1. Get the ARN of the queue and the topic.

When subscribing a queue to your topic, you'll need a copy of the ARN for the queue. Similarly, when
giving permission for the topic to send messages to the queue, you'll need a copy of the ARN for the
topic.

To get the queue ARN, you can use the Amazon SQS console or the GetQueueAttributes API action.

To get the queue ARN from the Amazon SQS console

1. Signin to the AWS Management Console and open the Amazon SQS console at
https://console.aws.amazon.com/sqs/.

2. Select the box for the queue whose ARN you want to get.

3. From the Details tab, copy the ARN value so that you can use it to subscribe to the Amazon SNS
topic.

To get the topic ARN, you can use the Amazon SNS console, the sns-get-topic-attributes command, or
the GetQueueAttributes API action.

To get the topic ARN from the Amazon SNS console

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic whose ARN you want to get.

3. From the Topic Details pane, copy the Topic ARN value so that you can use it to give permission
for the Amazon SNS topic to send messages to the queue.

APl Version 2010-03-31
109

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/Welcome.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sqs/
http://docs.aws.amazon.com/sns/latest/cli/sns_get_topic_attributes.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryGetQueueAttributes.html
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Step 2. Give permission to the Amazon SNS topic to
send messages to the Amazon SQS queue

Step 2. Give permission to the Amazon SNS
topic to send messages to the Amazon SQS
gqueue

For an Amazon SNS topic to be able to send messages to a queue, you must set a policy on the queue
that allows the Amazon SNS topic to perform the sqs: SendMessage action.

Before you subscribe a queue to a topic, you need a topic and a queue. If you haven't already created a
topic or queue, create them now. For more information, see Creating a Topic in the Amazon Simple
Notification Service Getting Started Guide. For more information, see Creating a Queue in the Amazon
Simple Queue Service Getting Started Guide.

To set a policy on a queue, you can use the Amazon SQS console or the SetQueueAttributes API action.
Before you start, make sure you have the ARN for the topic that you want to allow to send messages to
the queue.

To set a SendMessage policy on a queue using the Amazon SQS console

1. Signin to the AWS Management Console and open the Amazon SQS console at
https://console.aws.amazon.com/sgs/.

2. Select the box for the queue whose policy you want to set, click the Permissions tab, and then click
Add a Permission.

3. Inthe Add a Permission dialog box, select Allow for Effect, select Everybody (*) for Principal,
and then select SendMessage from the Actions drop-down.

4. Add a condition that allows the action for the topic. Click Add Conditions (optional), select ArnEquals
for Condition, select aws:SourceArn for Key, and paste in the topic ARN for Value. Click Add
Condition. The new condition should appear at the bottom of the box (you may have to scroll down
to see this).

5. Click Add Permission.

If you wanted to create the policy document yourself, you would create a policy like the following. The
policy allows MyTopic to send messages to MyQueue.

"Version":"2012-10- 17",
"Statenment": [
{
"Sid": "MySQSPolicy001",
"Effect": "Allow',
"Principal": {
"AWET R
}
"Action": "sqgs: SendMessage",
"Resource": "arn:aws:sqs:us-east-1:123456789012: \yQueue",
"Condition": {
"ArnEqual s": {
"aws: SourceArn": "arn:aws:sns: us-east-1:123456789012: MyTopi c"

APl Version 2010-03-31
110

http://docs.aws.amazon.com/sns/latest/gsg/CreateTopic.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/CreatingQueue.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QuerySetQueueAttributes.html
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide
Step 3. Subscribe the queue to the Amazon SNS topic

Step 3. Subscribethe queue to the Amazon SNS
topic

To send messages to a queue through a topic, you must subscribe the queue to the Amazon SNS topic.
You specify the queue by its ARN. To subscribe to a topic, you can use the Amazon SNS console, the
sns-subscribe command, or the Subscribe API action. Before you start, make sure you have the ARN for
the queue that you want to subscribe.

To subscribe a queue to a topic using the Amazon SNS console

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic.

3. Click Create Subscription, select Amazon SQS for Protocol, paste in the ARN for the queue that
you want the topic to send messages to for Endpoint, and click Subscribe.

4. Forthe Subscription request received! message, click Close.

When the subscription is confirmed, your new subscription's Subscription ID displays its subscription
ID. If the owner of the queue creates the subscription, the subscription is automatically confirmed
and the subscription should be active almost immediately.

Usually, you'll be subscribing your own queue to your own topic in your own account. However, you
can also subscribe a queue from a different account to your topic. If the user who creates the
subscription is not the owner of the queue (for example, if a user from account A subscribes a queue
from account B to a topic in account A), the subscription must be confirmed. For more information
about subscribing a queue from a different account and confirming the subscription, see Sending
Amazon SNS messages to an Amazon SQS queue in a different account (p. 114).

Step 4. Give users permissions to the
appropriate topic and queue actions

You should use AWS Identity and Access Management (IAM) to allow only appropriate users to publish
to the Amazon SNS topic and to read/delete messages from the Amazon SQS queue. For more information
about controlling actions on topics and queues for IAM users, see Controlling User Access to Your AWS
Account in the Amazon Simple Notification Service Getting Started Guide and Controlling User Access
to Your AWS Account in the Amazon SQS Developer Guide.

There are two ways to control access to a topic or queue:

¢ Add a policy to an IAM user or group (p. 112). The simplest way to give users permissions to topics or
gueues is to create a group and add the appropriate policy to the group and then add users to that
group. It's much easier to add and remove users from a group than to keep track of which policies you
set on individual users.

« Add a policy to topic or queue (p. 112). If you want to give permissions to a topic or queue to another
AWS account, the only way you can do that is by adding a policy that has as its principal the AWS
account you want to give permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, you should use the second method.

APl Version 2010-03-31
111

http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html

Amazon Simple Notification Service Developer Guide
Adding a policy to an IAM user or group

Adding a policy to an IAM user or group

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns: Publ i sh action on the topic MyTopic.

{
"Version":"2012-10- 17",
"Statenment":[{
"Sid":"Al | owPubl i shToMy/Topi c",
"Effect":"All ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"
}
]
}

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sqs: Recei veMessage and sqs: Del et eMessage actions on the queues
MyQueuel and MyQueue2.

{
"Version":"2012-10-17",
"Statement": [{
"Sid":"A | onReadDel et eMessageOnMyQueue",
"Effect":"All ow',
"Action": [
"s(gs: Recei veMessage",
"sqs: Del et eMessage"
1.
"Resource": [
"arn:aws: sns: us-east-1:123456789012: MyQueuel",
"arn:aws: sns: us-east-1:123456789012: MyQueue2"
1.
}
]
}

Adding a policy to atopic or queue

The following example policies show how to give another account permissions to a topic and queue.

Note

When you give another AWS account access to a resource in your account, you are also giving
IAM users who have admin-level access (wildcard access) permissions to that resource. All
other IAM users in the other account are automatically denied access to your resource. If you
want to give specific IAM users in that AWS account access to your resource, the account or an
IAM user with admin-level access must delegate permissions for the resource to those IAM
users. For more information about cross-account delegation, see Enabling Cross-Account Access
in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns: Publ i sh action on that topic.

{
"Version":"2012-10-17",

APl Version 2010-03-31
112

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

Amazon Simple Notification Service Developer Guide
Step 5.Test it

"1d":"MyTopicPolicy",
"Statenent":[{
"Sid":"Al ow publish-to-topic",
"Effect":"A | ow',
"Principal":{
"AWS": " 111122223333"
1
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us- east - 1: 123456789012: MyTopi c"

If you added the following policy to a queue MyQueue in account 123456789012, you would give account
111122223333 permission to perform the sqs: Recei veMessage and sqs: Del et eMessage actions on

that queue.
{
"Version": "2012-10-17",
"Id": "MyQueuePolicy",
"Statenent": [
{
"Sid": "Alow Processing- O - Messages- f or - Queue”,
"Effect": "All ow',
"Principal": {
"AWS': " 111122223333"
}
"Action": [
"sqs: Del et eMessage”,
"sqs: Recei veMessage”
1
"Resource": [
"arn:aws: sns: us-east-1:123456789012: WyQueue",
]
}
]
}

Step 5. Test it

You can test a topic's queue subscriptions by publishing to the topic and viewing the message that the
topic sends to the queue.

To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic, sign
in to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic and click Publish to Topic.

3. Inthe Subject box, enter a subject (for example, Testi ng publish to queue) in the Message
box, enter some text (for example, Hel | o wor | d!'), and click Publish Message. The following
message appears: Your message has been successfully published.

APl Version 2010-03-31
113

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Sending Messages to a Queue in a Different Account

To view the message from the topic using the Amazon SQS console

1. Using the credentials of the AWS account or IAM user with permission to view messages in the
queue, sign in to the AWS Management Console and open the Amazon SQS console at
https://console.aws.amazon.com/sgs/.

2. Check the box for the queue that is subscribed to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of Notification appears.

4. Inthe Body column, click More Details. The Message Details box contains a JSON document that

contains the subject and message that you published to the topic. The message looks similar to the
following JSON document.

{
"Type" : "Notification",
"Messagel d" : "63a3f6b6-d533-4a47- aef 9-f cf 5¢f 758¢c76",
"Topi cCArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",
"Subject” : "Testing publish to subscribed queues”,
"Message" : "Hello world!",
"Ti mestanp” : "2012-03-29T05:12:16.9012",
" Si gnatureVersion" @ "1",
"Signature" : "EXAMPLEnTr FPa37t nVOOFF9I au3MXzj | JLRf ySEoW 4uZHS] 6ycK4ph71Zm

dvONt J4dC El 9FO3p3VuvchpaTr aNHWhhqg/ GsNLHVZz20zxnF9b88RBG qj f KB5woZZne87H MBCY
DTo3l 7LMMT4VU7ELt yaBBaf hPTg905CnKkg=",

"SigningCert URL" : "https://sns. us-east-1. amazonaws. conl Si npl eNot i fi cation
Servi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns.us-east-1. amazonaws. com ?Act i on=Unsub

scri be&Subscri pti onArn=arn: aws: sns: us- east-1: 123456789012: MyTopi c: c7f e3ab4-
abOe- 4ec2- 88e0- db410a0f 2bee"

}

5. Click Close.You have successfully published to a topic that sends notification messages to a queue.

Sending Amazon SNS messages to an Amazon
SQS queue in a different account

You can publish a notification to an Amazon SNS topic with one or more subscriptions to Amazon SQS
gueues in another account. You set up the topic and queues the same way you would if they were in the
same account (see Sending Amazon SNS Messages to Amazon SQS Queues (p. 108)). The only difference
is how you handle subscription confirmation, and that depends on how you subscribe the queue to the
topic.

Topics

¢ Queue Owner Creates Subscription (p. 114)
¢ User Who Does Not Own the Queue Creates Subscription (p. 116)

Queue Owner Creates Subscription

When the queue owner creates the subscription, the subscription does not require confirmation. The
gueue starts receiving notifications from the topic as soon as the Subscr i be action completes. To enable
the queue owner to subscribe to the topic owner's topic, the topic owner must give the queue owner's
account permission to call the Subscr i be action on the topic. When added to the topic MyTopic in the

APl Version 2010-03-31
114

https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide
Queue Owner Creates Subscription

account 123456789012, the following policy gives the account 111122223333 permission to call
sns: Subscri be on MyTopic in the account 123456789012.

{
"Version":"2012-10-17",
"Id":"MyTopi cSubscri bePol i cy",
"Statenent": [{
"Sid":"All ow ot her-account -to-subscribe-to-topic",
"Effect":" Al ow',
"Principal":{
"AWE":"111122223333"
I
"Action":"sns: Subscri be",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"
}
]
}

After this policy has been set on MyTopic, a user can log in to the Amazon SNS console with credentials
for account 111122223333 to subscribe to the topic.

To add an Amazon SQS gqueue subscription to atopic in another account using the Amazon
SQS console

1. Using the credentials of the AWS account containing the queue or an IAM user in that account, sign
in to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Make sure you have the ARNSs for both the topic and the queue. You will need them when you create
the subscription.

3. Make sure you have set sgqs: SendMessage permission on the queue so that it can receive messages
from the topic. For more information, see Step 2. Give permission to the Amazon SNS topic to send
messages to the Amazon SQS queue (p. 110).

In the navigation pane, select the SNS Dashboard.

In the Dashboard, in the Additional Actions section, click Create New Subscription.
In the Topic ARN box, enter the ARN for the topic.

For Protocol, select Amazon SQS.

In the Endpoint box, enter the ARN for the queue.

Click Subscribe.

10. For the Subscription request received! message, you'll notice text that says you must confirm the
subscription. Because you are the queue owner, the subscription does not need to be confirmed.
Click Close. You've completed the subscription process and notification messages published to the
topic can now be sent to the queue.

© N T

The user can also use the access key and secret key for the AWS account 111122223333 to issue the
sns-subscri be command or call the Subscribe API action to subscribe an Amazon SQS queue to
MyTopic in the account 123456789012. The following sns-subscribe command subscribes the queue
MyQ from account 111122223333 to the topic MyTopic in account 123456789012.

sns-subscri be arn: aws: sns: us-east-1: 123456789012: MyTopi ¢ --protocol sgs --end
poi nt arn:aws: sqgs: us-east-1:111122223333: \WQ

APl Version 2010-03-31
115

https://console.aws.amazon.com/sns/
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html

Amazon Simple Notification Service Developer Guide
User Who Does Not Own the Queue Creates Subscription

User Who Does Not Own the Queue Creates
Subscription

When a user who is not the queue owner creates the subscription (for example, when the topic owner in
account A adds a subscription for a queue in account B), the subscription must be confirmed.

Important

Before you subscribe to the topic, make sure you have set sqs: SendMessage permission on
the queue so that it can receive messages from the topic. See Step 2. Give permission to the
Amazon SNS topic to send messages to the Amazon SQS queue (p. 110).

When the user calls the Subscr i be action, a message of type Subscri pti onConfirmati on is sent
to the queue and the subscription is displayed in the Amazon SNS console with its Subscription ID set
to Pending Confirmation. To confirm the subscription, a user who can read messages from the queue
must visit the URL specified in the Subscr i beURL value in the message. Until the subscription is confirmed,
no notifications published to the topic are sent to the queue. To confirm a subscription, you can use the
Amazon SQS console or the ReceiveMessage API action.

To confirm a subscription using the Amazon SQS console

1. Signin to the AWS Management Console and open the Amazon SQS console at
https://console.aws.amazon.com/sqs/.

2. Select the queue that has a pending subscription to the topic.

3. From the Queue Action drop-down, select View/Delete Messages and click Start Polling for
Messages. A message with a type of SubscriptionConfirmation appears.

4. Inthe Body column, click More Details.

View/Delete Messages in MyQueue
View up to: 10 messages Poll queue for: 30 seconds

Delete Body Size Sent

{ "Type" : "SubscriptionConfirmation”, "Messageld” : "27e More Detais 1.3 KB 2012-03-28 20:55

Pty & S S PSSR St o

5. Inthe text box, find the SubscribeURL value and copy the URL. It will look similar to the following
URL.

https://sns. us-east-1. amazonaws. com ?Act i on=Confi r nSubscri pti on&Topi
cAr n=arn: aws: sns: us east - 1 123456789012 IVyTop

APl Version 2010-03-31
116

http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
https://console.aws.amazon.com/sqs/

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Create a
Topic that Sends Messages to Amazon SQS Queues

View/Delete Messages in MyQueue Cancel X

View up to: 10 messages Poll gueue for: 30 seconds Start Polling for Messages
Message Details Cancal X
Delete Body Receive Count
e BIN:aws:sns:us-east-1:15536356100H HyTopic, \nTo contirm the " T
{"Type subscription, visit the SubscribeURL included in this
messa 2
SubscribeURL"™ : "https://sns.us-east-1.amazonaws.com/?
Action=ConfirmSubscription&TopicArn=arn:aws:sns:us-east—
1:123456789012 :MyTopic&Token=2336412£37fb687£5d51e6e241d09cB054d,
" : ™2012-03-29T03:55:33.5322z",
"SignatureVersion~ T i
"3ignature" : =
‘ m »
Message ID: 111eT837-1245-4097-9715-83c30b5346631
Size: 1.3 KB
MDS of Body: ecasSZedledielbaG08ab6ra0216ab11
Sender Account ID: 443302527238
Saent: 2012-03-28 20:55:33.647 GMT-07:00
First Received: 2012-03-28 20:56:27 402 GMT-07:00
Receive Count: 1 Close
Stopped after polling the queue at 0.6 for 30.3 3 shown above are now avallable to other consumers.

Close

6. Inaweb browser, paste the URL into the address bar to visit the URL. You will see a response similar
to the following XML document.

<Confi rnBubscri pti onResponse xm ns="http://sns. amazonaws. com doc/ 2010- 03-
31/ ">
<ConfirnBubscri pti onResul t >
<Subscri pti onArn>arn: aws: sns: us-east-1: 123456789012: MyTopi c: c7f e3a54-
abOe- 4ec2- 88e0- db410a0f 2bee</ Subscri pti onAr n>
</ Confi rnBubscri pti onResul t >
<ResponseMet adat a>
<Request | d>dd266ecc- 7955- 11el- b925- 5140d02da9af </ Request | d>
</ ResponseMet adat a>
</ Confi rmBubscri pti onResponse>

If you view the topic subscription in the Amazon SNS console, you will now see that subscription
ARN replaces the Pending Confirmation message in the Subscription ID column. The subscribed
queue is ready to receive messages from the topic.

Using an AWS CloudFormation Template to
Create aTopic that Sends Messages to Amazon
SQS Queues

AWS CloudFormation enables you to use a template file to create and configure a collection of AWS
resources together as a single unit. This section has an example template that makes it easy to deploy
topics that publish to queues. The templates take care of the setup steps for you by creating two queues,
creating a topic with subscriptions to the queues, adding a policy to the queues so that the topic can send
messages to the queues, and creating IAM users and groups to control access to those resources.

For more information about deploying AWS resources using an AWS CloudFormation template, see Get
Started in the AWS CloudFormation User Guide.

APl Version 2010-03-31
117

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

Using an AWS CloudFormation Template to Set
Up Topics and Queues Within an AWS Account

The example template creates an Amazon SNS topic that can send messages to two Amazon SQS
gqueues with appropriate permissions for members of one 1AM group to publish to the topic and another
to read messages from the queues. The template also creates IAM users that are added to each group.

You can download this template
(https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template) from the AWS
CloudFormation Sample Templates page.

MySNSTopic is set up to publish to two subscribed endpoints, which are two Amazon SQS queues
(MyQueuel and MyQueue?2). MyPublishTopicGroup is an IAM group whose members have permission
to publish to MySNSTopic using the Publish API action or sns-publish command. The template creates
the 1AM users MyPublishUser and MyQueueUser and gives them login profiles and access keys. The
user who creates a stack with this template specifies the passwords for the login profiles as input
parameters. The template creates access keys for the two IAM users with MyPublishUserKey and
MyQueueUserKey. AddUserToMyPublishTopicGroup adds MyPublishUser to the MyPublishTopicGroup
so that the user will have the permissions assigned to the group.

MyRDMessageQueueGroup is an IAM group whose members have permission to read and delete
messages from the two Amazon SQS queues using the ReceiveMessage and DeleteMessage API actions.
AddUserToMyQueueGroup adds MyQueueUser to the MyRDMessageQueueGroup so that the user will
have the permissions assigned to the group. MyQueuePolicy assigns permission for MySNSTopic to
publish its notifications to the two queues.

