
Amazon AppStream
Developer Guide

Amazon AppStream: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon AppStream Developer Guide

Table of Contents
What is Amazon AppStream? .. 1

Advantages of Streaming Your Application ... 1
What Can You Do with Amazon AppStream? .. 2
How Does Amazon AppStream Work? .. 2

Amazon AppStream Components .. 3
Architectural Overview of Amazon AppStream .. 4
Amazon AppStream Application Lifecycle .. 6

Can My Application Run on Amazon AppStream? ... 6
Supported Operating Systems ... 7
Hardware Specifications ... 7
Video Input Specifications ... 7
Audio Specifications ... 7
Bandwidth Requirements .. 7
Persistent Data ... 8
User Input .. 8
Regions ... 8

Tools for Amazon AppStream .. 8
Amazon AppStream SDK .. 8
Amazon AppStream SDK for Java .. 9
Amazon AppStream Console ... 9

Downloads ... 10
Amazon AppStream SDK .. 10
Amazon AppStream SDK for Java .. 10
Other Files to Download .. 10

Get Started ... 12
Service Requirements .. 14
Sign Up for AWS ... 14
Option 1: Preview Amazon AppStream .. 14

Step 1: Create a key pair ... 15
Step 2: Create the standalone mode ... 16
Step 3: Stream .. 18

Option 2: Preview Your Application .. 19
Step 1: Integrate the SDK .. 20
Step 2: Create a key pair ... 20
Step 3: Create the standalone mode ... 21
Step 4: Copy your application ... 25
Step 5: Stream .. 26

Option 3: Deploy a Streaming Application ... 27
Step 1: Build ... 28
Step 2: Deploy ... 28
Step 3: Stream .. 48

Where to Go Next .. 50
Build an Application ... 51

Build a Streaming Application .. 51
Design Considerations .. 52
Add Streaming to Your Application .. 52
Test Your Streaming Application ... 65

Build an Installer .. 73
Build an Entitlement Service .. 73

Design Considerations .. 74
Build the Entitlement Web Service .. 74
Publish Your Entitlement Service .. 79
Sample Entitlement Request and Response ... 80

Build a Client .. 80
Design Considerations .. 81

iii

Amazon AppStream Developer Guide

Build a Client for Android ... 81
Build a Client for iOS .. 89
Build a Client for OS X .. 101
Build a Client for Windows ... 112
Codec and Open Source Licensing ... 121

Deploy Your Application ... 123
Prerequisites ... 123
Upload the Application Installer to Amazon Simple Storage Service .. 123
Create a Pre-signed URL .. 124
Deploy Your Streaming Application .. 126

Manage Your Application ... 135
View All Applications .. 135
View Application Summary .. 136
Edit an Application ... 137
Clone an Application ... 140
Archive an Application .. 145
Enable Logging on an Application ... 147

AppStream Log Names ... 148
Default Amazon AppStream Logs ... 148
Custom Amazon AppStream Logs .. 150
.. 150
Enabling Amazon AppStream Logging Programatically ... 151

Increase Your Service Limits .. 152
Security Considerations .. 154

Controlling Access Using IAM .. 154
Example IAM User Policies for Amazon AppStream ... 155

Security Best Practices ... 157
Versioning .. 157
Multi-Factor Authentication .. 157
Key Rotation ... 158
Use A Strong Password For Remote Management ... 158
Restrict Access to Your Streaming Application ... 158

Troubleshooting Amazon AppStream ... 159
Deployment Problems ... 159

Is Your Installer Corrupted? .. 159
Has Your Pre-Signed URL Expired? .. 159
Does Your Pre-Signed URL Use HTTP Protocol? ... 159

Streaming Problems ... 160
Error Codes .. 160

APPLICATION_DELETION_FAILED .. 160
APPLICATION_INSTALLATION_FAILED .. 160
APPLICATION_LAUNCH_FAILED .. 161
APPLICATION_INSTALLATION_NOT_SILENT ... 161
APPLICATION_INSTALLATION_TIMED_OUT ... 161
APPLICATION_LAUNCH_TIMED_OUT ... 161
APPLICATION_RUNTIME_FAILURE ... 162
INTERNAL_FAILURE ... 162
SDK_VERSION_DETECTION_FAILED ... 162
S3_URL_INVALID .. 162

Amazon AppStream REST API .. 164
Hypertext Application Language ... 164
Making HTTP Requests .. 165

Limits on Request Rates ... 165
HTTP Header Contents ... 165
HTTP Request Body ... 166
HTTP Responses .. 166

Signing Requests ... 168
Handling Errors ... 169

iv

Amazon AppStream Developer Guide

API Error Codes (Client and Server Errors) ... 169
Catching Errors ... 171
Error Retries and Exponential Backoff ... 172

Resources .. 172
AppStream ... 172
Applications .. 173
Application .. 174
Application Errors .. 176
Application Error .. 177
Application Status .. 177
Sessions .. 179
Session .. 179
Session Status .. 180

Link Relations ... 181
appstream:applications ... 181
application:by-id ... 181
application:create ... 181
application:update .. 183
application:archive ... 184
application:reactivate .. 184
application:delete ... 185
application:status ... 185
application:errors ... 185
application:sessions ... 185
session:by-id ... 185
session:entitle ... 185
session:status ... 186
session:terminate ... 186
Common Link Relations .. 187

Product Updates .. 188
Release for June 20, 2014 (Latest) .. 188

Up to 20% performance improvement on 64-bit iOS devices .. 188
Simplified sample streaming application code ... 188
Remote debugging in standalone mode ... 189
Other Updates ... 189

Release for May 30, 2014 .. 189
Utilization Log is in Coordinated Universal Time (UTC) .. 189
Utilization Log Contains GPU Metrics .. 189
Simplified the Application Resource Properties ... 189
Other Updates ... 189

Release for May 9, 2014 ... 189
Logging for Utilization Metrics ... 190
YUV444 Color Subsampling Support ... 190
Other Updates ... 190

Release for April 22, 2014 ... 190
Standard and User-defined Logging .. 190
Updated OpenSSL Version .. 190
Other Updates ... 190

Release for March 28, 2014 ... 191
New Billing Practice .. 191
SDK Version Detected from the Files instead of the Registry .. 191
Other Updates ... 191

Release for March 7, 2014 ... 191
Amazon AppStream Is Available to Anyone with an AWS Account 191
Improved Deployment Error Messages .. 191
Example Client Application for Mac OS X ... 191
Increase Your Service Limits .. 191
Other Updates ... 192

v

Amazon AppStream Developer Guide

Release for February 14, 2014 ... 192
Improved Deployment Experience ... 192
Silent Installer Requirement ... 192
Other Updates ... 192

Release for January 24, 2014 ... 192
Single Download for the Amazon AppStream SDK ... 192
Improved Console Load Time ... 193
Support for Android Hardware Decoding .. 193
Other Updates ... 193

Document History .. 194

vi

Amazon AppStream Developer Guide

What is Amazon AppStream?

The Amazon AppStream web service deploys your application on Amazon Web Services (AWS)
infrastructure and streams input and output between your application and devices such as personal
computers, tablets, and mobile phones.Your application's processing occurs in the cloud, so it can scale
to handle vast computational loads. Devices need only display output and return user input, so the client
application on the device can be lightweight in file size and processing requirements.

In addition to converting existing applications into interactive applications, you can use Amazon AppStream
to invent new types of applications optimized for a user interface that runs locally on a device while
processing occurs in the cloud.You can also create a hybrid scenario, in which part of your application
runs on AWS, and part of it runs natively on end-user devices.

Amazon AppStream currently supports interactive streaming of applications that run on Microsoft Windows
Server 2008, and client applications running on Kindle/FireOS, Android, Apple iOS and OS X, and Microsoft
Windows.

Advantages of Streaming Your Application
Interactively streaming your application from the cloud provides several benefits:

1

Amazon AppStream Developer Guide
Advantages of Streaming Your Application

• Remove Device Constraints–Applications requiring powerful hardware can run in the cloud and be
interactively streamed to low-end devices.

• Multidevice Support–With the separation of computation and user interface that Amazon AppStream
provides, you can write your application once, and create a client application for each end-user device
your application supports. When a new device is released, you simply release a new client application
that supports the new device.Your customers will also be able to run your application from multiple
devices, such as a Microsoft Windows laptop at work, a Kindle Fire tablet at home, and an iPhone
mobile phone while they ride the bus.

• Immediately Available–By interactively streaming your application your end-users can start using
your application or game immediately, without having to download a large file and install a native
application. Applications intended to run natively on devices can use Amazon AppStream to stream a
version of their application to clients while the download and install runs in the background processing
of the end-user device.

• Easy Updates–You update your application by simply providing a new version of your application to
Amazon AppStream. If the client display and user input logic is unchanged, that's all you need to do
to immediately upgrade all of your users without any action on their part.

• Improve Security–Hosting your application on Amazon AppStream keeps your application's executable
files out of the hands of malicious users who could decompile or redistribute your code.You also benefit
from the on-site security protecting AWS data centers.

What Can You Do with Amazon AppStream?
Hosting your application on AWS infrastructure means your application can scale to meet demand,
removing hardware limitations. All this potential power makes new types of applications possible:

• Test drive applications and games–You can use Amazon AppStream to run a complex application
or high-resolution game remotely using a lightweight (5 MB) client application so users can determine
whether to purchase the native version. If they decide to purchase the native version, they can continue
to use the application remotely while the native version is downloaded in the background.

• Games direct to television–Because your client is lightweight, it can run on a smart TV. Consumer
electronics manufacturers can use Amazon AppStream to stream leading games to enhanced television
sets that accept input from a controller, creating a streaming games ecosystem.

• Computer-assisted design (CAD) software–Resource-intensive applications such as CAD programs
and video rendering currently need to be run on high-powered local machines. By streaming these
applications from Amazon AppStream, you make it possible for your users to interact with your software
from low-cost and lightweight devices, removing a barrier to adoption.

• Live Video rendering–Video production teams shoot a scene from many different angles and locations
and then deliver the footage to a centralized location to be rendered and merged. Directors often wait
until the video is processed in order to determine whether the scene is acceptable. Using a video
rendering application hosted on Amazon AppStream, you can broadcast multiple video feeds to the
application, render the video in real-time, and stream all the angles and shots back to the director for
evaluation, speeding up the filming process.

• Hybrid applications–You can stream part of your application from Amazon AppStream and run part
of your application natively. This gives you the best of both worlds: run computation-intensive but
latency-tolerant components on Amazon AppStream and run only those components that require
real-time responsiveness natively on the device.

How Does Amazon AppStream Work?
Amazon AppStream provides a framework for you to host an application on AWS infrastructure and
stream the input and output of the application to clients running on consumer devices such as PCs, mobile
phones, and tablets.

2

Amazon AppStream Developer Guide
What Can You Do with Amazon AppStream?

In building your product, you provide the logic for the application, the client, and user authentication and
authorization. This gives you the flexibility to create an end-to-end solution specifically tailored to your
business and customer requirements.

The following topics describe the components that make up Amazon AppStream and explains how they
work together to provide a high-definition, responsive experience for your users.

Topics

• Amazon AppStream Components (p. 3)

• Architectural Overview of Amazon AppStream (p. 4)

• Amazon AppStream Application Lifecycle (p. 6)

Amazon AppStream Components
Streaming an application from Amazon AppStream involves several components working together, some
are AWS products, and others you supply.

Topics

• Amazon AppStream Host (p. 3)

• Application (p. 3)

• Clients (p. 3)

• Entitlement Service (p. 4)

Amazon AppStream Host
Amazon AppStream hosts your application on EC2 instances. Each host runs on a very large instance
type called a GPU instance. Each GPU instance provide large amounts of parallel processing power. For
more information, see GPU Instances in the Amazon Elastic Compute Cloud User Guide.