" AWSTenpl at eFor mat Ver si on" : "2010-09- 09",

"Description" : "This Tenpl ate creates an Amazon SNS topic that can send
nmessages to two Amazon SQS queues with appropriate perm ssions for one | AM user
to publish to the topic and another to read nessages fromthe queues. MySNSTopi c
is set up to publish to two subscri bed endpoints, which are two Amazon SQS
queues (MyQueuel and MyQueue2). MyPublishUser is an | AM user that can publish
to MySNSTopi ¢ using the Publish API. My/TopicPolicy assigns that permission to
MyPubl i shUser. MyQueueUser is an | AMuser that can read nmessages fromthe two
Amazon SQ@S queues. MyQueuePol icy assigns those perm ssions to MyQueueUser. |t
al so assigns perm ssion for MySNSTopic to publish its notifications to the two
queues. The tenplate creates access keys for the two | AM users with MyPub
lishUser Key and MyQueueUserKey. Note that you will be billed for the AWS re
sources used if you create a stack fromthis tenplate.",

"Paraneters" : {
"MyPubl i shUser Password": {
"NoEcho": "true",
"Type": "String",
"Description" : "Password for the | AM user MyPublishUser",
"M nLength": "1",
"MaxLengt h": "41",
"Al'l owedPattern" : "[a-zA-Z0-9]*",
"ConstraintDescription" : "nust contain only al phanuneric characters."
H
"MyQueueUser Passwor d": {
"NoEcho": "true",
"Type": "String",
"Description" : "Password for the | AM user MyQueueUser",

APl Version 2010-03-31
118

https://s3.amazonaws.com/cloudformation-templates-us-east-1/SNSToSQS.template
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://aws.amazon.com/cloudformation/aws-cloudformation-templates/
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryReceiveMessage.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/Query_QueryDeleteMessage.html

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

"M nLength": "1",
"MaxLengt h": "41",

"Al'l owedPattern" : "[a-zA-Z0-9]*",
"ConstraintDescription" : "nust contain only al phanuneric characters."
}
8
"Resources" : {
"MySNSTopi c" : {
"Type" : "AWS::SNS:: Topic",
"Properties" : {
"Subscription" : [
{
"Endpoint" : { "Fn::GetAtt" : ["My/Qeuel", "Arn"]},
"Protocol" : "sqgs"
1
{
"Endpoint" : { "Fn::GetAtt" : ["MyQeue2", "Arn"]},
"Protocol" : "sqgs"
}
]
}
8
"MyQueuel" : {
"Type" : "AWE: : SQS: : Queue"
8
"MyQueue2" : {
"Type" : "AWE: : SQS: : Queue"
8
"“MyPubl i shUser" : {
"Type" : "AWS: : | AM : User",
"Properties" : {
"Logi nProfile": {
"Password": {"Ref" : "MyPublishUserPassword"}
}
}
8
"MyPubl i shUser Key" : {
"Type" : "AWB::| AM : AccessKey",
"Properties" : {
"User Name" : {"Ref": "MyPublishUser"}
}
8
"MyPubl i shTopi cGroup" : {
"Type" : "AWS: : | AM : G oup",
"Properties" : {
"Policies": [
{

"Pol i cyNane": "MTopi cGroupPolicy",
"Pol i cyDocunment": {
"Version":"2012-10-17",
"Statenent": |
{
"Effect":"A |l ow',
"Action":[
"sns: Publi sh"

1

APl Version 2010-03-31
119

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

"Resource": {"Ref" : "M/SNSTopic"}
}
1}
}
]
}
H
" AddUser ToMyPubl i shTopi cG oup” : {
"Type" : "AWS:: | AM : User ToGr oupAddi ti on",
"Properties" : {
"G oupNarme": {"Ref" : "MPublishTopi cGoup"},
"Users" : [{ "Ref" : "MyPublishUser" }]
}
H
"MyQueueUser" : {
"Type" : "AWS: : | AM : User",
"Properties" : {
"Logi nProfile": {
"Password": {"Ref" : "MyQueueUser Password"}
}
}
H
"MyQueueUser Key" : {
"Type" : "AWS: :| AM : AccessKey",
"Properties" : {
"User Name" : {"Ref": "MyQueueUser"}
}
H
"MyRDMessageQueueG oup" : {
"Type" : "AWS: : | AM : G oup",
"Properties" : {
"Policies": [
{
"Pol i cyNane": "MyQueueG oupPolicy",
"Pol i cyDocunment": {
"Version":"2012-10-17",
"Statenent":|
{
"Effect":"A |l ow',
"Action":[
"sqgs: Del et eMessage”,
"sqgs: Recei veMessage"
1,
"Resource": [
{ "Fn::GetAtt" : ["M/Queuel", "Arn"]},
{ "Fn::GetAtt" : ["MyQueue2", "Arn"]}
]
}
1}
}
]
}
H
"AddUser ToMyQueueG oup" : {
"Type" : "AWS:: | AM : User ToGr oupAddi ti on",
"Properties" : {
"GroupNanme": {"Ref" : "M/RDMessageQueueG oup"},
"Users" : [{ "Ref" : "MyQueueUser" }]

APl Version 2010-03-31
120

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

}

8

"MyQueuePol i cy" : {
"Type" : "AWS:: SQS: : QueuePol i cy",
"Properties" : {

"Pol i cyDocunent": {
"Version":"2012-10-17",
"Id":"MyQueuePol i cy",
"Statenent" : [

"Sid":"Al ow SendMessage- To- Bot h- Queues- Fr om SNS- Topi c",

"Effect":"All ow',

"Principal" : {"AWS" : "*"},

"Action":["sqgs: SendMessage"],

"Resource": "*",

"Condition": {
"ArnEqual s": {
"aws: SourceArn": { "Ref" : "M/SNSTopic" }
}
}
}
]
}
"Queues" : [{"Ref" : "MyQueuel"}, {"Ref" : "MyQueue2"}]
}
}
}
"Qut puts" : {
"MySNSTopi cTopi cARN' : {
"Val ue" : { "Ref" : "My/SNSTopic" }
8
"MyQueuell nfo" : {
"Val ue" : {"Fn::Join" : [
[
"ARN: ",
{ "Fn::GetAtt" : ["MyQueuel", "Arn"] },
"URL: ",
{ "Ref" : "MyQueuel" }
]
1}
8
"MyQueue2l nfo" : {
"Val ue" : {"Fn::Join" : [
[
"ARN: ",
{ "Fn::GetAtt" : ["MyQueue2", "Arn"] },
"URL: ",
{ "Ref" : "MyQueue2" }
]
1}
8
"MyPubl i shUser I nfo" : {
"Val ue" : {"Fn::Join" : [
[
"ARN: ",

APl Version 2010-03-31
121

Amazon Simple Notification Service Developer Guide
Using an AWS CloudFormation Template to Set Up
Topics and Queues Within an AWS Account

{ "Fn::GetAtt" : ["MyPublishUser", "Arn"] },
"Access Key:",
{"Ref" : "MPublishUserKey"},
"Secret Key:",
{"Fn::GetAtt" : ["MPublishUserKey", "SecretAccessKey"]}
]
1}
}s
"MyQueueUser I nfo" : {
"Value" : {"Fn::Join" : [
[
"ARN: ",
{ "Fn::GetAtt" : ["MyQueueUser", "Arn"] },
"Access Key:",
{"Ref" : "MyQueueUser Key"},
"Secret Key:",
{"Fn::GetAtt" : ["MyQueueUserKey", "SecretAccessKey"]}
]
1}
}

APl Version 2010-03-31
122

Amazon Simple Notification Service Developer Guide

Sending and Receiving SMS
Notifications Using Amazon SNS

You can use Amazon Simple Notification Service (Amazon SNS) to send and receive Short Message
Service (SMS) natifications to SMS-enabled mobile phones and smart phones.

To send an SMS message using Amazon SNS, select one of your Amazon SNS topics that has a display
name and publish a message to the topic. The topic must have a display name assigned to it because
the first ten (10) characters of the display name are used as the initial part of the text message prefix.
SMS messages can contain up to 140 ASCII characters or 70 Unicode characters. Because Amazon
SNS includes a display name prefix with all SMS messages that you send, the sum of the display hame
prefix and the message payload cannot exceed 140 ASCII characters or 70 Unicode characters. Amazon
SNS truncates messages that exceed these limits.

To receive SMS messages using Amazon SNS, select the SMS protocol setting when you subscribe to
an Amazon SNS topic. The full message prefix comprises the display hame followed by the > character.
For example, if the display name of a topic is My Topi ¢ and the message payload sentisHel | o Worl d!,
the message delivered would appear as it does in the following example:

MYTOPI C>Hel | o Wor | d!

Note
Display names are not case sensitive, and Amazon SNS converts display names to uppercase
characters for SMS messages.

You can use SMS notifications in conjunction with other natification types, such as email. For example,
if you use CloudWatch to monitor your AWS application, you can create a CloudWatch alarm that is
associated with an Amazon SNS topic. You can then subscribe to the topic via both email and SMS so
that you receive natifications not only through email, but also on your SMS-enabled device.

To facilitate the use of a single message for both SMS and email notifications, Amazon SNS checks
whether your message contains both a message body and a subject. If you publish a message that
contains only a message body, both SMS and email subscribers receive the same message, up to the
size limits for each protocol (140 characters for SMS and 8 KiB for email). If your message is longer than
140 characters, your SMS message will be truncated.

To avoid a truncated SMS message when your message payload is longer than 140 characters, publish
a message with both a subject and a message payload. For messages with both a subject and a message

APl Version 2010-03-31
123

Amazon Simple Notification Service Developer Guide
Task 1: Assign aTopic Display Name

payload, Amazon SNS sends only the subject to SMS subscribers, but sends both the subject and the
message to any email subscribers. This allows you to send email notifications up to 8 KiB long and also
have the subject line delivered as an SMS message to your mobile device.

Note
SMS notifications are currently supported for phone numbers in the United States. SMS messages
can be sent only from topics created in the US East (Northern Virginia) Region. However, you
can publish messages to topics that you create in the US East (Northern Virginia) Region from
any other region.

Amazon SNS uses short code 30304 to send and receive SMS messages.

Prerequisites

¢ Sign up for Amazon SNS—Create an AWS account if you don't have one.
For more information, see Before You Begin (p. 4).

¢ Create an Amazon SNS topic—Create an Amazon SNS topic if you don't have one.
For more information, see Create a Topic (p. 4).

After you have completed both of the prerequisite tasks, you can use the following process to publish
and receive SMS messages with Amazon SNS.

Process for Sending and Receiving SMS Messages with Amazon SNS

Task 1: Assign a Topic Display Name (p. 124)

Task 2: Subscribe to a Topic Using the SMS Protocol (p. 126)

Task 3: Publish a Message (p. 128)

Task 4: Cancel SMS Subscriptions (p. 130)

Task 1: Assign aTopic Display Name

To publish SMS messages for a topic, you must assign the topic a display name.
To assign a display name to a topic

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Inthe navigation pane, select a topic.
The examples that follow use the topic name MyTopic.

APl Version 2010-03-31
124

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Task 1: Assign aTopic Display Name

Region: = US East * All Topic Actions | = @ Publish to Topic

ﬁ Create New Topic @ M yTO p | c

[T] SNS Dashboard
#4 My Subscriptions

Topic ARN: arn:aws:sns

Topic Owner: AWS Accoun
My Topics ([1)

B MyTopic Region: us-east-1

Display Name:

|ﬁg Create New Subscription | !!

To receive notifi
A subscription links

Select Edit Topic Display Name from the All Topic Actions drop-down list.

Topic Details
AllTopic Actions | = || 1] Publish to Topic 2 Refresh || @ Help

Publish to this Topic
te Topic

:Bws:sns:us-east-1:111122223333:MyTopic

]
Topic Owner: AWS Account ID 111122223333

Region: us-east-1

Enter a display name in the Display Name box and click Set Display Name.

Edit Display Name Cancel [X

The Display Name of a topic will be used, if present, in the "From:" field of any
email notifications from the topic.

Display Name:| MyTopic
Up to 100 printable ASCIT characters

| Cancel || Set Display Name |

The new topic display name appears in the Topic Details page.

API Version 2010-03-31
125

Amazon Simple Notification Service Developer Guide
Task 2: Subscribe to a Topic Using the SMS Protocol

Region: = US East * All Topic Actions | = é)lj Publish to Topic
ey)
1| Create New Topic @ M .
 MyTopic
SNS Dashboard .
8 ashboar Topic ARN: arn:aws:sns
¥s My Subscriptions
Topic Owner: AWS Accoun
My Topics (1)
B MyTopic Region: us-east-1
Display Name: My Topic

ﬂg Create New Subscription !_g

To receive notifi
A subscription links

Task 2: Subscribe to a Topic Using the SMS
Protocol

Note

SMS notifications are currently supported for phone numbers in the United States. SMS messages
can be sent only from topics created in the US East (Northern Virginia) Region. However, you
can publish messages to topics that you create in the US East (Northern Virginia) Region from
any other region.

To subscribe to an Amazon SNS topic using the SMS protocol

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Inthe navigation pane, select a topic, and in the Topic Details pane, click Create New Subscription.

Region: = US East * All Topic Actions | = é)lj Publish to Topic
-1 N
1| Create New Topic @ M T .
MyTopic
SNS Dashboard .
- Topic ARN: arn:aws:sns
¥y My Subscriptions
Topic Owner: AWS Accoun

My Topics (1)

B MyTopic Region: us-east-1

Display Name:

ﬂg Create New Subscription q.
: i s

To receive notifi
A subscription links

APl Version 2010-03-31
126

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Task 2: Subscribe to a Topic Using the SMS Protocol

Select SMS from the Protocol drop-down list.

Create New Subscription Cancel [X

Topic Name MyTopic

Protocol

Endpoint

For terms and condil : http://aws.amazon.com/sns/sms
(Message & Data Ra Amazon SQ3 Std message & data rates apply.)

Enter the phone number of an SMS-enabled device in the Endpoint box and click Subscribe.

Note
Use numbers only. Do not include dashes, spaces, or parentheses.

Create New Subscription Cancel [X

Topic Name MyTopic

Protocol SMS -

Endpoint 12065550100

For terms and conditions, please see: http://aws.amazon.com/sns/sms
(Message & Data Rates may apply. / Std message & data rates apply.)

Amazon SNS sends a confirmation text message to the SMS-enabled device associated with the
number you entered.

Messages 30‘3 '04

“ Would you like to receive b
messages from
MYTOPIC? Reply YES
MYTOPIC to receive
messages. Reply HELP or
STOP. Msgé&data rates

__may apply.)

In the AWS Management Console, the subscription is listed as PendingConfirmation until the
SMS-enabled device confirms the subscription.

APl Version 2010-03-31
127

Amazon Simple Notification Service Developer Guide
Task 3: Publish a Message

5.

Region: = USEast * All Topic Actions | = [Pj Publish to Topic

B)

1| Create New Topic @ M .

yTopic
SNS Dashboard .

8 Topic ARN: arn:aws:sns:us

#4 My Subscriptions
Topic Owner: AWS Account I

My Topics [4)

2] CPU_OVER_80 Region: us-east-1

Display Name: MyTopic

ﬂg Create New Subscription !'

PendingConfirmation =~ sms
M

Use the SMS-enabled device associated with the phone number you entered in the previous step
to reply affirmatively to the confirmation text message. For example, the following text message
confirms a subscription to the MyTopi ¢ Amazon SNS topic.

Messages 303-04

(es MyTopic).

Amazon SNS responds with a subscription confirmation message.

Messages 303-04 Edit
’r‘fnu have subscribed to h
MYTOPIC. Reply HELP
for help. Reply STOP
MYTOPIC to cancel.

Msgé&data rates may
__apply. y,

Task 3: Publish a Message

To publish a message to a topic

1.

2.

Sign in to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

In the navigation pane, select a topic.

API Version 2010-03-31
128

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Task 3: Publish a Message

Click Publish to Topic.

Enter text in the Message box.

Amazon SNS sends text that you enter in the Message box to SMS subscribers unless you also
enter text into the Subject box. The following example creates a message with the text Hel | o
Vorl d!.

Publish Cancal | X

Topic Name : MyTopic
Subject :
Up to 100 printable ASCII characters (optional).

Message : Hello World! -

Up to 256KE of Unicode text.

© 1ise same message body for all protocols
) Use different message body for different protocols

Cancel || Publish Message

Enter text in the Subject box if you want to use the Message box for messages to email subscribers.
If you include text in the Subject box, the SMS message will contain the subject text rather than the
text from the Message box. Any email subscribers, however, will receive both the subject and the
message body. This allows you to use a single published message to send a short SMS message
using the subject and a longer email message using the message payload.

Click Publish Message.
Amazon SNS displays a confirmation dialog box.

Publish Cancel |x

Your message has been successfully published.

Close

The SMS message appears on your SMS-enabled device.

Messages

“MYTOPIC> Hello World!)

APl Version 2010-03-31
129

Amazon Simple Notification Service Developer Guide
Task 4: Cancel SMS Subscriptions

Task 4: Cancel SMS Subscriptions

You have several options for canceling SMS subscriptions to a topic. You can stop receiving all SMS
messages by replying STOP or QUI T to short code 30304. To cancel your subscription to a specific topic,
send an SMS message that contains STOP <TOPI CNAME> to short code 30304, where <TOPI CNAVE>
is the display name of the topic. You can also cancel a subscription through the AWS Management
Console or the Query APl Unsubscribe action.

To stop receiving all SMS messages from Amazon SNS

¢ Use your SMS-enabled device to send a STOP or QUI T message to short code 30304. For example,
the following text message cancels both of the subscriptions that this device had with Amazon SNS.

Messages 303-04

(srop)

Amazon SNS responds with confirmation messages for each topic.

Messages 303-04 Edit

(s100)

'r"mu have unsubscribed N

from MYTOPIC. Reply
HELP for help. Msg&data
__rates may apply. y

'\

“You have unsubscribed
from MYTOPIC2. Reply
HELP for help. Msg&data
__rates may apply.)

To stop receiving SMS messages from a specific topic

¢ Use your SMS-enabled device to send an SMS message that contains STOP <TOPI CNAME> to short
code 30304, where <TOPI CNAME> is the display name of the topic. For example, the following SMS
message cancels a subscription to a topic named mytopic.

Messages 303-04

APl Version 2010-03-31
130

http://docs.aws.amazon.com/sns/latest/api/API_Unsubscribe.html

Amazon Simple Notification Service Developer Guide
Task 4: Cancel SMS Subscriptions

Amazon SNS responds with a confirmation message.

Messages 303-04

(stop mytopic "
You have unsubscribed
from MYTOPIC. Reply
HELP for help. Msg&data
rates may apply.

API Version 2010-03-31
131

Amazon Simple Notification Service Developer Guide

Sending Amazon SNS Messages
to HTTP/HTTPS Endpoints

You can use Amazon SNS to send notification messages to one or more HTTP or HTTPS endpoints.
When you subscribe an endpoint to a topic, you can publish a notification to the topic and Amazon SNS
sends an HTTP POST request delivering the contents of the notification to the subscribed endpoint. When
you subscribe the endpoint, you select whether Amazon SNS uses HTTP or HTTPS to send the POST
request to the endpoint. If you use HTTPS, then you can take advantage of the support in Amazon SNS
for the following:

« Server Name Indication (SNI)—This allows Amazon SNS to support HTTPS endpoints that require
SNI, such as a server requiring multiple certificates for hosting multiple domains. For more information
about SNI, see http://en.wikipedia.org/wiki/Server_Name_Indication.

¢ Basic and Digest Access Authentication—This allows you to specify a username and password in
the HTTPS URL for the HTTP POST request, such as https://user:password@domain.com or
https://user@domain.com. The username and password are encrypted over the SSL connection
established when using HTTPS. Only the domain name is sent in plaintext. For more information about
Basic and Digest Access Authentication, see http://www.rfc-editor.org/info/rfc2617

The request contains the subject and message that were published to the topic along with metadata about
the notification in a JSON document. The request will look similar to the following HTTP POST request.
For details about the HTTP header and the JSON format of the request body, see HTTP/HTTPS
Headers (p. 174) and HTTP/HTTPS Notification JSON Format (p. 177).

PCST / HTTP/ 1.1

X-ane-sns-nessage-type: Notification

X-ane-sns-nessage-i d: da4le39f - eadd- 435a- b922- c6aae3915ebe
X-anZ-sns-topi c-arn: arn: aws: sns: us-east-1: 123456789012: MyTopi ¢
X-ank-sns-subscription-arn: arn: aws: sns: us-east-1: 123456789012: MyTopi c: 2bcf bf 39-
05c3-41de- beaa-f cfcc21c8f 55

Content-Length: 761

Cont ent - Type: text/plain; charset=UTF-8

Host: ec2-50-17-44-49. conput e- 1. amazonaws. com

Connecti on: Keep-Alive

User - Agent: Amazon Sinple Notification Service Agent

APl Version 2010-03-31
132

http://en.wikipedia.org/wiki/Server_Name_Indication
http://www.rfc-editor.org/info/rfc2617

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process
Amazon SNS messages

{
"Type" : "Notification",
"Messagel d" : "da41e39f - eadd- 435a- b922- c6aae3915ebe",
"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",
"Subject" : "test",
"Message" : "test nessage",
"Ti mestanp" : "2012-04-25T21:49: 25.7192",
"Si gnatureVersion" : "1",
"Signature" : "EXAMPLEl DMXvB8r 9R83t GoNnOecwd5Uj | | zsvS

vbl t zf aMpN2nk5HVSW7 XnOn/ 491 kxDKz8Yr | H2qJ Xj 2i ZB0Z020O71c4qk1f MUDi 3LG
pi j 7TRCW AWV YYsSql KRNFS94i | u7NFhUzLi i eYr 4BKHpdTndD6c0esKEYBpabxDSc="

"SigningCert URL" : "https://sns.us-east-1. anmazonaws. coni Si npl eNoti fi cati onSer
vi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns. us-east-1. anazonaws. conl ?Act i on=Unsubscri be&Sub

scri pti onArn=arn: aws: sns: us- east - 1: 123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa-
fcfcc2lc8f 55"
}

To enable an Amazon SNS topic to send messages to an HTTP or HTTPS endpoint, follow these steps:
Step 1: Make sure your endpoint is ready to process Amazon SNS messages (p. 133)

Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic (p. 136)

Step 3: Confirm the subscription (p. 137)

Step 4: Set the delivery retry policy for the subscription (optional) (p. 137)

Step 5: Give users permissions to publish to the topic (optional) (p. 137)

Step 6: Send messages to the HTTP/HTTPS endpoint (p. 139)

Step 1. Make sure your endpoint is ready to
process Amazon SNS messages

Before you subscribe your HTTP or HTTPS endpoint to a topic, you must make sure that the HTTP or
HTTPS endpoint has the capability to handle the HTTP POST requests that Amazon SNS uses to send
the subscription confirmation and notification messages. Usually, this means creating and deploying a
web application (for example, a Java servlet if your endpoint host is running Linux with Apache and
Tomcat) that processes the HTTP requests from Amazon SNS. When you subscribe an HTTP endpoint,
Amazon SNS sends it a subscription confirmation request. Your endpoint must be prepared to receive
and process this request when you create the subscription because Amazon SNS sends this request at
that time. Amazon SNS will not send notifications to the endpoint until you confirm the subscription. Once
you confirm the subscription, Amazon SNS will send notifications to the endpoint when a publish action
is performed on the subscribed topic.