Application
The application is the code that you plan to host on Amazon AppStream. This can be a pre-existing
application that you modify or a new application that you design specifically to work with Amazon
AppStream.To stream content from Amazon AppStream, your application calls XStxServerAPI functions
to send audio and video to clients and listens to XStxServerAPI callback functions to receive input from
clients. These functions are described in the Amazon AppStream SDK.

The Amazon AppStream SDK provides a sample implementation of an application that runs on Microsoft
Windows Server 2008 or later.You can use it as a guide to making an application compatible with Amazon
AppStream. For more information, see Build an Amazon AppStream Application (p. 51).

Clients
Clients are lightweight applications that run on consumer devices. They decode the audio and video
output of your application and display it on the device. They also encode user input from the device and
return it to the application. Thus, they provide a fully interactive experience to your users.

Each device type requires a client written for that platform. For example, if you want your customers to
be able to access your application from both iPhone mobile phones and Android tablets, you would provide
two clients, one for iOS and one for Android. Both clients access the same application. To support new
device types, simply create a new client for that device.You do not have to change the application to
support a new client.

3

Amazon AppStream Developer Guide
Amazon AppStream Components

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html

To interact with applications streaming from Amazon AppStream, the clients call XStxClientAPI functions
and listen to XStxClientAPI callback functions.These functions are available in the Amazon AppStream
SDK.

The client SDKs provides sample implementations of clients that run on Microsoft Windows PCs, iPhone
mobile phones, and Android tablets. Depending on your use case, you may be able to use these sample
implementations with your application without modification. If your application requires additional
functionality, you can use the sample implementations as a starting place to create your own clients. For
more information, see Build a Client (p. 80).

Entitlement Service
An entitlement service authenticates and authorizes users. It is the gatekeeper between clients and your
application, ensuring that only those clients entitled to access your application can do so.Your entitlement
service may authenticate users in a variety of ways: by comparing user login credentials to a list of
subscribers in a database, by using an external login service such as Login with Amazon, or by simply
authenticating all clients.

After the entitlement service successfully authenticates a user, it calls the Amazon AppStream service
to create a new streaming session for the client.To do so, it can either call the Amazon AppStream REST
API (p. 164) directly or use the Java interface provided in the Amazon AppStream SDK. The Amazon
AppStream SDK is the quickest way to create an entitlement service because it provides the functionality
for signing the requests your entitlement service sends to Amazon AppStream.

After the entitlement service creates a new session, it returns the session identifier to the authorized client
as an entitlement URL. The client then uses the entitlement URL to connect to the application.

Amazon AppStream provides a sample implementation of an entitlement service written in Java, as well
as an AWS CloudFormation template that you can use to deploy the sample entitlement service on AWS.
You can use the sample entitlement service during development and testing of your product.

For your production release, you'll probably want to create your own entitlement service. The sample
entitlement service is a great place to start when writing your own service.You can download the sample
entitlement service from the links in Downloads (p. 10).

Architectural Overview of Amazon AppStream
The following diagram illustrates how the various components of an Amazon AppStream your product
work together. For information about the individual components, see Amazon AppStream
Components (p. 3).

4

Amazon AppStream Developer Guide
Architectural Overview of Amazon AppStream

http://login.amazon.com/

How a Client Connects to the Application
In order to connect to an application hosted on Amazon AppStream, the client needs the service to create
a new streaming session, and the client needs credentials to access that session.The authentication and
authorization of clients to access applications is handled by an entitlement service, which handles the
negotiation between client and Amazon AppStream.

The steps of authorizing a client to access an application are as follows:

1. Request authorization–The client application calls the entitlement service and requests authorization
for a set of user credentials.

2. Create a session–If the entitlement service successfully authenticates the user credentials and
verifies they are authorized to access the application, the entitlement service calls the Amazon
AppStream service to create a new client session.

3. Return session ID–The Amazon AppStream service creates a new client session and returns the
session identifier to the entitlement service.

4. Return entitlement URL–The entitlement service uses the session identifier returned by the Amazon
AppStream service to create an entitlement URL, which it returns to the client.

5. Open entitlement URL–The client redeems its entitlement to access the application by opening the
entitlement URL.When it does, the Amazon AppStream service redirects the client to the IP address
of the Amazon AppStream host hosting the application.

6. Stream output and receive user input–Using the XStxServerAPI and XStxClientAPI interfaces,
the application streams audio and video to the client, and the client sends user input to the application
through callback functions. The Amazon AppStream service manages the connection for best
performance given the current network conditions.

5

Amazon AppStream Developer Guide
Architectural Overview of Amazon AppStream

Amazon AppStream Application Lifecycle
When you deploy and manage your application on Amazon AppStream it goes through a series of states.
For more information, see Deploy Your Streaming Application to Amazon AppStream (p. 123) and Manage
Your Application (p. 135).

Building
During the Building state, Amazon AppStream deploys your application.This has several substates, which
are displayed in the console.

• Preparing environment–Amazon AppStream allocates the IT infrastructure required to host your
application.

• Copying application–Amazon AppStream copies the installer for your application from Amazon S3
to the host. A presigned URL that you provide gives the installer access to the content stored in your
AWS account. The installer installs your application and its dependency files.

• Installing application–Amazon AppStream calls the installer, including any command-line parameters
you provided, to install your application on the host.

• Creating AMI–Amazon AppStream creates an Amazon Machine Image (AMI) of the host with your
application installed. For more information, see Amazon Machine Images (AMI) in the Amazon Elastic
Compute Cloud User Guide.

Active
During the Active state, your application is ready to accept user connections. For the limited release, this
state corresponds to Pre-production in the console.

Archiving
The Archiving state begins after you archive your application but before it is fully archived. This state
corresponds to Pre-production (archive pending) in the console. In this state, the application continues
to stream to existing client connections, but no longer accepts new client connections. When all client
connections have concluded, Amazon AppStream moves the application into the Archived state.

Archived
Once it is fully archived, your application no longer accepts client connections. This state corresponds to
Archived in the console.

Error
A problem during deployment puts your application into the Error state.

Can My Application Run on Amazon AppStream?
Many existing applications can be adapted for Amazon AppStream streaming simply by changing how
the application handles input and output.You just update the application to route that data through Amazon
AppStream APIs instead of a local machine. For more information, see Build an Amazon AppStream
Application (p. 51).

6

Amazon AppStream Developer Guide
Amazon AppStream Application Lifecycle

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

You also need to consider whether your application can run on the infrastructure provided by Amazon
AppStream. The following topics detail the specifics of the virtualized hardware provided by Amazon
AppStream and other requirements for Amazon AppStream streaming.

Supported Operating Systems
The application must be able to run on the Microsoft Windows Server 2008 or later operating system.
Windows Server 2008 is a 64-bit operating system; 32-bit applications are supported through the WoW64
extensions. If your application has other dependencies, such as the .NET Framework, you can include
them as part of your application installer.

Hardware Specifications
The Amazon AppStream servers that Amazon AppStream uses to host applications are GPU instances
provided by Amazon Elastic Compute Cloud (Amazon EC2). The GPU instances have the following
virtualized hardware. For more information, see GPU Instances in the Amazon Elastic Compute Cloud
User Guide.

• CPU: 10 EC2 compute units (8 virtual cores at 2.5 GHz each)

• RAM: 15 GiB

• Instance storage: 50 GiB

• GPU: 1 * NVIDIA GK104 GPU with NVIDIA GRID K520

• GPU memory: 4 GiB

• I/O performance: High (we recommend 2 Gbps/instance)

• EBS-optimized:Yes (500 Mbps)

• 64-bit platform: Windows or Amazon Linux

• HVM only

Video Input Specifications
Amazon AppStream accepts YUV 420 video input from the application and outputs YUV 420 to the client.
Amazon AppStream does not perform any color conversion internally.

Audio Specifications
Your application can push audio to the Amazon AppStream library or it can make use of the automatic
audio capture feature that Amazon AppStream provides. If your application uses automatic audio capture,
the application simply writes audio as a normal Microsoft Windows application would. If the application
pushes audio to the Amazon AppStream library, observe the following audio specifications:

• 48000Hz sampling rate

• 2 interleaved channels

• 16 bit signed

Bandwidth Requirements
When accessing an application hosted on Amazon AppStream, the client must be continuously connected
to the Internet with a minimum bandwidth of 3 Mbps.

Amazon AppStream recommends at least 3 Mbps for streaming video at 720 pixels at 30 frames per
second (720p30). When more bandwidth is available, Amazon AppStream allows the encoding rate to

7

Amazon AppStream Developer Guide
Supported Operating Systems

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cluster_computing.html

go as high as .2 bits per pixel, which at 720p30 is about 5.53 Mbps. When less bandwidth is available,
Amazon AppStream allows the encoding rate to go as low as .02 bits per pixel, which at 720p30 is about
553 Kbps. Amazon AppStream adapts the video bit rate based on available bandwidth. If Amazon
AppStream measures the available bandwidth at 3 Mbps, for example, Amazon AppStream sets the
encoding bit rate to meet that constraint.

Persistent Data
Because Amazon AppStream hosts your application on Amazon AppStream hosts, any data stored on
the server is lost when the client session ends. If your application needs to persist data between client
sessions your application should record the data in a persistent store such as Amazon S3, Amazon RDS,
or DynamoDB.

User Input
You can stream a variety of user inputs from the client to your application:

• Keyboard–transmits keyboard data from the client to the application.

• Mouse–transmits mouse move and mouse click data from the client to the application.

• Touch–transmits multi-touch and gesture data from the client to the application.

• Raw input–transmits a raw stream of bytes from the client to the application.You can use this to
transmit user data that does not fit the keyboard, mouse, or touch models. For example, accelerometer
data.

Regions
Amazon Web Services run on servers in data centers around the world. These are organized by
geographical region. When you launch an application on Amazon AppStream, you must specify which
region to launch it into.You might choose a region to reduce latency, minimize costs, or address regulatory
requirements. For the list of regions and endpoints supported by Amazon AppStream, go to Regions and
Endpoints in the Amazon Web Services General Reference.

Amazon AppStream currently supports only the US East (Virginia) region.

Tools for Amazon AppStream
Amazon AppStream provides several tools to simplify the process of developing application solutions.

Amazon AppStream SDK
The Amazon AppStream SDK simplifies the process of adding streaming to your application and makes
it easier to build clients for Windows devices. It provides C header files and libraries with the functionality
needed to stream your application from Amazon AppStream; as well as receive the streamed content in
a client. The Amazon AppStream SDK; includes the source code for a sample application and a client
as well as a pre-compiled client file that you can use to connect to an application.You can use these
sample implementations to test streaming an application from Amazon AppStream without writing any
code.You can obtain this SDK from Downloads (p. 10).

8

Amazon AppStream Developer Guide
Persistent Data

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon AppStream SDK for Java
The Amazon AppStream SDK for Java includes functions you can call to interact with the Amazon
AppStream service.These functions wrap the Amazon AppStream REST API (p. 164) and handle details
like signing the requests sent to the Amazon AppStream service. The most common use of the Amazon
AppStream SDK for Java is to write an entitlement service that authorizes user access to your applications.
Your entitlement service calls into Amazon AppStream to create new client sessions.You can also use
the Amazon AppStream SDK for Java functions to automate Amazon AppStream. For example, you could
write an application to bulk-add applications.

Amazon AppStream Console
The Amazon AppStream console is a graphical interface that you can use to add and manage applications.
With it, you fill out web forms to specify the details of streaming applications and view the details of existing
applications. The console is available online at https://console.aws.amazon.com/appstream/.

9

Amazon AppStream Developer Guide
Amazon AppStream SDK for Java

https://console.aws.amazon.com/appstream/

Downloads

Amazon AppStream SDK
The Amazon AppStream SDK provides tools for developing Amazon AppStream-compatible Windows
streaming applications as well as client applications for FireOS, Android, iOS, Mac OS X, and Windows.
You will need the SDK to complete Get Started (p. 12).