To set up your endpoint to process subscription confirmation and notification messages

1. Your code should read the HTTP headers of the HTTP POST requests that Amazon SNS sends to
your endpoint. Your code should look for the header field x- anz- sns- nessage- t ype, which tells
you the type of message that Amazon SNS has sent to you. By looking at the header, you can
determine the message type without having to parse the body of the HTTP request. There are two
types that you need to handle: Subscri pti onConfirmati on and Noti fi cati on.The
Unsubscri beConfi r mat i on message is used only when the subscription is deleted from the topic.

APl Version 2010-03-31
133

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process
Amazon SNS messages

For details about the HTTP header, see HTTP/HTTPS Headers (p. 174). The following HTTP POST
request is an example of a subscription confirmation message.

POST / HTTP/1.1

X-ane-sns-message-type: SubscriptionConfirmation
X-ane-sns-message-i d: 165545c9- 2a5c- 472c- 8df 2- 7f f 2be2b3b1b
X-ane-sns-topi c-arn: arn:aws: sns: us-east-1:123456789012: MyTopi ¢
X-ane-sns-subscription-arn: arn:aws: sns: us-east-1:123456789012: MyTopi c: 2bcf
bf 39- 05c3- 41de- beaa- f cf cc21c8f 55

Cont ent - Lengt h: 1336

Cont ent - Type: text/plain; charset=UTF-8

Host: exanpl e. com

Connecti on: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "SubscriptionConfirmation",
"Messagel d" : "165545c9-2a5c-472c- 8df 2- 7f f 2be2b3blb",
"Token"

" 2336412 3 1B Sobleae2A1d B8 rebebAB00 71 70c GeeB333aR7aR bR e et 3ne 19Aac e PAPB 1 B0asn20A1 /7 1f CRoB0BcaRA
bacc99c583a91609981dd2728f 4ae6f db82ef d087cc3b7849e057980202785c030b08795%4eeac82c01f 23500e717736",

"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",

"Message" : "You have chosen to subscribe to the topic arn:aws:sns: us-
east - 1:123456789012: MyTopi c.\nTo confirmthe subscription, visit the Sub
scribeURL included in this nessage.",

"SubscribeURL" : "https://sns.us-east-1.amazonaws. conl ?Act i on=Conf i r nSub
scripti on&Topi cCArn=arn: aws: sns: us- east-1: 123456789012: MyTop
| cSItkar 233641 37 LB SoBleGe A1 o8 RebebA 8071 3T 608833 AR e e 3ot 185 o AP (Bsen I If QR BB
bacc99c583a91609981dd2728f 4ae6f db82ef d087cc3b7849e057980202785c030b08795%4eeac82c01f 23500e717736",

"Ti mestanmp" : "2012-04-26T20: 45: 04. 751Z",
" Si gnatureVersion" : "1",
"Signature" : "EXAMPLEpH+DcEwW APg8my8dReBSwksf g2S7WKQri kcNK

W.Q wu6A4VbeSOCHVCKhRS7f UQvi 2egU3NB358f i TDN6bkk O< YDVr YOAd8L10Hs 3zH81nt nPk5uvvol
| CLCXGu43obcgFxelL3khzl 81 KvO61G\B6j | 9b5+gLPoBc1Q=",

"SigningCert URL" : "https://sns. us-east-1. amazonaws. conl Si npl eNot i fi cation
Servi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent

}

Your code should parse the JSON document in the body of the HTTP POST request to read the
name/value pairs that make up the Amazon SNS message. Use a JSON parser that handles converting
the escaped representation of control characters back to their ASCII character values (for example,
converting \n to a newline character). You can use an existing JSON parser such as the Jackson
JSON Processor (http://wiki.fasterxml.com/JacksonHome) or write your own. In order to send the
text in the subject and message fields as valid JSON, Amazon SNS must convert some control
characters to escaped representations that can be included in the JISON document. When you receive
the JSON document in the body of the POST request sent to your endpoint, you must convert the
escaped characters back to their original character values if you want an exact representation of the
original subject and messages published to the topic. This is critical if you want to verify the signature
of a notification because the signature uses the message and subject in their original forms as part
of the string to sign.

Optionally, you can verify the authenticity of a notification, subscription confirmation, or unsubscribe
confirmation message sent by Amazon SNS. Using information contained in the Amazon SNS
message, your endpoint can recreate the signature so that you can verify the contents of the message
by matching your signature with the signature that Amazon SNS sent with the message. For more

APl Version 2010-03-31
134

http://wiki.fasterxml.com/JacksonHome

Amazon Simple Notification Service Developer Guide
Step 1: Make sure your endpoint is ready to process
Amazon SNS messages

information about verifying the signature of a message, see Verifying the Signatures of Amazon SNS
Messages (p. 163).

Based on the type specified by the header field x- anz- sns- nessage- t ype, your code should read
the JSON document contained in the body of the HTTP request and process the message. Here are
the guidelines for handling the two primary types of messages:

SubscriptionConfirmation
Read the value for Subscri beURL and visit that URL. To confirm the subscription and start
receiving notifications at the endpoint, you must visit the Subscr i beURLURL (for example, by
sending an HTTP GET request to the URL). See the example HTTP request in the previous step
to see what the Subscri beURL looks like. For more information about the format of the
Subscri pti onConfirmati on message, see HTTP/HTTPS Subscription Confirmation JSON
Format (p. 175). When you visit the URL, you will get back a response that looks like the following
XML document. The document returns the subscription ARN for the endpoint within the
ConfirnBSubscri pti onResul t element.

<ConfirnBubscri pti onResponse xm ns="http://sns. anazonaws. com doc/ 2010-
03-31/">
<ConfirnBubscri pti onResul t >
<Subscri pti onArn>arn: aws: sns: us-east - 1: 123456789012: MyTopi c: 2bcf bf 39-
05c3-41de- beaa-fcfcc21c8f 55</ Subscri pti onAr n>
</ Confi rnBubscri pti onResul t >
<ResponseMet adat a>
<Request | d>075ecce8- 8dac- 11el- bf 80-f 781d96e9307</ Request | d>
</ ResponseMet adat a>
</ Confi rmBubscri pti onResponse>

As an alternative to visiting the Subscri beURL, you can confirm the subscription using the
ConfirmSubscription action with the Token set to its corresponding value in the

Subscri pti onConfirmati on message. If you want to allow only the topic owner and
subscription owner to be able to unsubscribe the endpoint, you call the Conf i r mSubscri pti on
action with an AWS signature.

Notification
Read the values for Subj ect and Message to get the notification information that was published
to the topic.

For details about the format of the Not i f i cat i on message, see HTTP/HTTPS Headers (p. 174).
The following HTTP POST request is an example of a notification message sent to the endpoint
example.com.

POST / HTTP/ 1.1

X-ane-sns- message-type: Notification

X-ane-sns-nmessage-i d: 22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324
X-ane-sns-topi c-arn: arn:aws: sns: us-east-1:123456789012: MyTopi ¢
X-ane-sns-subscri ption-arn: arn:aws: sns: us-east-1:123456789012: MyTop
i c: c9135db0- 26c4- 47ec- 8998- 413945f b5a96

Content -Length: 773

Cont ent - Type: text/plain; charset=UTF-8

Host: exanpl e. com

Connecti on: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "Notification",
"Messagel d" : "22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324",
"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",

APl Version 2010-03-31
135

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
Step 2: Subscribe the HTTP/HTTPS endpoint to the
Amazon SNS topic

"Subject" : "My First Message",

"Message" : "Hello world!",

"Ti mestanp” : "2012-05-02TO00: 54: 06. 6552",

"Si gnatureVersion" : "1",

"Signature" : "EXAVPLEWSJRNwWLLFQL4! CBObnXr dB8CI RMIQFGBgwWLp

M8t J4et TWC5zU7QBt S6t Gpey3ej edNdQI+1f kI p9F2/ LnVKb5aF! Yq+9r k9Zi Pph5YI L
mA& Dy C5T+Sy 9/ uni ¢5S0UQe 2PEL gdpVBahwNOdMM.J Puk OKAJ J zt nc="

"SigningCert URL" : "https://sns. us-east-1.amazonaws. com Si npl eNotific
ati onServi ce-f3ecfb7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns. us-east-1. amazonaws. com ?Acti on=Unsub

scri be&Subscri pti onArn=arn: aws: sns: us-east - 1: 123456789012: My Top
i ¢c: c9135db0- 26c4- 47ec-8998- 413945f b5a96"

}

5. Make sure that your endpoint responds to the HTTP POST message from Amazon SNS with the
appropriate status code. The connection will time out in 15 seconds. If your endpoint does not respond
before the connection times out or if your endpoint returns a status code outside the range of 200-4xx,
Amazon SNS will consider the delivery of the message as a failed attempt.

6. Make sure that your code can handle message delivery retries from Amazon SNS. If Amazon SNS
doesn't receive a successful response from your endpoint, it attempts to deliver the message again.
This applies to all messages, including the subscription confirmation message. By default, if the initial
delivery of the message fails, Amazon SNS attempts up to three retries with a delay between failed
attempts set at 20 seconds. Note that the message request times out at 15 seconds. This means
that if the message delivery failure was caused by a timeout, Amazon SNS will retry approximately
35 seconds after the previous delivery attempt. If you don't like the default delivery policy, you can
set a different delivery policy on the endpoint.

To be clear, Amazon SNS attempts to retry only after a delivery attempt has failed. You can identify
a message using the x- anz- sns- nessage- i d header field. By comparing the IDs of the messages
you have processed with incoming messages, you can determine whether the message is a retry
attempt.

7. Ifyou are subscribing an HTTPS endpoint, make sure that your endpoint has a server certificate
from a trusted Certificate Authority (CA). Amazon SNS will only send messages to HTTPS endpoints
that have a server certificate signed by a CA trusted by Amazon SNS. For a list of trusted CAs, see
Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS Endpoints (p. 150).

8. Deploy the code that you have created to receive Amazon SNS messages. When you subscribe the
endpoint, the endpoint must be ready to receive at least the subscription confirmation message.

Step 2: Subscribe the HTTP/HTTPS endpoint to
the Amazon SNS topic

To send messages to an HTTP or HTTPS endpoint through a topic, you must subscribe the endpoint to
the Amazon SNS topic. You specify the endpoint using its URL. To subscribe to a topic, you can use the
Amazon SNS console, the sns-subscribe command, or the Subscribe API action. Before you start, make
sure you have the URL for the endpoint that you want to subscribe and that your endpoint is prepared to
receive the confirmation and notification messages as described in Step 1.

To subscribe an HTTP or HTTPS endpoint to a topic using the Amazon SNS console

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic.

APl Version 2010-03-31
136

http://docs.aws.amazon.com/sns/latest/cli/sns_subscribe.html
http://docs.aws.amazon.com/sns/latest/api/API_Subscribe.html
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Step 3: Confirm the subscription

3. Click Create New Subscription, select HTTP or HTTPS for Protocol, paste in the URL for the
endpoint that you want the topic to send messages to for Endpoint, and then click Subscribe.

Create New Subscription Cancel %

Topic Name MyTopc
Protocol HTTP

Endpoint hitpcliexample com

cancel || Subscribe

4. For the Subscription request received! message, click Close.

Your new subscription's Subscription ID displays PendingConfirmation. When you confirm the
subscription, Subscription ID will display the subscription ID.

Step 3: Confirm the subscription

After you subscribe your endpoint, Amazon SNS will send a subscription confirmation message to the
endpoint. You should already have code that performs the actions described in Step 1 (p. 133) deployed
to your endpoint. Specifically, the code at the endpoint must retrieve the Subscr i beURL value from the
subscription confirmation message and either visit the location specified by Subscr i beURL itself or make
it available to you so that you can manually visit the Subscr i beURL, for example, using a web browser.
Amazon SNS will not send messages to the endpoint until the subscription has been confirmed. When
you visit the Subscri beURL, the response will contain an XML document containing an element
Subscri pti onAr n that specifies the ARN for the subscription. You can also use the Amazon SNS
console to verify that the subscription is confirmed: The Subscription ID will display the ARN for the
subscription instead of the Pendi ngConf i r nat i on value that you saw when you first added the
subscription.

Step 4: Set the delivery retry policy for the
subscription (optional)

By default, if the initial delivery of the message fails, Amazon SNS attempts up to three retries with a
delay between failed attempts set at 20 seconds. As discussed in Step 1 (p. 133), your endpoint should
have code that can handle retried messages. By setting the delivery policy on a topic or subscription, you
can control the frequency and interval that Amazon SNS will retry failed messages. You can set a delivery
policy on a topic or on a particular subscription.

Step 5: Give users permissions to publish to the
topic (optional)

By default, the topic owner has permissions to publish the topic. To enable other users or applications to
publish to the topic, you should use AWS Identity and Access Management (IAM) to give publish permission
to the topic. For more information about giving permissions for Amazon SNS actions to IAM users, see
Controlling User Access to Your AWS Account.

APl Version 2010-03-31
137

http://docs.aws.amazon.com/sns/latest/gsg/UsingIAMwithSNS.html

Amazon Simple Notification Service Developer Guide
Step 5: Give users permissions to publish to the topic
(optional)

There are two ways to control access to a topic:

¢ Add a policy to an IAM user or group. The simplest way to give users permissions to topics is to create
a group and add the appropriate policy to the group and then add users to that group. It's much easier
to add and remove users from a group than to keep track of which policies you set on individual users.

¢ Add a policy to the topic. If you want to give permissions to a topic to another AWS account, the only
way you can do that is by adding a policy that has as its principal the AWS account you want to give
permissions to.

You should use the first method for most cases (apply policies to groups and manage permissions for
users by adding or removing the appropriate users to the groups). If you need to give permissions to a
user in another account, use the second method.

If you added the following policy to an IAM user or group, you would give that user or members of that
group permission to perform the sns: Publ i sh action on the topic MyTopic.

{
"Version":"2012-10-17",
"Statenent": [{
"Sid":"A |l owPubl i shToMyTopi c",
"Effect":"Al |l ow',
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"
}
]
}

The following example policy shows how to give another account permissions to a topic.

Note

When you give another AWS account access to a resource in your account, you are also giving
IAM users who have admin-level access (wildcard access) permissions to that resource. All
other IAM users in the other account are automatically denied access to your resource. If you
want to give specific IAM users in that AWS account access to your resource, the account or an
IAM user with admin-level access must delegate permissions for the resource to those IAM
users. For more information about cross-account delegation, see Enabling Cross-Account Access
in the Using IAM Guide.

If you added the following policy to a topic MyTopic in account 123456789012, you would give account
111122223333 permission to perform the sns: Publ i sh action on that topic.

{
"Version":"2012-10-17",
"1d":"MyTopicPolicy",
"Statenment": [{
"Sid":"All ow publish-to-topic",
"Effect":"All ow',
"Principal":{
"AWS": " 111122223333"
1
"Action":"sns: Publish",
"Resource":"arn: aws: sns: us-east - 1: 123456789012: MyTopi c"
}
]
}

APl Version 2010-03-31
138

http://docs.aws.amazon.com/IAM/latest/UserGuide/Delegation.html

Amazon Simple Notification Service Developer Guide
Step 6: Send messages to the HTTP/HTTPS endpoint

Step 6: Send messages to the HTTP/HTTPS
endpoint

You can send a message to a topic's subscriptions by publishing to the topic. To publish to a topic, you
can use the Amazon SNS console, the sns-publish command, or the Publish API.

If you followed Step 1 (p. 133), the code that you deployed at your endpoint should process the notification.
To publish to a topic using the Amazon SNS console

1. Using the credentials of the AWS account or IAM user with permission to publish to the topic, sign
in to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. In the navigation pane, select the topic and click Publish to Topic.

3. Inthe Subject box, enter a subject (for example, Testi ng publish to ny endpoi nt)inthe
Message box, enter some text (for example, Hel | o wor | d!), and click Publish Message. The
following message appears: Your message has been successfully published.

Setting Amazon SNS Delivery Retry Policies for
HTTP/HTTPS Endpoints

Topics
¢ Applying Delivery Policies to Topics and Subscriptions (p. 141)
¢ Setting the Maximum Receive Rate (p. 142)
¢ Immediate Retry Phase (p. 145)
¢ Pre-Backoff Phase (p. 146)
¢ Backoff Phase (p. 147)
¢ Post-Backoff Phase (p. 149)

A successful Amazon SNS delivery to an HTTP/HTTPS endpoint sometimes requires more than one
attempt. This can be the case, for example, if the web server that hosts the subscribed endpoint is down
for maintenance or is experiencing heavy traffic. If an initial delivery attempt doesn't result in a successful
response from the subscriber, Amazon SNS attempts to deliver the message again. We call such an
attempt a retry. In other words, a retry is an attempted delivery that occurs after the initial delivery attempt.

Amazon SNS only attempts a retry after a failed delivery attempt. Amazon SNS considers the following
situations as a failed delivery attempt.

e HTTP status in the range 500-599.
¢ HTTP status outside the range 200-599.

¢ A request timeout (15 seconds). Note that if a request timeout occurs, the next retry will occur at the
specified interval after the timeout. For example, if the retry interval is 20 seconds and a request times
out, the start of the next request will be 35 seconds after the start of the request that timed out.

¢ Any connection error such as connection timeout, endpoint unreachable, bad SSL certificate, etc.

You can use delivery policies to control not only the total number of retries, but also the time delay between
each retry. You can specify up to 100 total retries distributed among four discrete phases. The maximum

APl Version 2010-03-31
139

http://docs.aws.amazon.com/sns/latest/cli/sns_publish.html
http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Setting Amazon SNS Delivery Retry Policies for
HTTP/HTTPS Endpoints

lifetime of a message in the system is one hour. This one hour limit cannot be extended by a delivery
policy.

Initial Delivery
Attempt

Pre-Backoff Phase Backoff Phase Post-Backoff Phase

Time

Immediate Retry
Phase (no delay)

1. Immediate Retry Phase (p. 145)—Also called the no delay phase, this phase occurs immediately after
the initial delivery attempt. The value you set for Retries with no delay determines the number of
retries immediately after the initial delivery attempt. There is no delay between retries in this phase.

2. Pre-Backoff Phase (p. 146)—The pre-backoff phase follows the immediate retry phase. Use this phase
to create a set of retries that occur before a backoff function applies to the retries. Use the Minimum
delay retries setting to specify the number of retries in the Pre-Backoff Phase. You can control the
time delay between retries in this phase by using the Minimum delay setting.

3. Backoff Phase (p. 147)—This phase is called the backoff phase because you can control the delay
between retries in this phase using the retry backoff function. Set the Minimum delay and the Maximum
delay, and then select a Retry backoff function to define how quickly the delay increases from the
minimum delay to the maximum delay.

4. Post-Backoff Phase (p. 149)—The post-backoff phase follows the backoff phase. Use the Maximum
delay retries setting to specify the number of retries in the post-backoff phase. You can control the
time delay between retries in this phase by using the Maximum delay setting.