To download the Amazon AppStream SDK, go to
https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip.

The SDK also contains a compiled version of a Windows client application that can connect to an Amazon
AppStream streaming application. To use the sample client application, you need to do the following:

1. Download the DirectX Software Development Kit from the Microsoft Download Center and install it.

2. Download the Visual C++ Redistributable for Visual Studio 2012 from the Microsoft Download Center
and install it.

Amazon AppStream SDK for Java
The Amazon AppStream SDK for Java includes functions you can call to interact with Amazon AppStream.
These functions wrap the Amazon AppStream REST API (p. 164) and handle details like signing the
requests sent to Amazon AppStream. The most common use of the Amazon AppStream SDK for Java
is to write an entitlement service that authorizes user access to your streaming applications. and to
automate Amazon AppStream. applications.

To download the Amazon AppStream SDK for Java, go to
https://github.com/awslabs/aws-appstream-sdk-java/.

Other Files to Download
In addition to the Amazon AppStream SDK, you can download the following files:

• For an AWS CloudFormation template to use Amazon AppStream standalone mode, go to
https://s3.amazonaws.com/appstream-public/AppStreamDeveloper.template.

10

Amazon AppStream Developer Guide
Amazon AppStream SDK

https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip
http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=30679
https://github.com/awslabs/aws-appstream-sdk-java/
https://s3.amazonaws.com/appstream-public/AppStreamDeveloper.template

• For an Amazon AppStream entitlement service template, go to
https://s3.amazonaws.com/appstream-sdk/appstreamEntitlementService.template.

• For the Amazon AppStream entitlement service sample, go to
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service.jar.

• For the source code for the sample entitlement service, go to
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service-src.zip.

11

Amazon AppStream Developer Guide
Other Files to Download

https://s3.amazonaws.com/appstream-sdk/appstreamEntitlementService.template
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service.jar
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service-src.zip

Get Started

Amazon AppStream deploys interactive applications on AWS infrastructure, and streams input and output
between the application and clients running on end-user devices such as personal computers, tablets,
and mobile phones.

Using Amazon AppStream involves five basic steps:

1. Add streaming functionality to a new or existing application using the server APIs provided in the
Amazon AppStream SDK.

2. Write a client application for each platform or device your streaming application will support.You do
this using the client APIs provided in the Amazon AppStream SDK.

3. Create an entitlement service that authenticates clients and authorizes them to connect to your
application. This gives you the ability to monetize your application through payment models such as
user subscriptions or pay-to-play.The entitlement service interacts with Amazon AppStream by calling
the Java wrapper classes provided by the Amazon AppStream SDK or by calling the REST API directly.

4. Add your application to Amazon AppStream using the AWS Management Console or programatically
by using the REST APIs.

5. Distribute your client application to users.You can do this directly or by submitting your client to a
distribution site such as the Amazon AppStore.

In the following sections, you'll learn how to get set up to use Amazon AppStream. First, we'll show you
the requirements to use Amazon AppStream. Then we'll show you where to sign up for an AWS account

12

Amazon AppStream Developer Guide

and show you where to download the Amazon AppStream SDK and install the dependency files required
by the client application. Finally, we'll show you the following options to try out Amazon AppStream.

... to do this....
use
this
option
...

If
you
want
to
...

Quickly see a sample streaming application on a single client application without writing any code.You
can only stream to a single user.
Option
1:
Preview
the
Sample
Streaming
Application
on
Amazon
AppStream
Standalone
Mode (p.14)

Try
out
Amazon
AppStream
with
minimal
effort

See your application streamed through Amazon AppStream.You'll need to add streaming to your
application by integrating the Amazon AppStream SDK and then use the Amazon AppStream Service
Simulator to test your streaming application.You can only stream to a single user.

Option
2:
Preview
Your
Application
on
Amazon
AppStream
Standalone
Mode
(p.19)

Try
your
application
on
Amazon
AppStream

Do all the steps to deploy a sample streaming application to Amazon AppStream and stream to multiple
client applications.You'll build a sample streaming application, deploy that streaming application to
Amazon AppStream, deploy the sample entitlement service, and then stream to multiple users.

Option
3:
Deploy
a
Streaming
Application
on
Amazon
AppStream (p.27)

Deploy
an
application
on
Amazon
AppStream

Topics

• Service Requirements (p. 14)

• Sign Up for AWS (p. 14)

• Option 1: Preview Amazon AppStream (p. 14)

• Option 2: Preview Your Application (p. 19)

• Option 3: Deploy a Streaming Application (p. 27)

• Where to Go Next (p. 50)

13

Amazon AppStream Developer Guide

Service Requirements
The streaming application must run in the 64-bit version of Microsoft Server 2008 R2 or earlier.

Client applications must run in one of the following operating systems:

• Android 2.3 (Gingerbread) or later

• Apple iOS 7.0 or later

• Mac OS X Mountain Lion (10.8.5) or later

• Microsoft Windows 7 or later

Sign Up for AWS
You need an AWS account in order to use Amazon AppStream.

If you do not have an AWS account, use the following procedure to create one.

To sign up for AWS

1. Go to http://aws.amazon.com and click Sign Up.

2. Follow the on-screen instructions.

AWS notifies you by email when your account is active and available for you to use.

Option 1: Preview the Sample Streaming
Application on Amazon AppStream Standalone
Mode

The Amazon AppStream standalone mode uses an AWS CloudFormation template to create an Amazon
EC2 instance in your account and then run a streaming application from that instance. The Amazon
AppStream standalone mode is recommended for debugging your streaming application during
development.You can use an example streaming application provided by Amazon AppStream in standalone
mode to check whether your Amazon EC2 instance can stream a streaming application. After testing
your EC2 instance, you can then use your own streaming application in standalone mode. To connect to
the streaming application, use the precompiled Windows client application in the Amazon AppStream
SDK to connect to a streaming application in standalone mode. All the files you need to complete this
section are available in Downloads (p. 10).

Note
You may incur charges when you use Amazon AppStream standalone mode. Amazon
AppStream standalone mode uses your own EC2 instance. Use the Simple Monthly Calculator
to estimate your monthly cost. For more information, see Amazon EC2 Pricing.

To complete this section, you will need the following:

• A computer running Microsoft Windows that is connected to the Internet.You will use this computer to
administer the Amazon EC2 instance and install your application on the EC2 instance.

• A device or computer that is connected to the Internet.You will stream your application from your
Amazon EC2 instance to this device or computer.

14

Amazon AppStream Developer Guide
Service Requirements

http://aws.amazon.com
http://calculator.s3.amazonaws.com/calc5.html
http://aws.amazon.com/ec2/pricing/

• Android 2.3 (Gingerbread) or later

• Apple iOS 7.0 or later

• Mac OS X Mountain Lion (10.8.5) or later

• Microsoft Windows 7 or later

In this section, you will do the following:

Topics

• Step 1: Create a key pair (p. 15)

• Step 2: Create the standalone mode (p. 16)

• Step 3: Stream (p. 18)

Step 1: Create a key pair
To begin, you will create a key pair in Amazon EC2, which you will use as a parameter for the AWS
CloudFormation template. The key pair is required to create the Amazon AppStream standalone more.

If you already have an existing key pair, you can skip to the next section and use your existing key pair.

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select US East (N. Virginia).

3. In the navigation pane, click Key Pairs.

4. Click Create Key Pair.

5. For Key pair name enter AppStreamKeyPair and then click Create.

6. The private key file (AppStreamKeyPair.pem) is automatically downloaded by your browser. Save
the private key file in a safe place.

Important
This is the only chance for you to save the private key file.You will need this file to connect
to the instance you will create in the next step.

Your new key pair appears in the Amazon EC2 console. In the next step, you will use the key pair to
create the standalone mode.

15

Amazon AppStream Developer Guide
Step 1: Create a key pair

https://console.aws.amazon.com/ec2/

Step 2: Create the standalone mode
Now that you have your key pair, you need to set up the standalone mode for the example streaming
application. On successful creation, your account will have a running instance with the example streaming
application.

1. Open the AWS CloudFormation console.

2. From the navigation bar, select the same region where you created the key pair.

Important
Do not select a region that is different from your key pair was created.

3. Click Create Stack or Create New Stack.

4. For Name, type MyAppStreamStack.

5. Select Provide an S3 URL to template and type or paste
https://s3.amazonaws.com/appstream-public/AppStreamDeveloper.template and
then click Next.

6. In Specify Parameters, do the following:

• For KeyPairName, type AppStreamKeyPair, or if you have it, your existing key pair in the same
region.

• For MicrosoftVirtualAudioDrivers, type Yes.

• For NvidiaGRIDDrivers, type Yes.

• Click Next.

7. In Options, do the following:

• For Key, type Name.

• For Value, type MyAppStreamStack.

• Click Next.

8. In Review, check that the parameters you entered are correct and then click Create.

16

Amazon AppStream Developer Guide
Step 2: Create the standalone mode

https://console.aws.amazon.com/cloudformation/

Creating a stack can take 15 to 20 minutes to complete. While waiting for your stack to complete, you
can download the Amazon AppStream SDK, which contains the pre-built client applications that you will
use to stream your application. To download the Amazon AppStream SDK, go to
https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip. Extract the files to a computer
that is accessible to your device or to other computers that will use the pre-built client application.

You can also get the public IP address of your instance.You’ll need the public IP address to stream the
sample streaming application to your client application.

17

Amazon AppStream Developer Guide
Step 2: Create the standalone mode

https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip

To get the public IP address of your instance

1. Open the Amazon EC2 console.

2. In the navigation pane, select Instances. Select your instance, and click Connect.

3. In the Connect To Your Instance dialog box, record the public IP address.

After the status of your stack is CREATE_COMPLETE and recorded the public IP address, you can
stream the sample server application to your device or computer running the pre-built client application.

Step 3: Stream the streaming application to your
device
Now that you have your EC2 instance running your application, you are ready to stream your application
to a device.Your device needs to connect to the EC2 instance through the pre-built client application
from the Amazon AppStream SDK.

To stream using the Android client

Consult your device documentation if you need more information about copying and installing an application
on your device.

1. Install a file manager app on your device.

2. Allow your device to install application from unknown sources other than the Google Play store.

3. Copy <SDK_dir>\precompiled_samples\android\AppStreamExampleClient.apk and
install it on your device.

4. Start the Amazon AppStream Example Client.

5. Select AppStream StandAlone Mode and type the public IP address of your EC2 instance.

6. Click Connect.

After the client application starts, you can press keys to do the following:

DescriptionKeystroke

Change the camera angle and/or move of the triangle.A, D, W, S, Q, E

Change the background color.J, K

Add an extra triangle in random locations centered around
the world origin.

I

Remove an extra triangle.O

To stream using the Mac OS X client

1. Uncompress the
<SDK_dir>\precompiled_samples\osx\AppStreamOSXClientPrecompiled.zip file.

2. Control-click <uncompressed_dir>\build\AppStreamSample\AppStream.app and select
Open to start the client application.

3. Select AppStream Standalone Mode and type the public IP address of your EC2 instance.

4. Click Connect.

After the client application starts, you can press keys to do the following:

18

Amazon AppStream Developer Guide
Step 3: Stream

https://console.aws.amazon.com/ec2/v2/

DescriptionKeystroke

Change the camera angle and/or move of the triangle.A, D, W, S, Q, E

Change the background color.J, K

Add an extra triangle in random locations centered around
the world origin.

I

Remove an extra triangle.O

To stream using the Windows client

1. Install the following dependency files:

• Download the DirectX Software Development Kit from the Microsoft Download Center and install
it.

• Download the Visual C++ Redistributable for Visual Studio 2012 from the Microsoft Download
Center and install it.

2. Open a command prompt and go the directory where you downloaded the Amazon AppStream SDK.

3. In the <SDK_dir>\precompiled_samples\windows\x64 directory, run the following command:

quickRun64.bat <Public IP Address>

Where <Public IP Address> is the IP address you copied in the previous step.