The backoff phase is the most commonly used phase. If no delivery policies are set, the default is to retry
three times in the backoff phase, with a time delay of 20 seconds between each retry. The default value
for both the Minimum delay and the Maximum delay is 20. The default number of retries is 3, so the
default retry policy calls for a total of 3 retries with a 20 second delay between each retry. The following
diagram shows the delay associated with each retry.

Initial Delivery Relry 1 Relry 2 Retry 3
Attempt

Delay
(20 sec)

Delay
(20 sec)

LR
(20 sec)

Time

Unsuccessful Unsuccessful Unsuccessful ?

To see how the retry backoff function affects the time delay between retries, you can set the maximum
delay to 40 seconds and leave the remaining settings at their default values. With this change, your
delivery policy now specifies 3 retries during the backoff phase, a minimum delay of 20 seconds, and a
maximum delay of 40 seconds. Because the default backoff function is linear, the delay between messages
increases at a constant rate over the course of the backoff phase. Amazon SNS attempts the first retry
after 20 seconds, the second retry after 30 seconds, and the final retry after 40 seconds. The following
diagram shows the delay associated with each retry.

APl Version 2010-03-31
140

Amazon Simple Notification Service Developer Guide
Applying Delivery Policies to Topics and Subscriptions

Initial Delivery
Attempt Retry 1 Retry 2 Retry 3

Delay
(20 sec)

Delay
(30 sec)

Delay

(40 sec)
Time

Unsuccessful Unsuccessiul Unsuccessiul 7

The maximum lifetime of a message in the system is one hour. This one hour limit cannot be extended
by a delivery policy.

Note
Only HTTP and HTTPS subscription types are supported by delivery policies. Support for other
Amazon SNS subscription types (e.g., email, Amazon SQS, and SMS) is not currently available.

Applying Delivery Policies to Topics and
Subscriptions

You can apply delivery policies to Amazon SNS topics. If you set a delivery policy on a topic, the policy
applies to all of the topic's subscriptions. The following diagram illustrates a topic with a delivery policy
that applies to all three subscriptions associated with that topic.

Topic Delivery
Policy

Topic

Topic Delivery Topic Delivery Topic Delivery
Policy Policy Policy
subscription

subscription subscription

You can also apply delivery policies to individual subscriptions. If you assign a delivery policy to a
subscription, the subscription-level policy takes precedence over the topic-level delivery policy. In the
following diagram, one subscription has a subscription-level delivery policy whereas the two other
subscriptions do not.

Topic Delivery
Policy

Topic

Topic Delivery Topic Delivery
Policy Policy
subscriplion subscriplion

In some cases, you might want to ignore all subscription delivery policies so that your topic's delivery
policy applies to all subscriptions even if a subscription has set its own delivery policy. To configure

APl Version 2010-03-31
141

Amazon Simple Notification Service Developer Guide
Setting the Maximum Receive Rate

Amazon SNS to apply your topic delivery policy to all subscriptions, click Ignore subscription override
in the View/Edit Topic Delivery Policies dialog box. The following diagram shows a topic-level delivery
policy that applies to all subscriptions, even the subscription that has its own subscription delivery policy
because subscription-level policies have been specifically ignored.

Topic Delivery
Policy

Topic

Topic Delivery
Policy Topic Delivery Topic Delivery
. - - Policy Policy
subscriplion subscriplion subscriplion

Setting the Maximum Receive Rate

You can set the maximum number of messages per second that Amazon SNS sends to a subscribed
endpoint by setting the Maximum receive rate setting. Amazon SNS holds messages that are awaiting
delivery for up to an hour. Messages held for more than an hour are discarded.

¢ To set a maximum receive rate that applies to all of a topic's subscriptions, apply the setting at the topic
level using the View/Edit Topic Delivery Policy dialog box. For more information, see To set the
maximum receive rate for a topic (p. 142).

« To set a maximum receive rate that applies to a specific subscription, apply the setting at the subscription
level using the View/Edit Subscription Delivery Policy dialog box. For more information, see To set
the maximum receive rate for a subscription (p. 143).

To set the maximum receive rate for a topic

1. Signinto the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Select atopic in the Navigation pane, and in the Topic Details pane select View/Edit Topic Delivery
Policy from the All Topic Actions list.

vigatio D Detalls

Region: All Topic Actions |~ -93 Publish to Topic

= A ica (! ' . . .
5. America (Sac Paulo) Publish to this Topic

"] Create New Topic Delete Topic
Edit Topic Display Name) .
[~ sNSs Dashboard View/Edit Topic Policy ‘sns:

#, My Subscriptions View/Edit Topic Delivery Policy ount

3. Type an integer value (e.g., 2) in the Maximum receive rate box.

APl Version 2010-03-31
142

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Setting the Maximum Receive Rate

View/ Edit Topic Delivery Policy Cancel [X

Basic View Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

Retries with no delay: 0

Minimum delay: 20
Minimum delay retries: 0
Maximum delay: 20

Maximum delay retries: 0

Maximum receive rate: 2

4. Click Update Delivery Policy to save your changes.

View/ Edit Topic Delivery Policy Cancel [X

Basic View Advanced View
Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

’Re ;

with no delay:'lﬂ‘ \"j et

| Cance || Update Delivery Policy |

To set the maximum receive rate for a subscription

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Select a topic in the Navigation pane.
3. Inthe Topic Details pane, select a subscription and click View/Edit Delivery Policy.

APl Version 2010-03-31
143

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Setting the Maximum Receive Rate

Region: All Topic Actions | ™ @ Publizh to Topic
B s America (Sao Paulo)~ @
TestTopic
ﬂ Create New Topic p
Topic ARN: arn:aws:sns:sa-east-1:852310026102: TestT
[7] SNS Dashboard
Q.! My Subscriptions Topic Owner: AWS Account ID 852310026102
My Topics (1) Region: sa-east-1
B TestTopic
4| S

¥ View/Edt DeliveryPolicy

ey

ﬁg Create New Subscription !! Delete Subscription)

Subscription 1D
arn:aws:sns:sa-east-1:852310026102:TestTopic:d30c33f8-bc60-491d-beca

4. Type an integer value (e.g., 2) in the Maximum receive rate box.

View /Edit Subscription Delivery Policy Cancel X

J Basic View || Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries:

I

Retries with no delay:

o

Minimum delay:

=}

=1 =Y)

Minimum delay retries:

Maximum delay:

Maximum delay retries:

0
Maximum receive rate: 2
=]

5. Click Update Delivery Policy to save your changes.

View/Edit Subscription Delivery Policy Cancel [%

J Basic View || Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

en 0 - 100

.R?\?W‘m\‘gia ﬂ R W |

| Cancel || Update Delivery Policy |

API Version 2010-03-31
144

Amazon Simple Notification Service Developer Guide
Immediate Retry Phase

Immediate Retry Phase

The immediate retry phase occurs directly after the initial delivery attempt. This phase is also known as
the No Delay phase because it happens with no time delay between the retries. The default number of
retries for this phase is 0.

To set the number of retries in the immediate retry phase

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Select atopic in the Navigation pane, and in the Topic Details pane select View/Edit Topic Delivery
Policy from the All Topic Actions list.

lavigatlo DI e AllSs
Region: All Topic Actions | = rgj Publish to Topic
5. America (Sao Paulo)w

Publish to this Topic

*| Create New Topic Delete Topic
Edit Topic Display Name) .
[sNS Dashboard View/Edit Topic Policy enss

#, My Subscriptions View/Edit Topic Delivery Paolicy
.

3. Type an integer value in the Retries with no delay box.

View/ Edit Topic Delivery Policy Cancel [X

J Basic View || Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

Retries with no delay:

Minimum delay:
Minimum delay retries:
Maximum delay:
Maximum delay retries:

Maximum receive rate:

4. Click Update Delivery Policy to save your changes.

View/ Edit Topic Delivery Policy Cancel [X

J Basic View || Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

.Re i

with no delay’ﬂﬂ;:.-.;‘ ““j R Y e

| Cance || Update Delivery Policy |

APl Version 2010-03-31
145

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Pre-Backoff Phase

Pre-Backoff Phase

The pre-backoff phase follows the immediate retry phase. Use this phase if you want to create a set of
one or more retries that happen before the backoff function affects the delay between retries. In this
phase, the time between retries is constant and is equal to the setting that you choose for the Minimum
delay. The Minumum delay setting affects retries in two phases—it applies to all retries in the pre-backoff
phase and serves as the initial time delay for retries in the backoff phase. The default number of retries
for this phase is 0.

To set the number of retries in the pre-backoff phase

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Select atopic in the Navigation pane, and in the Topic Details pane select View/Edit Topic Delivery
Policy from the All Topic Actions list.

Region: All Topic Actions |~ La‘ Publish to Topic

[E s America (Sao Paulo)¥ Publish to this Topic

| Create New Topic Delete Topic
Edit Topic Display Name] .
[~ SNS Dashboard View/Edit Topic Policy ssns:

€4 My Subscriptions View/Edit Topic Delivery Policy ount

3. Type an integer value in the Minimum delay retries box.

View/ Edit Topic Delivery Policy Cancel [X

Basic View Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

Retries with no delay: 0

Minimum delay: 20
Minimum delay retries: 0 |
Maximum delay: 20

Maximum delay retries: 0

Maximum receive rate:

4. Type an integer value in the Minimum delay box to set the delay between messages in this phase.

The value you set must be less than or equal to the value you set for Maximum delay.

APl Version 2010-03-31
146

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Backoff Phase

View/ Edit Topic Delivery Policy Cancel [X

Basic View Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

Retries with no delay: 0
| Minimum delay: 20
inimum delay retries: 1

Maximum delay: 20

Maximum delay retries: 0

Maximum receive rate:

5. Click Update Delivery Policy to save your changes.

View/ Edit Topic Delivery Policy Cancel [X

Basic View Advanced View

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

.‘BWWith no delay:’nn‘ \"j oy

| Cance || Update Delivery Paolicy |

Backoff Phase

The backoff phase is the only phase that applies by default. You can control the number of retries in the
backoff phase using Number of retries.

Important

The value you choose for Number of retries represents the total number of retries, including
the retries you set for Retries with no delay, Minimum delay retries, and Maximum delay
retries.

You can control the frequency of the retries in the backoff phase with three parameters.

¢ Minimum delay—The minimum delay defines the delay associated with the first retry attempt in the
backoff phase.

¢ Maximum delay—The maximum delay defines the delay associated with the final retry attempt in the
backoff phase.

¢ Retry backoff function—The retry backoff function defines the algorithm that Amazon SNS uses to
calculate the delays associated with all of the retry attempts between the first and last retries in the
backoff phase.

The following screen shot shows the Amazon SNS console fields that pertain to the backoff phase.

APl Version 2010-03-31
147

Amazon Simple Notification Service Developer Guide
Backoff Phase

View/ Edit Topic Delivery Policy Cancel [X

J Basic View || Advanced View

Delivery Policy

Allow these delivery policies to this topic:

Number of retries:

Retries with no delay:

Minimum delay:

Minimum delay retries:

Maximum delay:

Maximum delay retries:

Maximum receive rate:

Retry backoff function: Linear -

Subscription Override: |:|

| Cancel || Update Delivery Policy

You can choose from four retry backoff functions.

e Linear

¢ Arithmetic
* Geometric
¢ Exponential

The following screen shot shows how each retry backoff function affects the delay associated with
messages during the backoff period. The vertical axis represents the delay in seconds associated with
each of the 10 retries. The horizontal axis represents the retry number. The minimum delay is 5 seconds,
and the maximum delay is 260 seconds.

300

250

200 /,;/ / == Exponential
150 - == Arithmatic
/ /.7 / == Linear
100 .
/ //V / == GeOmetric
50 ; %E : —
0 -

APl Version 2010-03-31
148

Amazon Simple Notification Service Developer Guide
Post-Backoff Phase

Post-Backoff Phase

The post-backoff phase is the final phase. Use this phase if you want to create a set of one or more retries
that happen after the backoff function affects the delay between retries. In this phase, the time between
retries is constant and is equal to the setting that you choose for the Maximum delay. The Maximum
delay setting affects retries in two phases—it applies to all retries in the post-backoff phase and serves
as the final time delay for retries in the backoff phase. The default number of retries for this phase is 0.

To set the number of retries in the post-backoff phase

1. Signin to the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Select atopic in the Navigation pane, and in the Topic Details pane select View/Edit Topic Delivery
Policy from the All Topic Actions list.

Region:

[E s America (Sao Paulo)¥
| Create New Topic

[T SNS Dashboard
¥y My Subscriptions

3. Type an integer value in the Maximum delay retries box.

All Topic Actions | = La‘ Publizh to Topic

Publish to this Topic
Delete Topic

Edit Topic Display Name
View/Edit Topic Policy

View/Edit Topic Delivery Paolicy

View /Edit Topic Delivery Policy

Basic View Advanced View

Delivery Policy

Allow these delivery policies to this topic:

Number of retries:
Retries with no delay:
Minimum delay:
Minimum delay retries:

Maximum delay:

3

0

20

0
20

=1al-H

ouni

Maximum delay retries:

0

Maximum receive rate:

Cancel |X

4. Type an integer value in the Maximum delay box to set the delay between messages in this phase.

The value you set must be greater than or equal to the value you set for Minimum delay.

APl Version 2010-03-31

149

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

View/ Edit Topic Delivery Policy Cancel [X

J Basic View || Advanced View |

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

Retries with no delay: 0

Minimum delay: _ZE]
Minimum delay retries: 0) -
Maximum delay: 20

Maximum delay retries: 0

Maximum receive rate:

5. Click Update Delivery Policy to save your changes.

View/ Edit Topic Delivery Policy Cancel [X

J Basic View || Advanced View |

Delivery Policy
Allow these delivery policies to this topic:

Number of retries: 3

.Re i

| Cance || Update Delivery Policy |

Certificate Authorities (CA) Recognized by
Amazon SNS for HTTPS Endpoints

If you subscribe an HTTPS endpoint to a topic, that endpoint must have a server certificate signed by a
trusted Certificate Authority (CA). Amazon SNS will only deliver messages to HTTPS endpoints that have
a signed certificate from a trusted CA that Amazon SNS recognizes. Amazon SNS recognizes the following
CAs.

nmozi |l | acert 81. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

07: EO: 32: EO: 20: B7: 2C: 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06: 9E
nmozi |l | acert 99. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F1: 7F: 6F: B6: 31: DC: 99: E3: A3: C8: 7F: FE: 1C: F1: 81: 10: 88: D9: 60: 33
Swi sssi gnpl ati nung2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

56: EO: FA: CO: 3B: 8F: 18: 23: 55: 18: E5: D3: 11: CA: E8: C2: 43: 31: AB: 66
nmozi | | acert 145. pem Apr 22, 2014, trustedCertEntry,

APl Version 2010-03-31
150

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

10: 1D: FA: 3F: D5: 0B: CB: BB: 9B: B5: 60: 0C: 19: 55: Ad: 1A: F4: 73: 3A: 04
nozillacert37. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Bl: 2E: 13: 63: 45: 86: Ad4: 6F: 1A: B2: 60: 68: 37: 58: 2D: C4: AC. FD: 94: 97
nozillacert4. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E3: 92: 51: 2F: OA: CF: F5: 05: DF: F6: DE: 06: 7F: 75: 37: E1: 65: EA: 57: 4B
anmeni nternal i tseccag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FA: 07: FA: A6: 35: DO: BC: 98: 72: 3D: B3: 08: 8A: CD: CD: CD: 3E: 23: F9: ED
nozillacert70. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

78: 6A: 74: AC. 76: AB: 14: 7F: 9C. 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
nozillacert88. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FE: 45: 65: 9B: 79: 03: 5B: 98: Al: 61: B5: 51: 2E: AC: DA: 58: 09: 48: 22: 4D
nozillacert134. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

70:17:9B: 86: 8C. 00: A4: FA: 60: 91: 52: 22: 3F: 9F: 3E: 32: BD: EO: 05: 62
nozill acert26. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

87:82: C6: C3: 04: 35: 3B: CF: D2: 96: 92: D2: 59: 3E: 7D: 44: D9: 34: FF: 11
veri si gncl ass2g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: EA: C4: 47: 76: C9: C8: 1C: EA: F2: 9D: 95: B6: CC: A0: 08: 1B: 67: EC. 9D
nozillacert77. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

13: 2D: OD: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C. C6
nozillacert123. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2A: B6: 28: 48: 5E: 78: FB: F3: AD: 9E: 79: 10: DD: 6B: DF: 99: 72: 2C. 96: E5
ut ndat acor psgcca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

58:11: 9F: OE: 12: 82: 87: EA: 50: FD: D9: 87: 45: 6F: 4F: 78: DC:. FA: D6: D4
nozill acert15. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:20:74: 41: 72: 9C. DD: 92: EC: 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
di gi certgl obal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A8: 98: 5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1: 9C: 54: 36
nozill acert66. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DD: E1: D2: A9: 01: 80: 2E: 1D: 87: 5E: 84: B3: 80: 7E: 4B: B1: FD: 99: 41: 34
nozill acert112. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

43: 13: BB: 96: F1: D5: 86: 9B: C1: 4E: 6A: 92: F6: CF: F6: 34: 69: 87: 82: 37
utnuserfirstclientauthemailca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B1: 72: B1: A5: 6D: 95: F9: 1F: E5: 02: 87: E1: 4D: 37: EA: 6A: 44: 63: 76: 8A
verisignc2gl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

67: 82: AA: EO: ED: EE: E2: 1A: 58: 39: D3: CO: CD: 14: 68: 0A: 4F: 60: 14: 2A
nozill acert55. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AA: DB: BC: 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO: 12
nozillacert101. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

APl Version 2010-03-31
151

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

99: A6: 9B: E6: 1A: FE: 88: 6B: 4D: 2B: 82: 00: 7C: B8: 54: FC: 31: 7E: 15: 39
nozillacert119. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

75: EO: AB: B6: 13: 85: 12: 27: 1C. 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E: FE
verisi gnc3gl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63: 93: 91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE: 6B
nozill acert44. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 43: E5: B1: BF: F8: 78: 8C. AC. 1C: C7: CA: 4A: 9A: C6: 22: 2B: CC. 34: C6
nozillacert108. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B1: BC. 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82: 9C
nozill acert95. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: FA: F7: FA: 66: 84: EC. 06: 8F: 14: 50: BD: C7: C2: 81: A5: BC: A9: 64: 57
keynecti srootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9C. 61: 5C: 4D: 4D: 85: 10: 3A: 53: 26: C2: 4D: BA: EA: E4: A2: D2: D5: CC. 97
nozil |l acert141. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: 7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8: F1: FC. A6
equi f axsecur egl obal ebusi nesscal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

7E: 78: 4A: 10: 1C. 82: 65: CC. 2D: E1: F1: 6D: 47: B4: 40: CA: D9: OA: 19: 45
bal ti norecodesi gni ngca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

30: 46: D8: C8: 88: FF: 69: 30: C3: 4A: FC. CD: 49: 27: 08: 7C. 60: 56: 7B: 0D
nozillacert33. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FE: B8: C4: 32: DC: F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64: 7D
nozillacert0. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

97:81:79:50: D8: 1C:. 96: 70: CC: 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74
nozill acert84. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D3: CO: 63: F2: 19: ED: 07: 3E: 34: AD: 5D: 75: 0B: 32: 76: 29: FF: D5: 9A: F2
nozillacert130. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E5: DF: 74: 3C: B6: 01: C4: 9B: 98: 43: DC: AB: 8C. E8: 6A: 81: 10: 9F: E4: 8E
nozill acert 148. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

04: 83: ED: 33: 99: AC: 36: 08: 05: 87: 22: ED: BC: 5E: 46: 00: E3: BE: F9: D7
nozillacert22. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

32: 3C: 11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90: 37: FO: 96
verisignclgl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

90: AE: A2: 69: 85: FF: 14: 80: 4C: 43: 49: 52: EC: E9: 60: 84: 77: AF: 55: 6F
nozillacert7. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AD: 7E: 1C: 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37: OE: B5: 8A
nozillacert73. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B5: 1C. 06: 7C: EE: 2B: 0C: 3D: F8: 55: AB: 2D: 92: F4: FE: 39: D4: E7: OF: OE
nozillacert137. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: 65: D5: F4: 1D: EF: 39: B8: B8: 90: 4A: 4A: D3: 64: 81: 33: CF: C7: Al: D1

APl Version 2010-03-31
152

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

SwWi sssi gnsi | verg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40: D1: 1D
nozillacert1ll. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

05: 63: B8: 63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99: B2: 4D:
nozill acert29. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74: F8: A3: C3: EF: E7: B3: 90: 06: 4B: 83: 90: 3C: 21: 64: 60: 20: E5: DF:
nozillacert62. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63: 93: 91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE:
nozil |l acert126. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

25:01: 90: 19: CF: FB: D9: 99: 1C. B7: 68: 25: 74: 8D: 94: 5F: 30: 93: 95:
soner acl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

07:47:22:01:99: CE: 74: B9: 7C:. BO: 3D: 79: B2: 64: A2: C8: 55: E9: 33:
nozillacert18. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

79:98: A3: 08: E1: 4D: 65: 85: E6: C2: 1E: 15: 3A: 71: 9F: BA: 5A: D3: 4A:
nozillacert51. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FA: B7: EE: 36: 97: 26: 62: FB: 2D: BO: 2A: F6: BF: 03: FD: E8: 7C. 4B: 2F:
nozill acert69. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2F: 78: 3D: 25: 52: 18: A7: 4A: 65: 39: 71: B5: 2C: A2: 9C. 45: 15: 6F: E9:
nozil |l acert115. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: 0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17: D8: 94:
veri si gncl ass3g5ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5:
ut nuserfirsthardwareca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

04: 83: ED: 33: 99: AC: 36: 08: 05: 87: 22: ED: BC: 5E: 46: 00: E3: BE: F9:
addtrustqual i fi edca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4D: 23: 78: EC: 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B:
nozill acert40. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

80: 25: EF: F4: 6E: 70: C8: D4: 72: 24: 65: 84: FE: 40: 3B: 8A: 8D: 6A: DB:
nozillacert58. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8D: 17: 84: D5: 37: F3: 03: 7D: EC: 70: FE: 57: 8B: 51: 9A: 99: E6: 10: Dr:
veri si gncl ass3g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

13: 2D: OD: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B: 5C:
nozil |l acert104. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4F: 99: AA: 93: FB: 2B: D1: 37: 26: Al: 99: 4A: CE: 7F: FO: 05: F2: 93: 5D
nozillacert91. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3B: C0: 38: 0B: 33: C3: F6: A6: 0C: 86: 15: 22: 93: D9: DF: F5: 4B: 81: CO:
t hawt eper sonal freenmi | ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E6: 18: 83: AE: 84: CA: C1: C1: CD: 52: AD: E8: E9: 25: 2B: 45: A6: 4F: B7:
certpluscl ass3ppri maryca, Apr 22, 2014, trustedCertEntry,

CB

43

CE

6B

42

FF

9B

19

E9

ES

D7

F5

BO

C6

1E

04

E2

APl Version 2010-03-31
153

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

21: 6B: 2A: 29: E6: 2A: 00: CE: 82: 01: 46: D8: 24: 41: 41: B9: 25: 11: B2: 79
verisignc3g4. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

22: D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C. 3A
swi sssi gngol dg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27: 61
nozillacert47. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

1B: 4B: 39: 61: 26: 27: 6B: 64: 91: A2: 68: 6D: D7: 02: 43: 21: 2D: 1F: 1D: 96
nozill acert80. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B8: 23: 6B: 00: 2F: 1D: 16: 86: 53: 01: 55: 6C: 11: A4: 37: CA: EB: FF: C3: BB
nozillacert98. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C9: A8: B9: E7: 55: 80: 5E: 58: E3: 53: 77: A7: 25: EB: AF: C3: 7B: 27: CC. D7
nozill acert 144. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

37: F7:6D: E6: 07: 7C:. 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A: 27
starfieldclass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AD: 7E: 1C. 28: BO: 64: EF: 8F: 60: 03: 40: 20: 14: C3: DO: E3: 37: OE: B5: 8A
nozill acert36. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

23:88: C9: D3: 71: CC: 9E: 96: 3D: FF: 7D: 3C. A7: CE: FC. D6: 25: EC. 19: 0D
nozill acert3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

87: 9F: 4B: EE: 05: DF: 98: 58: 3B: E3: 60: D6: 33: E7: OD: 3F: FE: 98: 71: AF
gl obal si gnr2ca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

75: EO: AB: B6: 13: 85: 12: 27: 1C. 04: F8: 5F: DD: DE: 38: E4: B7: 24: 2E: FE
nozillacert87. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC: 19: 19: C3: 73: 34: B9: C7: 74
nozil |l acert133. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: B5: FF: 67: 9B: 0C: 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92: 84
nozill acert25. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5: E5
veri si gncl asslg2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27: 3E: E1: 24: 57: FD: C4: F9: 0C: 55: E8: 2B: 56: 16: 7F: 62: F5: 32: E5: 47
nozillacert76. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F9: B5: B6: 32: 45: 5F: 9C: BE: EC. 57: 5F: 80: DC:. E9: 6E: 2C. C7: B2: 78: B7
nozil |l acert122. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

02: FA: F3: E2: 91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18: 68
godaddysecurecertificationauthority, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

7C. 46: 56: C3: 06: 1F: 7F: 4C. OD: 67: B3: 19: A8: 55: F6: OE: BC: 11: FC. 44
nozillacert14. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C: 9A: E6: D3: 8F: 1A: 61: C7: DC. 25
equi faxsecureca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

APl Version 2010-03-31
154

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

D2: 32: 09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63:

nozil |l acert 65. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

69: BD: 8C. F4: 9C. D3: 00: FB: 59: 2E: 17: 93: CA: 55: 6A: F3: EC. AA: 35:

nozill acert111. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9C. BB: 48: 53: F6: A4: F6: D3: 52: A4: E8: 32: 52: 55: 60: 13: F5: AD: AF:

certuntrustednetworkca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

07: EO: 32: EO: 20: B7: 2C: 3F: 19: 2F: 06: 28: A2: 59: 3A: 19: A7: OF: 06:

nozil |l acert129. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3A

FB

65

9E

E6: 21: F3: 35: 43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79

nozill acert54. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

03: 9E: ED: B8: 0B: E7: AO: 3C:. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C:. 2A:

nozill acert 100. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

58: E8: AB: BO: 36: 15: 33: FB: 80: F7: 9B: 1B: 6D: 29: D3: FF: 8D: 5F: 00:

nozill acert118. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

7E: 78: 4A: 10: 1C. 82: 65: CC: 2D: E1: F1: 6D: 47: B4: 40: CA: D9: 0A: 19:

nozil |l acert151. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AC:. ED: 5F: 65: 53: FD: 25: CE: 01: 5F: 1F: 7A: 48: 3B: 6A: 74: 9F: 61: 78:

t hawt epri maryr oot cag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F1: 8B: 53: 8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B:

quovadi srootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 3F: 40: BD: 50: 93: D3: 9B: 6C. 60: F6: DA: BC: 07: 62: 01: 00: 89: 76:

t hawt epri maryr oot cag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AA: DB: BC: 22: 23: 8F: C4: 01: Al: 27: BB: 38: DD: F4: 1D: DB: 08: 9E: FO:

deprecat edi tsecca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

12:12: 0B: 03: OE: 15: 14: 54: F4: DD: B3: F5: DE: 13: 6E: 83: 5A: 29: 72:

entrustrootcag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8C. F4:27: FD: 79: 0C. 3A: D1: 66: 06: 8D: E8: 1E: 57: EF: BB: 93: 22: 72:

nozillacert43. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F9: CD: OE: 2C. DA: 76: 24: C1: 8F: BD: FO: FO: AB: B6: 45: B8: F7: FE: D5:

nozil |l acert107. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8E: 1C. 74: F8: A6: 20: B9: E5: 8A: F4: 61: FA: EC. 2B: 47: 56: 51: 1A: 52:

trustcentercl ass4caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A6: 9A: 91: FD: 05: 7F: 13: 6A: 42: 63: 0B: B1: 76: OD: 2D: 51: 12: OC. 16:

nozillacert94. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

49: 0A: 75: 74: DE: 87: OA: 47: FE: 58: EE: F6: C7: 6B: EB: C6: 0B: 12: 40:

nozil | acert140. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

FD

FO

45

F2

12

9D

A

50

99

CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
ttel esecgl obal rootcl ass3ca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

55: A6: 72: 3E: CB: F2: EC. CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11: E3: 81:

D1

APl Version 2010-03-31
155

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

anmeni nt ernal corpca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

43: E3: E6: 37: C5: 88: 05: 67: 91: 37: E3: 72: 4D: 01: 7F: F4: 1B: CE: 3A: 97
nozillacert32. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

60: D6: 89: 74: B5: C2: 65: 9E: 8A: OF: C1: 88: 7C: 88: D2: 46: 69: 1B: 18: 2C
nozillacert83. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AO0: 73: E5: C5: BD: 43: 61: 0D: 86: 4C: 21: 13: 0A: 85: 58: 57: CC. 9C: EA: 46
verisi gnroot.pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
nozil |l acert147. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

58:11: 9F: OE: 12: 82: 87: EA: 50: FD: D9: 87: 45: 6F: 4F: 78: DC:. FA: D6: D4
caner firmachanbersca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

78: 6A: 74: AC. 76: AB: 14: 7F: 9C. 6A: 30: 50: BA: 9E: A8: 7E: FE: 9A: CE: 3C
nozillacert21. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9B: AA: E5: 9F: 56: EE: 21: CB: 43: 5A: BE: 25: 93: DF: A7: FO: 40: D1: 1D: CB
nozillacert39. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: 50: 83: ED: 7C. F4: 5C. BC: 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15: 6E
nozillacert6. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27:96: BA E6: 3F: 18: 01: E2: 77: 26: 1B: A0: D7: 77: 70: 02: 8F: 20: EE: E4
veri si gnuni versal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD: 54
nozillacert72. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

47: BE: AB: C9: 22: EA: E8: OE: 78: 78: 34: 62: A7: 9F: 45: C2: 54: FD: E6: 8B
geotrustuni versal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E6: 21: F3: 35: 43: 79: 05: 9A: 4B: 68: 30: 9D: 8A: 2F: 74: 22: 15: 87: EC. 79
nozil |l acert136. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64: D8: E3: 49
nozillacert10. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3A: FC:. OA: 8B: 64: F6: 86: 67: 34: 74: DF: 7E: A9: A2: FE: F9: FA: 7A: 51
nozill acert28. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

66: 31: BF: 9E: F7: 4F: 9E: B6: C9: D5: A6: 0C. BA: 6A: BE: D1: F7: BD: EF: 7B
nozillacert61. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

EO: B4: 32: 2E: B2: F6: A5: 68: B6: 54: 53: 84: 48: 18: 4A: 50: 36: 87: 43: 84
nozillacert79. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: A6: 33: 2C: EO: 03: 6F: B1: 85: F6: 63: 4F: 7D. 6A: 06: 65: 26: 32: 28: 27
nozil |l acert125. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: 1E: B1: B7: 40: E3: 6C: 84: 02: DA: DC: 37: D4: 4D: F5: D4: 67: 49: 52: F9
nozillacert17. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

40: 54: DA: 6F: 1C: 3F: 40: 74: AC. ED: OF: EC: CD: DB: 79: D1: 53: FB: 90: 1D
nozill acert50. pem Apr 22, 2014, trustedCertEntry,

APl Version 2010-03-31
156

Amazon Simple Notification Service Developer Guide

Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

8C. 96: BA: EB: DD: 2B: 07: 07: 48: EE: 30: 32: 66: AO: F3: 98: 6E: 7C. AE:

nozill acert68. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: C5: FB: 3F: C8: E1: BF: CA4: E5: 4F: 03: 07: 5A: 9A: E8: 00: B7: F7:

nozill acert114. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

51: C6: E7: 08: 49: 06: 6E: F3: 92: D4: 5C. A0: OD: 6D: A3: 62: 8F: C3:

nozillacert57. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D6: DA: A8: 20: 8D: 09: D2: 15: 4D: 24: B5: 2F: CB: 34: 6E: B2: 58: B2:

verisignc2g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61: EF: 43: D7: 7F: CA: D4: 61: 51: BC. 98: EO: C3: 59: 12: AF: 9F: EB:

veri si gncl ass2g3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61: EF: 43: D7: 7F: CA: D4: 61: 51: BC. 98: EO: C3: 59: 12: AF: 9F: EB:

nozillacert103. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

70: Cl1: 8D: 74: B4: 28: 81: OA: E4: FD: A5: 75: D7: 01: 9F: 99: BO: 3D:

nozillacert90. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F3: 73: B3: 87: 06: 5A: 28: 84: 8A: F2: F3: 4A: CE: 19: 2B: DD: C7: 8E:

verisignc3g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

13: 2D: 0D: 45: 53: 4B: 69: 97: CD: B2: D5: C3: 39: E2: 55: 76: 60: 9B:

nozill acert46. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

40:9D: 4B: D9: 17: B5: 5C. 27: B6: 9B: 64: CB: 98: 22: 44: 0D: CD: 09:

godaddycl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27:96: BA: E6: 3F: 18: 01: E2: 77: 26: 1B: AQ: D7: 77: 70: 02: 8F: 20:

verisignc4g3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C8: EC. 8C. 87: 92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14: 95:

nozillacert97. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: 37: 1C. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8:

nozil |l acert143. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: B1: 2B: 49: F9: 81: 9E: D7: 4C. 9E: BC: 38: OF: C6: 56: 8F: 5D: AC.

nozill acert35. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2A: C8: D5: 8B: 57: CE: BF: 2F: 49: AF: F2: FC. 76: 8F: 51: 14: 62: 90:

nozill acert2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

22: D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F:

utnuserfirstobjectca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

El: 2D: FB: 4B: 41: D7: D9: C3: 2B: 30: 51: 4B: AC. 1D: 81: D8: 38: 5E:

nozill acert86. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:2C. 31: 92: E6: 07: E4: 24: EB: 45: 49: 54: 2B: E1: BB: C5: 3E: 61:

nozil |l acert132. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

39:21: Cl1: 15: C1: 5D: OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: 0OB:

addtrustcl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B6:

52:

8A:

63:

63:

50:

58

FA

39

58

11

11

74

9C:. AC

5C. Co

B8:

EE:

73:

77.

B2:

TA:

89

E4

9D

OF

F7

41

6C: 3A

2D: 46

74:

56:

E2

6A

APl Version 2010-03-31
157

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

CC. AB: OE: AO: 4C: 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94:

nozill acert24. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: AF: 82: 79: 91: 86: C7: B4: 75: 07: CB: CF: 03: 57: 46: EB: 04: DD: B7:

verisignclg3. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

20:42:85: DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46:

nozillacert9. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

F4: 8B: 11: BF: DE: AB: BE: 94: 54: 20: 71: E6: 41: DE: 6B: BE: 88: 2B: 40:

anmeni nt ernal rootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A7: B7: F6: 15: 8A: FF: 1E: C8: 85: 13: 38: BC. 93: EB: A2: AB: A4: 09: EF:

nozillacert75. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D2: 32: 09: AD: 23: D3: 14: 23: 21: 74: E4: OD: 7F: 9D: 62: 13: 97: 86: 63:

entrustevca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: 1E: B1: B7: 40: E3: 6C. 84: 02: DA: DC. 37: D4: 4D: F5: D4: 67: 49: 52:

seconscrootca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: 3B: 8C. F2: F8: 10: B3: 7D: 78: B4: CE: EC: 19: 19: C3: 73: 34: B9: C7:

caner firmachanbersi gnca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: BD: EE: EC. 95: 0D: 35: 9C: 89: AE: C7: 52: Al: 2C. 5B: 29: F6: D6: AA:

seconscrootcal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: B1: 2B: 49: F9: 81: 9E: D7: 4C. 9E: BC: 38: OF: C6: 56: 8F: 5D: AC. B2:

nozil |l acert121. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CC. AB: OE: A0: 4C: 23: 01: D6: 69: 7B: DD: 37: 9F: CD: 12: EB: 24: E3: 94:

nozillacert139. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 3F: 40: BD: 50: 93: D3: 9B: 6C: 60: F6: DA: BC: 07: 62: 01: 00: 89: 76:

nozillacert13. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

06: 08: 3F: 59: 3F: 15: Al: 04: AO: 69: A4: 6B: A9: 03: DO: 06: B7: 97: 09:

nozill acert64. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

62: 7F: 8D: 78: 27: 65: 63: 99: D2: 7D: 7F: 90: 44: C9: FE: B3: F3: 3E: FA:

nozil |l acert110. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

93: 05: 7A: 88: 15: C6: 4F: CE: 88: 2F: FA: 91: 16: 52: 28: 78: BC. 53: 64:

nozil |l acert128. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A9: E9: 78: 08: 14: 37: 58: 88: F2: 05: 19: BO: 6D: 2B: 0D: 2B: 60: 16: 90:

entrust 2048ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

50: 30: 06: 09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D: 7D. 65: 2D: 34:

nozillacert53. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9D

16

AS

B9

06

3A

F9

74

oC

F7

9D

91

9A

17

7D

31

7F: 8A: BO: CF: DO: 51: 87: 6A: 66: F3: 36: OF: 47: C8: 8D: 8C: D3: 35: FC. 74

nozill acert117. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D4: DE: 20: DO: 5E: 66: FC. 53: FE: 1A: 50: 88: 2C: 78: DB: 28: 52: CA: E4:

nozill acert 150. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

33: 9B: 6B: 14: 50: 24: 9B: 55: 7A: 01: 87: 72: 84: D9: EO: 2F: C3: D2: D8:

74

E9

APl Version 2010-03-31
158

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

t hawt eserverca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

9F: AD: 91: A6: CE: 6A: C6: C5: 00: 47: CA: 4E: C9: D4: A5: OD: 92: D8: 49: 79
seconval i certcl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E5: DF: 74: 3C: B6: 01: C4: 9B: 98: 43: DC: AB: 8C. E8: 6A: 81: 10: 9F: E4: 8E
nozillacert42. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: A4: 08: CO: 9C: 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C: DE: 37: BF
gt ecybertrustgl obal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

97:81:79:50: D8: 1C:. 96: 70: CC: 34: D8: 09: CF: 79: 44: 31: 36: 7TE: F4: 74
nozil |l acert106. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E7: Al: 90: 29: D3: D5: 52: DC. OD: OF: C6: 92: D3: EA: 88: 0D: 15: 2E: 1A: 6B
equi f axsecur eebusi nesscal, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: 40: 18: 8B: 91: 89: A3: ED: EE: AE: DA: 97: FE: 2F: 9D: F5: B7: D1: 8A: 41
nozillacert93. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: F1: FD: 68: 22: 63: 20: EE: C6: 3B: 3F: 9D: EA: 4A: 3E: 53: 7C. 7C. 39: 17
quovadi sroot ca3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

1F: 49: 14: F7: D8: 74: 95: 1D: DD: AE: 02: CO: BE: FD: 3A: 2D: 82: 75: 51: 85
quovadi sroot ca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CA: 3A: FB: CF: 12: 40: 36: 4B: 44: B2: 16: 20: 88: 80: 48: 39: 19: 93: 7C. F7
soner acl ass2ca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

37: F7:6D: E6: 07: 7C:. 90: C5: B1: 3E: 93: 1A: B7: 41: 10: B4: F2: E4: 9A: 27
nozillacert31. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

9F: 74: 4E: 9F: 2B: 4D: BA: EC. OF: 31: 2C: 50: B6: 56: 3B: 8E: 2D: 93: C3: 11
nozillacert49. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

61:57: 3A: 11: DF: OE: D8: 7E: D5: 92: 65: 22: EA: DO: 56: D7: 44: B3: 23: 71
nozillacert82. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2E: 14: DA: EC: 28: FO: FA: 1E: 8E: 38: 9A: 4E: AB: EB: 26: C0: OA: D3: 83: C3
nozil | acert146. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

21: FC. BD: 8E: 7F: 6C: AF: 05: 1B: D1: B3: 43: EC: A8: E7: 61: 47: F2: OF: 8A
bal ti norecybertrustca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D4: DE: 20: DO: 5E: 66: FC: 53: FE: 1A: 50: 88: 2C. 78: DB: 28: 52: CA: E4: 74
nozill acert20. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D8: C5: 38: 8A: B7: 30: 1B: 1B: 6E: D4: 7A: E6: 45: 25: 3A: 6F: 9F: 1A: 27: 61
nozillacert38. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CB: Al: C5: F8: BO: E3: 5E: B8: B9: 45: 12: D3: F9: 34: A2: E9: 06: 10: D3: 36
nozillacert5. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B8: 01: 86: D1: EB: 9C. 86: A5: 41: 04: CF: 30: 54: F3: 4C:. 52: B7: E5: 58: C6
nozillacert71. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4A: BD: EE: EC. 95: 0D: 35: 9C: 89: AE: C7: 52: Al: 2C. 5B: 29: F6: D6: AA: 0C
veri si gncl ass3g4ca, Apr 22, 2014, trustedCertEntry,

APl Version 2010-03-31
159

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

Certificate fingerprint (SHAL):

22: D5: D8: DF: 8F: 02: 31: D1: 8D: F7: 9D: B7: CF: 8A: 2D: 64: C9: 3F: 6C. 3A
nozillacert89. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