Note
If this batch file fails to run, try the batch file in
<SDK_dir>\precompiled_samples\windows\x86 directory.

After the client application starts, you can press keys to do the following:

DescriptionKeystroke

Change the camera angle and/or move of the triangle.A, D, W, S, Q, E

Change the background color.J, K

Add an extra triangle in random locations centered around
the world origin.

I

Remove an extra triangle.O

Option 2: Preview Your Application on Amazon
AppStream Standalone Mode

The Amazon AppStream standalone mode is a quick way to see how your application converted to a
streaming application works in Amazon AppStream. In this mode, you will use the Amazon AppStream
Service simulator to stream your streaming application to a client application.

To complete this section, you will need the following:

19

Amazon AppStream Developer Guide
Option 2: Preview Your Application

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=30679

• A computer running Microsoft Windows that is connected to the Internet.You will use this computer to
administer the Amazon EC2 instance and install your application on the EC2 instance.

• A device or computer that is connected to the Internet.You will stream your application from your
Amazon EC2 instance to this device or computer.

• Android 2.3 (Gingerbread) or later

• Apple iOS 7.0 or later

• Mac OS X Mountain Lion (10.8.5) or later

• Microsoft Windows 7 or later

• The Amazon AppStream SDK, which contains the libraries that you will integrate into your application
and the pre-compiled client applications that you will use to connect to your streaming application.You
can download the SDK from Downloads (p. 10).

• The source code to your application.You will add streaming to your application by integrating the SDK.

Note
You may incur charges when you use Amazon AppStream standalone mode. Amazon
AppStream standalone mode uses your own EC2 instance. Use the Simple Monthly Calculator
to estimate your monthly cost. For more information, see Amazon EC2 Pricing.

In this section, you will do the following:

Topics

• Step 1: Integrate the SDK (p. 20)

• Step 2: Create a key pair (p. 20)

• Step 3: Create the standalone mode (p. 21)

• Step 4: Copy your application (p. 25)

• Step 5: Stream (p. 26)

Step 1: Integrate the Amazon AppStream SDK into
Your Application
You begin by adding streaming functionality by integrating the Amazon AppStream SDK into your
application. Build a Streaming Application (p. 51) describes how to add streaming to your application.
The section includes excerpts from the source code of the sample streaming application included in the
SDK in the <SDK_dir>\example_src directory. If you want to use the sample streaming application,
you can compile the source code into an application. The Amazon AppStream SDK documentation
provides the requirements and instructions to compile the source in the <SDK_dir>\doc\html directory.

To download the Amazon AppStream SDK

• Go to https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip. Extract the files to a
computer that is accessible to your device or to other computers that will use the pre-built client
application.

Step 2: Create a Key Pair
In this step, you will create a key pair in Amazon EC2. The key pair is required to create the Amazon
AppStream QuickDeploy standalone mode. If you already have an existing key pair, you can skip this
step and proceed to Step 3: Create the Amazon AppStream standalone mode (p. 21).

20

Amazon AppStream Developer Guide
Step 1: Integrate the SDK

http://calculator.s3.amazonaws.com/calc5.html
http://aws.amazon.com/ec2/pricing/
https://s3.amazonaws.com/appstream-sdk/AppStreamSDK_1.5.0.51.zip

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select US East (N. Virginia).

3. In the navigation pane, click Key Pairs.

4. Click Create Key Pair.

5. For Key pair name enter AppStreamKeyPair and then click Create.

6. The private key file (AppStreamKeyPair.pem) is automatically downloaded by your browser. Save
the private key file in a safe place.

Important
This is the only chance for you to save the private key file.You will need this file to connect
to the instance you will create in the next step.

Your new key pair appears in the Amazon EC2 console. In the next step, you will create a stack in AWS
CloudFormation that is the Amazon AppStream QuickDeploy standalone mode.

Step 3: Create the Amazon AppStream standalone
mode
Now that you have your key pair, you need to set up the Amazon AppStream standalone through the
AWS CloudFormation console. On successful creation, your account will have an running Amazon EC2
instance where you can install your application.

In this step, you will do the following:

• Create the Amazon AppStream standalone mode.

• Get the password to the administrator account which you may need to install your application.

• Get the public IP address of your instance which you will need to stream your application.

• Get the remote desktop file to administer your instance.

To create the Amazon AppStream standalone mode

1. Open the AWS CloudFormation console.

2. From the navigation bar, select the same region where you created a new key pair or are using an
existing key pair.

21

Amazon AppStream Developer Guide
Step 3: Create the standalone mode

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/cloudformation/

Important
Do not select a region that is different from your key pair was created.

3. Click Create Stack or Create New Stack.

4. For Name, type MyStandaloneStack.

5. Select Provide an S3 URL to template and type or paste
https://s3.amazonaws.com/appstream-public/AppStreamDeveloper.template and
then click Next.

22

Amazon AppStream Developer Guide
Step 3: Create the standalone mode

6. In Specify Parameters, do the following:

• For DeveloperPassword, type a password that you will use to log into the developer account.
The password must be alphanumeric that is between 8-20 characters with at least one number
and one letter and does not contain any spaces or special characters.

• For KeyPairName, type AppStreamKeyPair, or if you have it, your existing key pair in the same
region.

• For MicrosoftVirtualAudioDrivers, type Yes.

• For NvidiaGRIDDrivers, type Yes.

• Click Next.

7. In Options, do the following:

• For Key, type Name.

• For Value, type MyStandaloneStack.

• Click Next.

8. In Review, check that the parameters you entered are correct and then click Create.

23

Amazon AppStream Developer Guide
Step 3: Create the standalone mode

Creating a stack can take 15 to 20 minutes to complete. While waiting for your stack to complete, you
can do the other tasks.

To get the administrator password, public IP address, and Remote Desktop File of your
instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, select Instances. Select your instance, and click Connect.