C8: EC. 8C: 87: 92: 69: CB: 4B: AB: 39: E9: 8D: 7E: 57: 67: F3: 14: 95: 73: 9D
nozil |l acert135. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

62:52: DC: 40: F7: 11: 43: A2: 2F: DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81: 18
caner firmachanber scommerceca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6E: 3A: 55: A4:19: 0C: 19: 5C: 93: 84: 3C: C0: DB: 72: 2E: 31: 30: 61: FO: B1
nozillacert27. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3A: 44: 73: 5A: E5: 81: 90: 1F: 24: 86: 61: 46: 1E: 3B: 9C. C4: 5F: F5: 3A: 1B
veri si gncl ass3g2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: 37: 1C: A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77: OF
nozill acert 60. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3B: C4: 9F: 48: F8: F3: 73: A0: 9C: 1E: BD: F8: 5B: B1: C3: 65: C7: D8: 11: B3
nozillacert78. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

29: 36: 21: 02: 8B: 20: ED: 02: F5: 66: C5: 32: D1: D6: ED: 90: 9F: 45: 00: 2F
certunta, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

62:52: DC: 40: F7: 11: 43: A2: 2F: DE: 9E: F7: 34: 8E: 06: 42: 51: B1: 81: 18
deut schet el ekonr oot ca2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: A4: 08: CO: 9C: 19: 3E: 5D: 51: 58: 7D: CD: D6: 13: 30: FD: 8C: DE: 37: BF
nozil |l acert124. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4D: 23: 78: EC: 91: 95: 39: B5: 00: 7F: 75: 8F: 03: 3B: 21: 1E: C5: 4D: 8B: CF
nozillacert16. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: C9: 02: 4F: 54: D8: F6: DF: 94: 93: 5F: B1: 73: 26: 38: CA: 6A: D7: 7C. 13
seconevrootcal, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

FE: B8: C4: 32: DC: F9: 76: 9A: CE: AE: 3D: D8: 90: 8F: FD: 28: 86: 65: 64: 7D
nozillacert67. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

D6: 9B: 56: 11: 48: FO: 1C:. 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76: AD
gl obal si gnr3ca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

D6: 9B: 56: 11: 48: FO: 1C: 77: C5: 45: 78: C1: 09: 26: DF: 5B: 85: 69: 76: AD
nozill acert113. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

50: 30: 06: 09: 1D: 97: D4: F5: AE: 39: F7: CB: E7: 92: 7D: 7D: 65: 2D: 34: 31
aol rootca2, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

85: B5: FF: 67: 9B: 0C: 79: 96: 1F: C8: 6E: 44: 22: 00: 46: 13: DB: 17: 92: 84
trustcenteruniversal cai, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C. CE: BB: 9D: D9: 4F: 4E: 39: F3
aol rootcal, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

39: 21: C1: 15: C1: 5D: OE: CA: 5C. CB: 5B: C4: FO: 7D: 21: D8: 05: 0B: 56: 6A
nozill acert56. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

APl Version 2010-03-31
160

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

F1: 8B: 53: 8D: 1B: E9: 03: B6: A6: FO: 56: 43: 5B: 17: 15: 89: CA: F3: 6B:
verisignc2g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B3: EA: C4: 47: 76: C9: C8: 1C: EA: F2: 9D: 95: B6: CC: A0: 08: 1B: 67: EC:
veri si gncl asslg3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

20:42: 85: DC. F7: EB: 76: 41: 95: 57: 8E: 13: 6B: D4: B7: D1: E9: 8E: 46:
nozill acert 102. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

96: C9: 1B: 0B: 95: B4: 10: 98: 42: FA: DO: D8: 22: 79: FE: 60: FA: B9: 16:
addtrustexternal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

02: FA: F3: E2: 91: 43: 54: 68: 60: 78: 57: 69: 4D: F5: E4: 5B: 68: 85: 18:
veri si gncl ass3ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

Al: DB: 63: 93: 91: 6F: 17: E4: 18: 55: 09: 40: 04: 15: C7: 02: 40: BO: AE:
verisi gnc3g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

85: 37: 1C:. A6: E5: 50: 14: 3D: CE: 28: 03: 47: 1B: DE: 3A: 09: E8: F8: 77:
nozill acert45. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

67: 65: 0D: F1: 7E: 8E: 7E: 5B: 82: 40: A4: F4: 56: 4B: CF: E2: 3D: 69: C6:
verisignc4g2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

0B: 77: BE: BB: CB: 7A: A2: 47: 05: DE: CC. OF: BD: 6A: 02: FC. 7A: BD: 9B:
di gi certassuredi drootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

05: 63: B8: 63: 0D: 62: D7: 5A: BB: C8: AB: 1E: 4B: DF: B5: A8: 99: B2: 4D:
verisigncl asslca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CE: 6A: 64: A3: 09: E4: 2F: BB: D9: 85: 1C: 45: 3E: 64: 09: EA: E8: 7D: 60:
nozillacert109. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B5: 61: EB: EA: A4: DE: E4: 25: 4B: 69: 1A: 98: A5: 57: 47: C2: 34: C7: D9:
t hawt eprem unserverca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

EO: AB: 05: 94: 20: 72: 54: 93: 05: 60: 62: 02: 36: 70: F7: CD: 2E: FC: 66:
verisi gntsaca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

BE: 36: A4: 56: 2F: B2: EE: 05: DB: B3: D3: 23: 23: AD: F4: 45: 08: 4E: D6:
nozillacert96. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

55: A6: 72: 3E: CB: F2: EC: CD: C3: 23: 74: 70: 19: 9D: 2A: BE: 11: E3: 81:
nozil |l acert142. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

1F: 49: 14: F7: D8: 74: 95: 1D: DD: AE: 02: C0: BE: FD: 3A: 2D: 82: 75: 51:
t hawt epri maryrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C: 81: 7B:
nozill acert34. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59:22: Al: E1: 5A: EA: 16: 35: 21: F8: 98: 39: 6A: 46: 46: BO: 44: 1B: OF:
nozillacertl. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

23: E5:94: 94: 51: 95: F2: 41: 48: 03: B4: D5: 64: D2: A3: A3: F5: D8: 8B:
nozill acert85. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

CF: 9E: 87: 6D: D3: EB: FC: 42: 26: 97: A3: B5: A3: 7A: AO: 76: A9: 06: 23:

F2

9D

AS

83

68

6B

OF

FO

52

43

F1

71

66

56

D1

85

81

A9

8C

48

APl Version 2010-03-31
161

Amazon Simple Notification Service Developer Guide
Certificate Authorities for HTTPS Endpoints

val i certcl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

31: 7A: 2A: DO: 7F: 2B: 33: 5E: F5: Al: C3: 4E: 4B: 57: E8: B7: D8: F1: FC. A6
nozillacert131. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

37:9A: 19: 7B: 41: 85: 45: 35: 0C: A6: 03: 69: F3: 3C. 2E: AF: 47: 4F: 20: 79
nozill acert 149. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6E: 3A: 55: A4:19: 0C: 19: 5C: 93: 84: 3C. C0: DB: 72: 2E: 31: 30: 61: FO: B1
geotrustprimaryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

32: 3C:. 11: 8E: 1B: F7: B8: B6: 52: 54: E2: E2: 10: OD: D6: 02: 90: 37: FO: 96
nozill acert23. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

91: C6: D6: EE: 3E: 8A: C8: 63: 84: E5: 48: C2: 99: 29: 5C. 75: 6C: 81: 7B: 81
verisignclg2. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

27: 3E: E1: 24: 57: FD: C4: F9: OC: 55: E8: 2B: 56: 16: 7F: 62: F5: 32: E5: 47
nozillacert8. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

3E: 2B: F7: F2: 03: 1B: 96: F3: 8C: E6: C4: D8: A8: 5D: 3E: 2D: 58: 47: 6A: OF
nozillacert74. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

92: 5A: 8F: 8D: 2C. 6D: 04: EO: 66: 5F: 59: 6A: FF: 22: D8: 63: E8: 25: 6F: 3F
nozillacert120. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DA: 40: 18: 8B: 91: 89: A3: ED: EE: AE: DA: 97: FE: 2F: 9D: F5: B7: D1: 8A: 41
geotrust gl obal ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 28: F4: Ad4: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96: 2A: 82: 12
nozillacert 138. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

El: 9F: E3: OE: 8B: 84: 60: 9E: 80: 9B: 17: OD: 72: A8: C5: BA: 6E: 14: 09: BD
nozillacert12. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A8: 98: 5D: 3A: 65: E5: E5: C4: B2: D7: D6: 6D: 40: C6: DD: 2F: B1: 9C: 54: 36
conodoaaaca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

D1: EB: 23: A4: 6D: 17: D6: 8F: D9: 25: 64: C2: F1: F1: 60: 17: 64: D8: E3: 49
nozillacert63. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

89: DF: 74: FE: 5C. F4: OF: 4A: 80: F9: E3: 37: 7D: 54: DA: 91: E1: 01: 31: 8E
certpluscl ass2pri maryca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

74:20:74: 41: 72: 9C:. DD: 92: EC. 79: 31: D8: 23: 10: 8D: C2: 81: 92: E2: BB
nozillacert127. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

DE: 28: F4: Ad: FF: E5: B9: 2F: A3: C5: 03: D1: A3: 49: A7: F9: 96: 2A: 82: 12
ttel esecgl obal root cl ass2ca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

59: 0D: 2D: 7D: 88: 4F: 40: 2E: 61: 7E: A5: 62: 32: 17: 65: CF: 17: D8: 94: E9
nozillacert19. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

B4: 35: D4: E1: 11: 9D: 1C: 66: 90: A7: 49: EB: B3: 94: BD: 63: 7B: A7: 82: B7
di gi cert hi ghassuranceevrootca, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

5F: B7: EE: 06: 33: E2: 59: DB: AD: 0C: 4C: 9A: E6: D3: 8F: 1A: 61: C7: DC. 25
nozillacert52. pem Apr 22, 2014, trustedCertEntry,

APl Version 2010-03-31
162

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

Certificate fingerprint (SHAL):

8B: AF: 4C. 9B: 1D: FO: 2A: 92: F7: DA: 12: 8E: B9: 1B: AC. F4: 98: 60: 4B:
nozill acert116. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

2B: Bl: F5: 3E: 55: 0C. 1D: C5: F1: D4: E6: B7: 6A: 46: 4B: 55: 06: 02: AC.
gl obal si gnca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

Bl: BC. 96: 8B: D4: F4: 9D: 62: 2A: A8: 9A: 81: F2: 15: 01: 52: A4: 1D: 82:
nozil | acert41. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

6B: 2F: 34: AD: 89: 58: BE: 62: FD: BO: 6B: 5C. CE: BB: 9D: D9: 4F: 4E: 39:
nozi |l | acert59. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

36: 79: CA: 35: 66: 87: 72: 30: 4D: 30: A5: FB: 87: 3B: OF: A7: 7B: B7: OD:
nozi |l | acert 105. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

77:47: 4F:. C6: 30: E4: OF: 4C. 47: 64: 3F: 84: BA: B8: C6: 95: 4A: 8A: 41.:
trustcenterclass2caii, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AE: 50: 83: ED: 7C. F4: 5C. BC. 8F: 61: C6: 21: FE: 68: 5D: 79: 42: 21: 15:
nozil | acert 92. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

A3: F1: 33: 3F: E2: 42: BF: CF: C5: D1: 4E: 8F: 39: 42: 98: 40: 68: 10: D1:
geotrustprimarycag3, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

03: 9E: ED: B8: 0B: E7: AO: 3C. 69: 53: 89: 3B: 20: D2: D9: 32: 3A: 4C. 2A:
entrustsslca, Apr 22, 2014, trustedCertEntry,

Certificate fingerprint (SHAL):

99: A6: 9B: E6: 1A: FE: 88: 6B: 4D: 2B: 82: 00: 7C. B8: 54: FC. 31: 7E: 15:
verisi gnc3g5. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

4E: B6: D5: 78: 49: 9B: 1C. CF: 5F: 58: 1E: AD: 56: BE: 3D: 9B: 67: 44: A5:
geotrustprimarycag2, Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

8D: 17:84: D5: 37: F3: 03: 7D: EC. 70: FE: 57: 8B: 51: 9A: 99: E6: 10: D7:
nozi |l | acert 30. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

E7: B4: F6: 9D: 61: EC. 90: 69: DB: 7E: 90: A7: 40: 1A: 3C. F4: 7D: 4F: E8:
nozi |l | acert 48. pem Apr 22, 2014, trustedCertEntry,
Certificate fingerprint (SHAL):

AO: Al: AB: 90: C9: FC. 84: 7B: 3B: 12: 61: E8: 97: 7D: 5F: D3: 22: 61: D3:

6F

21

9C

F3

54

EC

6E

A0

FD

39

ES

BO

EE

Verifying the Signhatures of Amazon
Messages

Optionally, you can verify the authenticity of a notification, subscription confirmation, or unsubscribe
confirmation message sent by Amazon SNS. Using information contained in the Amazon SNS message,
your endpoint can recreate the string to sign and the signature so that you can verify the contents of the
message by matching the signature you recreated from the message contents with the signature that

Amazon SNS sent with the message.

For example code for a Java servlet that handles Amazon SNS messages and also verifies the signature,

see Example Code for an Amazon SNS Endpoint Java Servlet (p. 165).

SNS

APl Version 2010-03-31
163

Amazon Simple Notification Service Developer Guide
Verifying Message Signatures

To verify the signature of an Amazon SNS message

1.

Extract the name/value pairs from the JSON document in the body of the HTTP POST request that
Amazon SNS sent to your endpoint. You'll be using the values of some of the name/value pairs to
create the string to sign. When you are verifying the signature of an Amazon SNS message, it is
critical that you convert the escaped control characters to their original character representations in
the Message and Subj ect values. These values must be in their original forms when you use them
as part of the string to sign. For information about how to parse the JISON document, see Step 1:
Make sure your endpoint is ready to process Amazon SNS messages (p. 133).

The Si gnat ur eVer si on tells you the signature version. From the signature version, you can
determine the requirements for how to generate the signature. For Amazon SNS notifications, Amazon
SNS currently supports signature version 1. This section provides the steps for creating a signature
using signature version 1.

Get the X509 certificate that Amazon SNS used to sign the message. The Si gni ngCer t URL value
points to the location of the X509 certificate used to create the digital signature for the message.
Retrieve the certificate from this location.

Extract the public key from the certificate. The public key from the certificate specified by
Si gni ngCer t URL is used to verify the authenticity and integrity of the message.

Determine the message type. The format of the string to sign depends on the message type, which
is specified by the Type value.

Create the string to sign. The string to sign is a newline character—delimited list of specific name/value
pairs from the message. Each name/value pair is represented with the name first followed by a
newline character, followed by the value, and ending with a newline character. The name/value pairs
must be listed in byte-sort order.

Depending on the message type, the string to sign must have the following name/value pairs.

Notification
Notification messages must contain the following name/value pairs:

Message

Messagel d

Subject (if included in the nessage)
Ti mest anp

Topi cCArn

Type

The following example is a string to sign for a Not i fi cati on.

Message

My Test Message

Messagel d

4d4dc071- ddbf - 465d- bba8- 08f 81c89da64
Subj ect

My subj ect

Ti mest anmp

2012- 06- 05T04: 37: 04. 3217

Topi cArn

arn: aws: sns: us-east-1: 123456789012: s4- MySNSTopi ¢c- 1GLVEFCOXTCOP
Type

Notification

SubscriptionConfirmation and UnsubscribeConfirmation
Subscri pti onConfirmati onandUnsubscri beConfirmati on messages must contain the
following name/value pairs:

APl Version 2010-03-31
164

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

Message
Messagel d
Subscri beURL
Ti mest anp
Token

Topi cArn
Type

The following example is a string to sign for a Subscri pti onConfirnati on.

Message

My Test Message

Messagel d

3d891288-136d-417f - bc05-901¢c108273ee

Subscri beURL

https://sns. us-east-1. amazonaws. com ?Act i on=Confi r nSubscri pti on&Topi
CArn=arn: aws: sns: us- east-1: 123456789012: s4- MySNSTopi c- 1GLWEF
QOXTORSIoken=2336412f 37F be317F 5d51e6e241d09c8058323f 6019642680 e080e35640228c208a66013621hd9f 7h012918cf

d

J RIS R Bl Sy e (el S B ORSEPRN G 1D Bl SIS

Ti mest anp

2012- 06- 03T19: 25: 13. 7197

Token

2336412f 37f b687f 5d51e6€241d09c8058323f 600b9642680bf e08ce35640228c208a66d3621bdSf 70b012918cf
d

J RIS R Bl Sy e (el S Bl ORSEPRN G 1D Bl SRS HE

Topi cArn

arn: aws: sns: us-east-1: 123456789012: s4- MySNSTopi ¢c- 1GLVWEFCOXTCOP
Type

Subscri pti onConfirmation

6. Decode the Si gnat ur e value from Base64 format. The message delivers the signature in the
Si gnat ur e value, which is encoded as Base64. Before you compare the signature value with the
signature you have calculated, make sure that you decode the Si gnat ur e value from Base64 so
that you compare the values using the same format.

7. Generate the derived hash value of the Amazon SNS message. Submit the Amazon SNS message,
in canonical format, to the same hash function used to generate the signature.

8. Generate the asserted hash value of the Amazon SNS message. The asserted hash value is the
result of using the public key value (from step 3) to decrypt the signature delivered with the Amazon
SNS message.

9. Verify the authenticity and integrity of the Amazon SNS message. Compare the derived hash value
(from step 7) to the asserted hash value (from step 8). If the values are identical, then the receiver
is assured that the message has not been modified while in transit and the message must have
originated from Amazon SNS. If the values are not identical, it should not be trusted by the receiver.

Example Code for an Amazon SNS Endpoint
Java Servlet

Important
The following code snippets help you understand a Java servlet that processes Amazon SNS
HTTP POST requests. You should make sure that any portions of these snippets are suitable

APl Version 2010-03-31
165

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

for your purposes before implementing them in your production environment. For example, in a
production environment to help prevent man-in-the-middle attacks, you should verify that the
identity of the received Amazon SNS messages is from Amazon SNS. You can do this by checking
that the DNS Name value (DNS Name=sns.us-east-1.amazonaws.com in us-east-1; this will
vary by region) for the Subject Alternative Name field, as presented in the Amazon SNS Certificate,
is the same for the received Amazon SNS messages. For more information about verifying server
identity, see section 3.1. Server Identity in RFC 2818.

The following method implements an example of a handler for HTTP POST requests from Amazon SNS
in a Java servlet.

protected voi d doPost (Htt pServl et Request request, HttpServl et Response response)
throws Servl et Exception, |COException, SecurityException{
/1 Get the nessage type header.
String nmessagetype = request.get Header (" x-ane-sns- nessage-type");
/11f message doesn't have the message type header, don't process it.
if (nmessagetype == null)
return;

/1 Parse the JSON nessage in the nmessage body
/1 and hydrate a Message object with its contents
/1 so that we have easy access to the nane/val ue pairs
/1 fromthe JSON nessage.
Scanner scan = new Scanner (request. getlnput Stream));
StringBuil der builder = new StringBuilder();
whil e (scan. hasNextLine()) {
bui | der. append(scan. nextLine());
}
Message nsg = readMessageFromison(buil der.toString());

/1 The signature is based on SignatureVersion 1.
/1 If the sig version is sonething other than 1,
/1 throw an exception.
if (nsg.getSignatureVersion().equals("1")) {
/1 Check the signature and throw an exception if the signature verification
fails.
if (isMessageSi gnatureValid(nsg))
I og.info(">>Signature verification succeeded");
el se {
log.info(">>Signature verification failed");
t hrow new SecurityException("Signature verification failed.");
}
}
el se {
| og. i nfo(">>Unexpected signature version. Unable to verify signature.");
t hrow new SecurityException("Unexpected signature version. Unable to
verify signature.");

}

/1 Process the nessage based on type.
if (nmessagetype.equal s("Notification")) {
[/ TODO Do sonething with the Message and Subj ect.
/1Just log the subject (if it exists) and the nessage.
String | ogMsgAndSubj ect = ">>Notification received fromtopic " +
nsg. get Topi cArn();
if (nmBg.getSubject() !'= null)
| ogMsgAndSubj ect += " Subject: " + nsg.getSubject();
| ogMsgAndSubj ect += " Message: " + nsg. get Message();

APl Version 2010-03-31
166

http://tools.ietf.org/search/rfc2818

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

| og. i nfo(l ogMsgAndSubj ect);
}
el se i f (nessagetype. equal s("Subscri ptionConfirmation"))
{
[/ TODO You should make sure that this subscriptionis fromthe topic
you expect. Conpare topi cCARN to your |ist of topics
//that you want to enable to add this endpoint as a subscription.

/1 Confirmthe subscription by going to the subscribeURL | ocation
//and capture the return value (XM. nessage body as a string)
Scanner sc = new Scanner (new URL(nsg. get Subscri beURL()).openStream());
StringBuilder sb = new StringBuilder();
while (sc. hasNextLine()) {
sb. append(sc. nextLine());
}
| og. i nfo(">>Subscription confirmation (" + nsg.get Subscri beURL() +")
Return value: " + sh.toString());
[/ TODO Process the return value to ensure the endpoint is subscribed.
}
el se i f (nessagetype. equal s("Unsubscri beConfirmation")) {
// TODO Handl e Unsubscri beConfirnmati on nessage.
/1 For exanple, take action if unsubscribing should not have occurred.
//You can read the SubscribeURL fromthis nessage and
/I re-subscribe the endpoint.

I og.info(">>Unsubscribe confirmation: " + nsg.get Message());
}
el se {
// TODO Handl e unknown nessage type.
I 0g. i nfo(">>Unknown nessage type.");
| og. i nfo(">>Done processing nessage: " + nsg. get Messageld());

}

The following example Java method creates a signature using information from a Message object that
contains the data sent in the request body and verifies that signature against the original Base64-encoded
signature of the message, which is also read from the Message object.

private static bool ean i sMessageSi gnatureVal i d(Message nsg) {
try {
URL url = new URL(nsg. getSigningCertURL());
I nput Stream i nStream = url.openStrean();
CertificateFactory cf = CertificateFactory.getlnstance("X 509");
X509Certificate cert = (X509Certificate)cf.generateCertificate(in
Stream ;
inStream cl ose();

Signature sig = Signature.getlnstance("SHALw t hRSA") ;
sig.initVerify(cert.getPublicKey());
si g. updat e(get MessageByt esToSi gn(nsg)) ;
return sig.verify(Base64. decodeBase64(nsg. get Signature()));
}
catch (Exception e) {
t hrow new SecurityException("Verify method failed.", e);

}

APl Version 2010-03-31
167

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

The following example Java methods work together to create the string to sign for an Amazon SNS
message. The get MessageByt esToSi gn method calls the appropriate string-to-sign method based on
the message type and runs the string to sign as a byte array. The bui | dNot i fi cati onStri ngToSi gn
and bui | dSubscri pti onStri ngToSi gn methods create the string to sign based on the formats
described in Verifying the Signatures of Amazon SNS Messages (p. 163).

private static byte [] get MessageBytesToSi gn (Message nsg) {
byte [] bytesToSign = null;
if (nmsg.getType().equal s("Notification"))
byt esToSi gn = buil dNotificationStringToSi gn(nsg).getBytes();
else if (nsg.getType().equal s("SubscriptionConfirmation") || nsg.get
Type() . equal s("Unsubscri beConfirmation"))
byt esToSi gn = bui | dSubscri ptionStri ngToSi gn(nsg). get Bytes();
return bytesToSi gn;
}

//Build the string to sign for Notification nessages.
public static String buildNotificationStringToSi gn(Message nsg) {
String stringToSign = null;

//Build the string to sign fromthe values in the message.
// Nane and val ues separated by newline characters
/1 The nane value pairs are sorted by nane
//in byte sort order.
stringToSign = "Message\n";
stringToSi gn += nsg. get Message() + "\n";
stringToSign += "Messagel d\n";
stringToSi gn += nsg. get Messagel d() + "\n";
if (msg.getSubject() !'=null) {
stringToSi gn += "Subject\n";
stringToSi gn += nsg. get Subject() + "\n";
}
stringToSign += "Ti nestanmp\n";
stringToSign += nsg. getTi mestanp() + "\n";
stringToSign += "Topi cArn\n";
stringToSi gn += nsg. get Topi cArn() + "\n";
stringToSign += "Type\n";
stringToSi gn += nsg. get Type() + "\n";
return stringToSi gn;

}

//Build the string to sign for SubscriptionConfirmation
//and Unsubscri beConfirmati on nessages.

public static String buildSubscriptionStringToSi gn(Message nsg) {
String stringToSign = null;

//Build the string to sign fromthe values in the nessage.
/I Nanme and val ues separated by newline characters

// The name val ue pairs are sorted by nane

/1in byte sort order.

stringToSign = "Message\n";

stringToSi gn += nsg. get Message() + "\n";

stringToSign += "Messagel d\n";

stringToSi gn += nsg. get Messagel d() + "\n";

stringToSign += "Subscri beURL\ n";

stringToSi gn += nsg. get Subscri beURL() + "\n";

stringToSign += "Ti nestanp\n";

stringToSign += nsg.getTi nestanp() + "\n";

APl Version 2010-03-31
168

Amazon Simple Notification Service Developer Guide
Example Code for an Endpoint Java Servlet

stringToSi gn
stringToSi gn
stringToSi gn
stringToSi gn
stringToSi gn
stringToSi gn

+=
+=
+=
+=
+=
+=

"Token\ n";

nsg. get Token() + "\n";
"Topi cCArn\n";

nsg. get Topi cArn() + "\n";
"Type\ n";

nsg. get Type() + "\n";

return stringToSi gn;

APl Version 2010-03-31
169

Amazon Simple Notification Service Developer Guide
Message Attribute Items and Validation

Using Amazon SNS Message
Attributes

Amazon Simple Notification Service (Amazon SNS) provides support for delivery of message attributes
to Amazon SQS endpoints. Message attributes allow you to provide structured metadata items (such as
timestamps, geospatial data, signatures, and identifiers) about the message. Message attributes are
optional and separate from, but sent along with, the message body to Amazon SQS endpoints. This
information can be used by the receiver of the message to help decide how to handle the message without
having to first process the message body. Each message can have up to 10 attributes. To specify message
attributes, you can use the AWS software development kits (SDKs) or query API.

Important

To use message attributes with Amazon SQS endpoints, you must set the subscription attribute,
Raw Message Delivery, to True. For more information about Raw Message Delivery, see
Appendix: Large Payload and Raw Message Delivery (p. 183)

You can also use message attributes to help structure the push notification message for mobile endpoints.
In this scenario the message attributes are only used to help structure the push notification message and
are not delivered to the endpoint, as they are when sending messages with message attributes to Amazon
SQS endpoints.

Topics
¢ Message Attribute Items and Validation (p. 170)
¢ Message Attribute Data Types and Validation (p. 171)
¢ Reserved Message Attributes (p. 171)
¢ Using Message Attributes with the AWS SDKs (p. 172)

Message Attribute Items and Validation

Each message attribute consists of the following items:

« Name —The message attribute name can contain the following characters: A-Z, a-z, 0-9, underscore(),
hyphen(-), and period (.). The name must not start or end with a period, and it should not have successive
periods. The name is case sensitive and must be unique among all attribute names for the message.
The name can be up to 256 characters long. The name cannot start with "AWS." or "Amazon." (or any
variations in casing) because these prefixes are reserved for use by Amazon Web Services.

APl Version 2010-03-31
170

Amazon Simple Notification Service Developer Guide
Data Types

« Type — The supported message attribute data types are String, Number, and Binary. The data type
has the same restrictions on the content as the message body. The data type is case sensitive, and it
can be up to 256 bytes long. For more information, see the Message Attribute Data Types and
Validation (p. 171) section.

¢ Value — The user-specified message attribute value. For string data types, the value attribute has the
same restrictions on the content as the message body. For more information, see the Publish action
in the Amazon Simple Notification Service API Reference.

Name, type, and value must not be empty or null. In addition, the message body should not be empty or
null. All parts of the message attribute, including name, type, and value, are included in the message size
restriction, which is currently 256 KB (262,144 bytes).

Message Attribute Data Types and Validation

Message attribute data types identify how the message attribute values are handled by Amazon SNS.
For example, if the type is a number, Amazon SNS will validate that it's a number.

Amazon SNS supports the following logical data types:

e String — Strings are Unicode with UTF-8 binary encoding. For a list of code values, see
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters.

« Number — Numbers are positive or negative integers or floating-point numbers. Numbers have sufficient
range and precision to encompass most of the possible values that integers, floats, and doubles typically
support. A number can have up to 38 digits of precision, and it can be between 10"-128 to 10"+126.
Leading and trailing zeroes are trimmed.

¢ Binary — Binary type attributes can store any binary data, for example, compressed data, encrypted
data, or images.

Reserved Message Attributes

The following table lists the reserved message attributes for push notification services that you can use
to structure your push notification message:

Push Reserved Message Attribute Allowed Values
Notification
Service
Bai du AWS.SNS.MOBILE.BAIDU.DeployStatus 1—development environment.
(optional) 2—production environment. (default
1)

AWS.SNS.MOBILE.BAIDU.MessageType

(optional) 0—in-app message. 1—alert
notification. (default 1)

AWS.SNS.MOBILE.BAIDU.MessageKey

(optional) A short message identifier you can
attach to your message

MPNS AWS.SNS.MOBILE.MPNS.Type (required) | token (for tile notifications), toast, raw

AWS.SNS.MOBILE.MPNS.NotificationClass | realtime, priority, regular
(required)

APl Version 2010-03-31
171

http://docs.aws.amazon.com/sns/latest/api/API_Publish.html
http://en.wikipedia.org/wiki/ASCII#ASCII_printable_characters

Amazon Simple Notification Service Developer Guide
Using Message Attributes with the AWS SDKs

Push Reserved Message Attribute
Notification

Service

VNS AWS.SNS.MOBILE.WNS.Type (required)

AWS.SNS.MOBILE.WNS.CachePolicy
(optional)

AWS.SNS.MOBILE.WNS.Group (optional)
AWS.SNS.MOBILE.WNS.Match (optional)

AWS.SNS.MOBILE.WNS.SuppressPopup
(optional)

AWS.SNS.MOBILE.WNS.Tag (optional)

Allowed Values

same as X-WNS-Type

same as X-WNS-Cache-Policy
same as X-WNS-Group

same as X-WNS-Match

same as X-WNS-SuppressPopup

same as X-WNS-Tag

For more information about using message attributes with Baidu, see Using Message Attributes for

Structuring the Message (p. 79).

Using Message Attributes with the AWS SDKs

The AWS SDKs provide APIs in several languages for using message attributes with Amazon SNS. Java
examples with message attributes are in the AWS sample file SNSMobi | ePush. j ava, which is included

in the snsmobilepush.zip file.

When setting message attributes for a message, you can use either a st ri ng value or a bi nary value,

but not both st ri ng and bi nary values.

For more information about the SDK for Java, see Getting Started with the AWS SDK for Java.

APl Version 2010-03-31
172

http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_type
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_cache
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_group
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_match
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_suppresspopup
http://msdn.microsoft.com/en-us/library/windows/apps/hh465435.aspx#pncodes_x_wns_tag
http://aws.amazon.com/tools/
https://s3.amazonaws.com/codesamples/sns/latest/snsmobilepush.zip
http://aws.amazon.com/articles/Java/3586

Amazon Simple Notification Service Developer Guide

Appendix: Message and JSON
Formats

Amazon SNS uses the following formats.

Topics
e HTTP/HTTPS Headers (p. 174)
e HTTP/HTTPS Subscription Confirmation JISON Format (p. 175)
e HTTP/HTTPS Notification JSON Format (p. 177)
e HTTP/HTTPS Unsubscribe Confirmation JSON Format (p. 179)
¢ SetSubscriptionAttributes Delivery Policy JSON Format (p. 181)
¢ SetTopicAttributes Delivery Policy JSON Format (p. 182)

APl Version 2010-03-31
173

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Headers

HTTP/HTTPS Headers

When Amazon SNS sends a subscription confirmation, notification, or unsubscribe confirmation message
to HTTP/HTTPS endpoints, it sends a POST message with a number of Amazon SNS-specific header
values. You can use these header values to do things such as identify the type of message without having
to parse the JSON message body to read the Type value.

X-amz-sns-message-type
The type of message. The possible values are Subscri pti onConfirmati on, Notification,
and Unsubscri beConfirnati on.
X-amz-sns-message-id
A Universally Unique Identifier, unique for each message published. For a notification that Amazon
SNS resends during a retry, the message ID of the original message is used.
X-amz-sns-topic-arn
The Amazon Resource Name (ARN) for the topic that this message was published to.
X-amz-sns-subscription-arn
The ARN for the subscription to this endpoint.

The following HTTP POST header is an example of a header for a SubscriptionConfirmation message
to an HTTP endpoint.

POST / HTTP/1.1

X-anz-sns- nessage-type: SubscriptionConfirmation

X-anz-sns- nessage-id: 165545c9-2a5c- 472c- 8df 2- 7f f 2be2b3b1b
X-ane-sns-topi c-arn: arn: aws: sns: us-east-1: 123456789012: MyTopi c
X-anz-sns-subscription-arn: arn:aws: sns: us-east-1: 123456789012: MyTopi c: 2bcf bf 39-
05c3-41de- beaa-f cfcc21c8f 55

Content - Lengt h: 1336

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

APl Version 2010-03-31
174

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

HTTP/HTTPS Subscription Confirmation JSON
Format

After you subscribe an HTTP/HTTPS endpoint, Amazon SNS sends a subscription confirmation message
to the HTTP/HTTPS endpoint. This message contains a Subscr i beURL value that you must visit to
confirm the subscription (alternatively, you can use the Token value with the ConfirmSubscription). Note
that Amazon SNS will not send natifications to this endpoint until the subscription is confirmed.

The subscription confirmation message is a POST message with a message body that contains a JSON
document with the following name/value pairs.

Message
A string that describes the message. For subscription confirmation, this string looks like this:

You have chosen to subscribe to the topic arn: aws: sns: us-east-
1:123456789012: MyTopi c.\ nTo confirmthe subscription, visit the Subscri beURL
included in this nessage.

Messageld
A Universally Unique Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Type, Timestamp, and
TopicArn values.

SignatureVersion
Version of the Amazon SNS signature used.

SigningCertURL
The URL to the certificate that was used to sign the message.

SubscribeURL
The URL that you must visit in order to confirm the subscription. Alternatively, you can instead use
the Token with the ConfirmSubscription action to confirm the subscription.

Timestamp
The time (GMT) when the subscription confirmation was sent.

Token
A value you can use with the ConfirmSubscription action to confirm the subscription. Alternatively,
you can simply visit the Subscri beURL.

TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint is subscribed to.

Type
The type of message. For a subscription confirmation, the type is Subscri pti onConfirmati on.

The following HTTP POST message is an example of a SubscriptionConfirmation message to an HTTP
endpoint.

POST / HTTP/1.1

X-ane-sns- message-type: SubscriptionConfirmation

X-ane-sns-message-id: 165545c¢9- 2a5c- 472c- 8df 2- 7f f 2be2b3b1b

X-ane-sns-topi c-arn: arn: aws: sns: us-east-1:123456789012: MyTopi c
X-anz-sns-subscription-arn: arn:aws: sns: us-east-1: 123456789012: MyTopi c: 2bcf bf 39-
05c3-41de- beaa-fcfcc21c8f 55

Cont ent - Lengt h: 1336

APl Version 2010-03-31
175

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Subscription Confirmation JSON Format

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User-Agent: Amazon Sinple Notification Service Agent

{
"Type" : "SubscriptionConfirmation",
"Messagel d" : "165545c9- 2a5c-472c- 8df 2- 7f f 2be2b3blb",
"Token"

"M%WWHZMWMM&&WF?W
bacc99c583a916b9981dd2728f 4ae6f db82ef d087cc3b7849e0579802d2785c03b0879594eeac82c01f 235d0e717736"

"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",

"Message" : "You have chosen to subscribe to the topic arn: aws: sns: us-east -
1:123456789012: MyTopi c.\nTo confirmthe subscription, visit the Subscri beURL
included in this nmessage.",

"SubscribeURL" : "https://sns. us-east-1. amazonaws. com ?Acti on=Conf i r nBubscri p
ti on&Topi cArn=arn: aws: sns: us- east-1: 123456789012: MyTop
| cSIcka 23341 31 BT bl A8 ereb A1 7iocT 60883350 7aR A At e/ 18 croB PR Boasoe M A 1f (BB
bacc99c583a916b9981dd2728f 4ae6f db82ef d087cc3b7849e05798d2d2785c030b0879594eeac82c01f 235d0e717736",

"Ti mestanp" : "2012-04-26T20: 45: 04. 7512",
"Si gnatureVersion" : "1",
"Signature" : "EXAMPLEpH+DcEW APg8MmY8dReBSwksf g2S7WKQci kcNK

W.Q wu6A4Vbe SOQHVCKhRS7f UQrvi 2egU3NB58f i TDN6bkk Ox YDVr YOAd8L10Hs3zH81nt nPk5uvvol
| C1CXGu43obcgFxel3khzl 81 KvO61GNB6j | 9b5+gLPoBc1Q=",

"SigningCert URL" : "https://sns.us-east-1.amazonaws. coni Si npl eNoti fi cati onSer
vi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent’

}

You can download the following JSON file to view the definition of the JSON format for a subscription
confirmation: https://sns.us-east-1.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json.

APl Version 2010-03-31
176

https://sns.us-east-1.amazonaws.com/doc/2010-03-31/SubscriptionConfirmation.json

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Notification JSON Format

HTTP/HTTPS Notification JSON Format

When Amazon SNS sends a notification to a subscribed HTTP or HTTPS endpoint, the POST message
sent to the endpoint has a message body that contains a JSON document with the following name/value
pairs.

Message
The Message value specified when the notification was published to the topic.
Messageld
A Universally Unique Identifier, unique for each message published. For a notification that Amazon
SNS resends during a retry, the message ID of the original message is used.
Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Subject (if present), Type,
Timestamp, and TopicArn values.
SignatureVersion
Version of the Amazon SNS signature used.
SigningCertURL
The URL to the certificate that was used to sign the message.
Subject
The Subject parameter specified when the notification was published to the topic. Note that this is

an optional parameter. If no Subject was specified, then this name/value pair does not appear in this
JSON document.

Timestamp

The time (GMT) when the notification was published.
TopicArn

The Amazon Resource Name (ARN) for the topic that this message was published to.
Type

The type of message. For a notification, the type is Not i fi cati on.

UnsubscribeURL
A URL that you can use to unsubscribe the endpoint from this topic. If you visit this URL, Amazon
SNS unsubscribes the endpoint and stops sending notifications to this endpoint.

The following HTTP POST message is an example of a Notification message to an HTTP endpoint.

POST / HTTP/ 1.1

X-ane-sns- message-type: Notification

X-anz-sns- nessage-id: 22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324
X-ane-sns-topi c-arn: arn: aws: sns: us-east-1: 123456789012: MyTopi c
X-ane-sns-subscription-arn: arn:aws: sns: us-east-1: 123456789012: MyTopi ¢: c9135db0-
26c4- 47ec- 8998- 413945f b5a96

Content -Length: 773

Cont ent - Type: text/plain; charset=UTF-8

Host: nyhost. exanpl e. com

Connection: Keep-Alive

User- Agent: Amazon Sinple Notification Service Agent

{
"Type" : "Notification",
"Messagel d" : "22b80b92-f dea- 4c2c- 8f 9d- bdf bOc7bf 324",
"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",
"Subject" : "My First Message",
"Message" : "Hello world!",
"Ti mestanp" : "2012-05-02T00: 54: 06. 655Z",

APl Version 2010-03-31
177

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Notification JSON Format

"Si gnatureVersion" : "1",

"Signature" : "EXAMPLEW6JRNwWMLLFQL4!1 CBObnXr dB8C RMIQFGBawLp
GoM78t J4et TwC5z U7 (Bt S6t Gpey3ej edNdQI+1f k1 p9F2/ LnNVKb5aFI Yg+9r k9Zi Pph5YI LmA$D
cyC5T+Sy9/ unmi ¢5S0UQc2PEt gdpVBahwiNOdMMJ PwkOkAJJzt nc=",

"SigningCert URL" : "https://sns.us-east-1. amazonaws. coni Si npl eNoti fi cati onSer
vi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent',
"Unsubscri beURL" : "https://sns. us-east-1. anazonaws. conl ?Act i on=Unsubscri be&Sub

scri pti onArn=arn: aws: sns: us- east-1: 123456789012: MyTopi c: ¢9135db0- 26¢c4- 47ec- 8998-
413945f b5a96"
}

You can download the following JSON file to view the definition of the JSON format for a natification:
https://sns.us-east-1.amazonaws.com/doc/2010-03-31/Notification.json.

APl Version 2010-03-31
178

https://sns.us-east-1.amazonaws.com/doc/2010-03-31/Notification.json

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Unsubscribe Confirmation JSON Format

HTTP/HTTPS Unsubscribe Confirmation JSON
Format

After an HTTP/HTTPS endpoint is unsubscribed from a topic, Amazon SNS sends an unsubscribe
confirmation message to the endpoint.

The unsubscribe confirmation message is a POST message with a message body that contains a JSON
document with the following name/value pairs.

Message
A string that describes the message. For unsubscribe confirmation, this string looks like this:

You have chosen to deactivate subscription arn:aws: sns: us- east -

1:123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa- f cf cc21c8f 55.\ nTo cancel this
operation and restore the subscription, visit the SubscribeURL included in
thi s message.

Messageld
A Universally Unique Identifier, unique for each message published. For a message that Amazon
SNS resends during a retry, the message ID of the original message is used.

Signature
Base64-encoded "SHA1withRSA" signature of the Message, Messageld, Type, Timestamp, and
TopicArn values.
SignatureVersion
Version of the Amazon SNS signature used.
SigningCertURL
The URL to the certificate that was used to sign the message.
SubscribeURL
The URL that you must visit in order to re-confirm the subscription. Alternatively, you can instead
use the Token with the ConfirmSubscription action to re-confirm the subscription.
Timestamp
The time (GMT) when the unsubscribe confirmation was sent.
Token
A value you can use with the ConfirmSubscription action to re-confirm the subscription. Alternatively,
you can simply visit the Subscri beURL.
TopicArn
The Amazon Resource Name (ARN) for the topic that this endpoint has been unsubscribed from.

Type
The type of message. For a unsubscribe confirmation, the type is Unsubscri beConfi r mati on.

The following HTTP POST message is an example of a UnsubscribeConfirmation message to an HTTP
endpoint.

POST / HITP/ 1.1

X-ane-sns- message-type: UnsubscribeConfirmation

X-ane-sns-message-id: 47138184-6831- 46b8- 8f 7c- af c488602d7d

X-ane-sns-topi c-arn: arn: aws: sns: us-east-1: 123456789012: MyTopi c
X-anz-sns-subscription-arn: arn:aws: sns: us-east-1: 123456789012: MyTopi c: 2bcf bf 39-
05c3-41de- beaa-fcfcc21c8f 55

Cont ent - Lengt h: 1399

Content - Type: text/plain; charset=UTF-8

APl Version 2010-03-31
179

http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html
http://docs.aws.amazon.com/sns/latest/api/API_ConfirmSubscription.html

Amazon Simple Notification Service Developer Guide
HTTP/HTTPS Unsubscribe Confirmation JSON Format

Host: nyhost. exanpl e. com
Connection: Keep-Alive
User - Agent: Amazon Sinple Notification Service Agent

{
"Type" : "UnsubscribeConfirnation",
"Messagel d" : "47138184-6831-46b8- 8f 7c- af c488602d7d",
"Token" : "2336412f 37f b687f 5d51e6e€241d09c805a5a57b30d712f 7948a98bhac386ed

f e3e10314e873973b3e0a3c09119b722dedf 2b5e31c59b13ed
ba26417c19F 109351e6f 21696f 29085 f 9710635 4179ac1a0359000F 541f 209c190F 9ae23219ed60470453c06¢190Badr chl27deeb7c 7,

"Topi cArn" : "arn:aws:sns: us-east-1:123456789012: MyTopi c",

"Message" : "You have chosen to deactivate subscription arn:aws:sns: us-east-
1:123456789012: MyTopi c: 2bcf bf 39- 05¢3- 41de- beaa-f cfcc21c8f55.\ nTo cancel this
operation and restore the subscription, visit the SubscribeURL included in this

nessage. ",

"SubscribeURL" : "https://sns. us-east-1. amazonaws. com ?Acti on=Conf i r nBubscri p
ti on&Topi cArn=arn: aws: sns: us- east-1: 123456789012: MyTop
i c&Token=2336412f 37f b687f 5d51e6€241d09c805a5a57b30d712f 7948a98bac386ed
fe3e10314e873973b3e0a3c09119b722dedf 2b5e31c59b13ed
bh26417c19F 109361e6F 2169f 20085 f e97e10635 41 79ac1a0350000fF 5A41f 209c190F 9ae23219e0604 /0453e06c1906haf chk?7dbebrc

"Ti mestanp" : "2012-04-26T20: 06: 41. 5812",
"Si gnatureVersion" : "1",
"Signature" : "EXAMPLEHXgJnXgngsHTI qOCKk7Tl Zsnk8zpJJoQbr 81 eD+8kAHcke3Cd C4VPOvd

pZo9s/ vRIGZnKab6sj GxE8uwgDl 9HwWpDnBl &xSI FQUwWCr uWeecnt 7MIJCNhOXK4AXQCht GoXB762ePJ
f aSW 9t Ywz\W65z AFUO4AVKNBKNs | f 60="",

"SigningCert URL" : "https://sns.us-east-1. amazonaws. coni Si npl eNoti fi cati onSer
vi ce-f 3ecf b7224c7233f e7bb5f 59f 96de52f . pent’

}

You can download the following JSON file to view the definition of the JSON format for an unsubscribe
confirmation: https://sns.us-east-1.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json.

APl Version 2010-03-31
180

https://sns.us-east-1.amazonaws.com/doc/2010-03-31/UnsubscribeConfirmation.json

Amazon Simple Notification Service Developer Guide
SetSubscriptionAttributes Delivery Policy JSON Format

SetSubscriptionAttributes Delivery Policy JSON
Format

If you send a request to the SetSubscriptionAttributes action and set the AttributeName parameter to a
value of Del i ver yPol i cy, the value of the AttributeValue parameter must be a valid JSON object. For
example, the following example sets the delivery policy to 5 total retries.

http://sns. us-east-1. amazonaws. com

?Acti on=Set Subscri ptionAttributes

&Subscri pti onAr n=ar n¥8Aaws ¥8Asns¥BAus- east - 198A1234567890129%8AMy- Top
i C¥%B8A80289ha6- 0f d4- 4079- af b4- ce8c8260f Oca

&At tri but eName=Del i veryPol i cy

&Attri but eVal ue={"heal thyRetryPolicy":{"nunRetries":5}}

Use the following JSON format for the value of the AttributeValue parameter.

{
"heal thyRetryPolicy" : {
"m nDel ayTarget" : <int>,
"maxDel ayTarget" : <int>,
"nunRetries" : <int>
"numvaxDel ayRetri es" : <int>,
"backof f Function" : "<linear|arithnetic|geonetric|exponential >"
}
"throttlePolicy" : {
"maxRecei vesPer Second" : <int>
}
}

For more information about the SetSubscriptionAttribute action, go to SetSubscriptionAttributes in the
Amazon Simple Notification Service APl Reference.

APl Version 2010-03-31
181

http://docs.aws.amazon.com/sns/latest/api/API_SetSubscriptionAttributes.html

Amazon Simple Notification Service Developer Guide
SetTopicAttributes Delivery Policy JSON Format

SetTopicAttributes Delivery Policy JSON Format

If you send a request to the SetTopicAttributes action and set the AttributeName parameter to a value of
Del i ver yPol i cy, the value of the AttributeValue parameter must be a valid JSON object. For example,
the following example sets the delivery policy to 5 total retries.

http://sns. us-east-1. amazonaws. conf

?Acti on=Set Topi cAttri butes

&Topi cAr n=ar nY8Aaws ¥BAsns¥BAus- east - 198A123456789012%3AM- Topi ¢

&At tri but eName=Del i veryPol i cy

&Attri buteVal ue={"http":{"defaul t Heal thyRetryPolicy":{"nunRetries":5}}}

Use the following JSON format for the value of the AttributeValue parameter.

{
"http" : {
"def aul t Heal t hyRetryPol i cy" : {
"m nDel ayTarget": <int>,
"maxDel ayTarget": <int>,
"nunRetries": <int>,
"numvaxDel ayRetri es": <int>,
"backof f Function": "<linear|arithnmetic|geonetric|exponential >"
8
"di sabl eSubscri pti onOverrides" : <bool ean>,
"defaul t Throttl ePolicy" : {
"maxRecei vesPer Second" : <int>
}
}
}

For more information about the SetTopicAttribute action, go to SetTopicAttributes in the Amazon Simple
Notification Service API Reference.

APl Version 2010-03-31
182

http://docs.aws.amazon.com/sns/latest/api/API_SetTopicAttributes.html

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery with the AWS
Management Console

Appendix: Large Payload and Raw
Message Delivery

With Amazon SNS and Amazon SQS, you now have the ability to send large payload messages that are
up to 256KB (262,144 bytes) in size. To send large payloads (messages between 64KB and 256KB),
you must use an AWS SDK that supports AWS Signature Version 4 (SigV4) signing. To verify whether
SigV4 is supported for an AWS SDK, check the SDK release notes.

In addition to sending large payloads, with Amazon SNS you can now enable raw message delivery for
messages delivered to either Amazon SQS endpoints or HTTP/S endpoints. This eliminates the need for
the endpoints to process JSON formatting, which is created for the Amazon SNS metadata when raw
message delivery is not selected. For example when enabling raw message delivery for an Amazon SQS
endpoint, the Amazon SNS metadata is not included and the published message is delivered to the
subscribed Amazon SQS endpoint as is. When enabling raw message delivery for HTTP/S endpoints,
the messages will contain an additional HTTP header x- anz- sns-rawdel i very with a value of t rue
to indicate that the message is being published raw instead of with JSON formatting. This enables those
endpoints to understand what is being delivered and enables easier transition for subscriptions from
JSON to raw delivery.

To enable raw message delivery using one of the AWS SDKs, you must use the
Set Subscri pti onAttri but e action and configure the RawMessageDel i very attribute with a value
of t rue. The default value is f al se.

Enabling Raw Message Delivery with the AWS
Management Console

You can enable raw message delivery using the AWS Management Console by setting the Raw Message
Delivery subscription attribute to a value of true.

To enable raw message delivery with the AWS Management Console

1. Signinto the AWS Management Console and open the Amazon SNS console at
https://console.aws.amazon.com/sns/.

2. Click a topic that is subscribed to either an Amazon SQS endpoint or an HTTP/S endpoint.
3. Click Subscription Attributes.

APl Version 2010-03-31
183

https://console.aws.amazon.com/sns/

Amazon Simple Notification Service Developer Guide
Enabling Raw Message Delivery with the AWS
Management Console

4.

& MyTopic

Topic ARN: arm:aws:sns:us-west-2: ‘MyTopic
Topic Owner:
Region: us-west-2
Display Name: DisplayNameHere
#5 Create Subscription || ¥ Delete Subscriptions | P £1] Subscription Attributes | &7 Clear | Subscription Filter
Subscription 1D Protocol Endpoint
am:aws:sns:us-west-2: ‘MyTopic:63397d3d-3982-409e-8445-/ sqs am:aws:sqs:us-west-2:

Select True and then click Set Subscription Attributes.

Raw Message Delivery © False

Cancel Set Subscription Attributes

APl Version 2010-03-31
184

Amazon Simple Notification Service Developer Guide

Document History

The following table describes the important changes to the documentation since the last release of the
Amazon SNS Developer Guide.

¢ APl version: 2010-03-31
¢ Latest documentation update: June 12, 2014

Change Description Date Changed
Support for Baidu Added topics on how to use Baidu, MPNS, and WNS, with | June 12, 2014
Cloud Push, Amazon SNS to send push notification messages to mobile

Microsoft Push devices. For more information, see Getting Started with

Notification Service | Baidu Cloud Push (p. 64), Getting Started with

for Windows Phone, | MPNS (p. 85), and Getting Started with WNS (p. 87).
and Windows Push

Notification Services

Message attributes | Message attributes allow you to provide structured June 12, 2014
metadata items about a message. For more information,
see Using Amazon SNS Message Attributes (p. 170).

Amazon SNS Added a section about using the AWS SDK for Java with | April 23, 2014
Samples in Java Amazon SNS. Examples in this section show how to create

a new Amazon SNS client, set the Amazon SNS endpoint

to use, and create a new topic. In addition, examples are

provided on how to subscribe to, publish to, and delete a

topic. For more information, see Using the AWS SDK for

Java with Amazon SNS (p. 10).

Mobile push Added a topic about how to create and send custom December 17, 2013
notifications platform-specific payloads in messages to mobile devices.

For more information, see Send Custom Platform-Specific

Payloads in Messages to Mobile Devices (p. 95).

Mobile push Added support to send notification messages directly to | August 13, 2013
notifications apps on mobile devices. For more information, see
Amazon SNS Mobile Push Notifications (p. 53).

Initial Release This is the first release of the Amazon SNS Developer May 1, 2013
Guide.

APl Version 2010-03-31
185

	Amazon Simple Notification Service
	Table of Contents
	What is Amazon Simple Notification Service?
	Are You a First-Time Amazon Simple Notification Service User?
	Beyond the getting started section
	Accessing Amazon SNS

	Common Amazon SNS Scenarios
	Fanout
	Application and System Alerts
	Push Email and Text Messaging
	Mobile Push Notifications

	Getting Started with Amazon Simple Notification Service
	Before You Begin
	Create a Topic
	Subscribe to a Topic
	Publish to a Topic
	Create Different Messages for Each Protocol

	Clean Up
	Using the AWS SDK for Java with Amazon SNS

	Managing Access to Your Amazon SNS Topics
	Overview
	When to Use Access Control
	Key Concepts
	Permission
	Statement
	Policy
	Issuer
	Principal
	Action
	Resource
	Conditions and Keys
	Requester
	Evaluation
	Effect
	Default Deny
	Allow
	Explicit Deny

	Architectural Overview
	Using the Access Policy Language
	Evaluation Logic
	The Interplay of Explicit and Default Denials

	Example Cases for Amazon SNS Access Control
	Allowing AWS account Access to a Topic
	Limiting Subscriptions to HTTPS
	Publishing to an Amazon SQS Queue
	Allowing Any AWS Resource to Publish to a Topic
	Allowing an Amazon S3 Bucket to Publish to a Topic

	How to Write a Policy
	Basic Policy Structure
	Element Descriptions
	Version
	Id
	Statement
	Sid
	Effect
	Principal
	NotPrincipal
	Action
	NotAction
	Resource
	NotResource
	Condition
	The Condition Block
	Available Keys
	Condition Types
	String Conditions
	Numeric Conditions
	Date Conditions
	Boolean Conditions
	IP Address
	Amazon Resource Name (ARN)
	Existence of Condition Keys

	Supported Data Types

	Special Information for Amazon SNS Policies
	Amazon SNS Policy Limits
	Valid Amazon SNS Policy Actions
	Amazon SNS Keys

	Controlling User Access to Your AWS Account
	IAM and Amazon SNS Policies Together
	Amazon SNS ARNs
	Amazon SNS Actions
	Amazon SNS Keys
	Amazon SNS Keys

	Example Policies for Amazon SNS
	Using Temporary Security Credentials

	Monitoring Amazon SNS with CloudWatch
	Access CloudWatch Metrics for Amazon SNS
	Set CloudWatch Alarms for Amazon SNS Metrics
	Amazon SNS Metrics
	Dimensions for Amazon Simple Notification Service Metrics

	Amazon SNS Mobile Push Notifications
	Overview
	Prerequisites
	Getting Started with Amazon Device Messaging
	ADM Prerequisites
	Step 1: Create a Kindle Fire App with the ADM Service Enabled
	Step 2: Obtain a Client ID and Client Secret
	Step 3: Obtain an API Key
	Step 4: Obtain a Registration ID
	Step 5: Sending a Push Notification Message to a Kindle Fire app using Amazon SNS and ADM

	Getting Started with Apple Push Notification Service
	APNS Prerequisites
	Step 1: Create an iOS App
	Step 2: Obtain an APNS SSL Certificate
	Step 3: Obtain the App Private Key
	Step 4: Verify the Certificate and App Private Key
	Step 5: Obtain a Device Token
	Step 6: Send a Push Notification Message to an iOS app using Amazon SNS and APNS

	Getting Started with Baidu Cloud Push
	Baidu Prerequisites
	Step 1: Create a Baidu Account
	Step 2: Register as a Baidu Developer
	Step 3: Create a Baidu Cloud Push Project
	Step 4: Download and Install the Android Demo App from Baidu
	Step 5: Obtain a User Id and Channel Id from Baidu
	Step 6: Send a Push Notification Message to a Mobile Endpoint using Amazon SNS and Baidu
	Creating an Amazon SNS Endpoint for Baidu
	Using Message Attributes for Structuring the Message

	Getting Started with Google Cloud Messaging for Android
	GCM Prerequisites
	Step 1: Create a Google API Project and Enable the GCM Service
	Step 2: Obtain the Server API Key
	Step 3: Obtain a Registration ID from GCM
	Step 4: Send a Push Notification Message to a Mobile Endpoint using GCM

	Getting Started with MPNS
	MPNS Prerequisites
	Step 1: Set Up Your Windows Phone App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from MPNS
	Step 3: Send a Push Notification Message to a Windows Phone app using Amazon SNS and MPNS

	Getting Started with WNS
	WNS Prerequisites
	Step 1: Set Up Your App to Receive Push Notifications Messages
	Step 2: Get a Push Notification URI from WNS
	Step 3: Get a Package Security Identifier from WNS
	Step 4: Get a Secret Key from WNS
	Step 5: Send a Push Notification Message to an App using Amazon SNS and WNS

	Using Amazon SNS Mobile Push
	Register Your Mobile App with AWS
	Add Device Tokens or Registration IDs
	Send a Direct Message to a Mobile Device
	Send Messages to Mobile Devices Subscribed to a Topic
	Send Custom Platform-Specific Payloads in Messages to Mobile Devices
	JSON Formatted Message Data
	Platform-Specific Key-Value Pairs
	Messages to an App on Multiple Platforms

	Using the Amazon SNS Time To Live (TTL) Message Attribute for Mobile Push Notifications
	TTL Message Attributes for Push Notification Services
	Precedence Order for Determining TTL
	Specifying TTL with the AWS Management Console
	Specifying TTL with the AWS SDKs

	Using Amazon SNS Mobile Push APIs
	API Errors for Amazon SNS Mobile Push

	Sending Amazon SNS Messages to Amazon SQS Queues
	Step 1. Get the ARN of the queue and the topic.
	Step 2. Give permission to the Amazon SNS topic to send messages to the Amazon SQS queue
	Step 3. Subscribe the queue to the Amazon SNS topic
	Step 4. Give users permissions to the appropriate topic and queue actions
	Adding a policy to an IAM user or group
	Adding a policy to a topic or queue

	Step 5. Test it
	Sending Amazon SNS messages to an Amazon SQS queue in a different account
	Queue Owner Creates Subscription
	User Who Does Not Own the Queue Creates Subscription

	Using an AWS CloudFormation Template to Create a Topic that Sends Messages to Amazon SQS Queues
	Using an AWS CloudFormation Template to Set Up Topics and Queues Within an AWS Account

	Sending and Receiving SMS Notifications Using Amazon SNS
	Task 1: Assign a Topic Display Name
	Task 2: Subscribe to a Topic Using the SMS Protocol
	Task 3: Publish a Message
	Task 4: Cancel SMS Subscriptions

	Sending Amazon SNS Messages to HTTP/HTTPS Endpoints
	Step 1: Make sure your endpoint is ready to process Amazon SNS messages
	Step 2: Subscribe the HTTP/HTTPS endpoint to the Amazon SNS topic
	Step 3: Confirm the subscription
	Step 4: Set the delivery retry policy for the subscription (optional)
	Step 5: Give users permissions to publish to the topic (optional)
	Step 6: Send messages to the HTTP/HTTPS endpoint
	Setting Amazon SNS Delivery Retry Policies for HTTP/HTTPS Endpoints
	Applying Delivery Policies to Topics and Subscriptions
	Setting the Maximum Receive Rate
	Immediate Retry Phase
	Pre-Backoff Phase
	Backoff Phase
	Post-Backoff Phase

	Certificate Authorities (CA) Recognized by Amazon SNS for HTTPS Endpoints
	Verifying the Signatures of Amazon SNS Messages
	Example Code for an Amazon SNS Endpoint Java Servlet

	Using Amazon SNS Message Attributes
	Message Attribute Items and Validation
	Message Attribute Data Types and Validation
	Reserved Message Attributes
	Using Message Attributes with the AWS SDKs

	Appendix: Message and JSON Formats
	HTTP/HTTPS Headers
	HTTP/HTTPS Subscription Confirmation JSON Format
	HTTP/HTTPS Notification JSON Format
	HTTP/HTTPS Unsubscribe Confirmation JSON Format
	SetSubscriptionAttributes Delivery Policy JSON Format
	SetTopicAttributes Delivery Policy JSON Format

	Appendix: Large Payload and Raw Message Delivery
	Enabling Raw Message Delivery with the AWS Management Console

	Document History