24

Amazon AppStream Developer Guide
Step 3: Create the standalone mode

https://console.aws.amazon.com/ec2/

3. In the Connect To Your Instance dialog box, record the public IP address and user name.You'll
need the public IP address to stream to your client application. Click Get Password (it will take a
few minutes after the instance is launched before the password is available).

4. Click Browse and navigate to the private key file that you saved when you created the key pair.
Select the file and click Open to copy the entire contents of the file into contents box.

5. Click Decrypt Password. The console displays the default administrator password for the instance
in the Connect To Your Instance dialog box, replacing the link to Get Password shown previously
with the actual password.

6. Record the default administrator password.You need this password to connect to the instance and
install your application.

7. Click Download Remote Desktop File.Your browser prompts you to either open or save the .rdp
file. Save the file as you might need this file to administer the instance. When you have finished, you
can click Close to dismiss the Connect To Your Instance dialog box.

You can see how the stack creation is going.

To monitor the progress of stack creation

1. On the AWS CloudFormation console, select the stack MyStandaloneStack.

2. In the pane following the list, click the Events tab.

The console updates the event list every 60 seconds.

After the status of your stack is CREATE_COMPLETE, you can copy our application to the Amazon EC2
instance and configure the Amazon AppStream service simulator.

Step 4: Copy Your Application to Your Amazon
EC2 Instance
Next you will copy your streaming application and dependency files to your Amazon EC2 instance and
then use the Amazon AppStream Service Simulator to start your streaming application. To copy the files
to your Amazon EC2, you need remote desktop file and the administrator password to connect to your
instance.

You will connect to your Amazon EC2 instance by using Remote Desktop and then copy your streaming
application and dependency files to the instance. Then, you configure the Amazon AppStream Service
Simulator to start your streaming application.

To connect to your instance and start your streaming application

1. Double-click the Remote Desktop file.You may get a warning that the publisher of the remote
connection is unknown. Click Connect to connect to your instance.You may get a warning that the
security certificate could not be authenticated. Click Yes to continue.

2. Log in to the instance as prompted, using Administrator as the user name and the default
administrator password that you recorded or copied earlier.

3. Copy your streaming application and dependency files to your Amazon EC2 instance.

4. To start the Amazon AppStream Service Simulator, start
C:\Users\Public\AppStream\AppStreamSimulator.exe.

5. In the Amazon AppStream Service Simulator dialog box, click Stop. Click Browse and select your
the streaming application file. In SDK Version, select the version of the SDK that your streaming
application uses. Click Start.

25

Amazon AppStream Developer Guide
Step 4: Copy your application

Step 5: Stream Your Application to a Device
Now that you have the Amazon AppStream service simulator running your streaming application on your
Amazon EC2 instance, you are ready to stream your application to a device.Your device needs to connect
to the EC2 instance through the client application from the Amazon AppStream SDK.

To stream using the Android client

Consult your device documentation if you need more information about copying and installing an application
on your device.

1. Install a file manager app on your device.

2. Allow your device to install application from unknown sources other than the Google Play store.

3. Copy <SDK_dir>\precompiled_samples\android\AppStreamExampleClient.apk and
install it on your device.

4. Start the Amazon AppStream Example Client.

5. Select AppStream StandAlone Mode and type the public IP address of your EC2 instance.

6. Click Connect.

Your streaming application appears in the client application.Your EC2 instance can only accept one client
connection per session.

To stream using the Mac OS X client

1. Uncompress the
<SDK_dir>\precompiled_samples\osx\AppStreamOSXClientPrecompiled.zip file.

2. Control-click <uncompressed_dir>\build\AppStreamSample\AppStream.app and select
Open to start the client application.

3. Select AppStream Standalone Mode and type the public IP address of your EC2 instance.

4. Click Connect.

Your streaming application appears in the client application.Your EC2 instance can only accept one client
connection per session.

26

Amazon AppStream Developer Guide
Step 5: Stream

To stream using the Windows client

1. Install the following dependency files:

• Download the DirectX Software Development Kit from the Microsoft Download Center and install
it.

• Download the Visual C++ Redistributable for Visual Studio 2012 from the Microsoft Download
Center and install it.

2. Open a command prompt and go the directory where you downloaded the Amazon AppStream SDK.

3. In the <SDK_dir>\precompiled_samples\windows\x64 directory, run the following command:

quickRun64.bat <Public IP Address>

Where <Public IP Address> is the IP address you copied in the previous step.

Note
If this batch file fails to run, try the batch file in
<SDK_dir>\precompiled_samples\windows\x86 directory.

Your streaming application appears in the client application.Your EC2 instance can only accept one client
connection per session.

Option 3: Deploy a Streaming Application on
Amazon AppStream

This section shows you how to deploy a streaming application to Amazon AppStream.You will build the
sample streaming application from the code in the Amazon AppStream SDK. After building the code, you
will create an application installer that installs the streaming application to Amazon AppStream.You will
then deploy the application installer to Amazon AppStream and then use one of the client applications to
connect to the streaming application.

To complete this section, you will need the following:

• A computer running Microsoft Windows to deploy the streaming application

• A device or computer that is connected to the Internet to use the streaming application. The device or
computer must run one of the following operating systems:

• Android 2.3 (Gingerbread) or later

• Apple iOS 7.0 or later

• Mac OS X Mountain Lion (10.8.5) or later

• Microsoft Windows 7 or later

• An AWS account.

• The Amazon AppStream SDK, which contains the source code that you will compile into a streaming
application and the pre-compiled client applications that you will use to connect to your streaming
application.You can download the SDK from Downloads (p. 10).

• The following downloads from Microsoft for compiling the sample streaming application. Install the
downloads in this order:

1. DirectX Software Development Kit

2. Microsoft Windows SDK for Windows 7 and .NET Framework 3.5 SP1

27

Amazon AppStream Developer Guide
Option 3: Deploy a Streaming Application

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=3138

3. Visual C++ Redistributable for Visual Studio 2012

• Visual Studio 2010 or later and the AWS Toolkit for Visual Studio to create a pre-signed URL to the
Amazon S3 bucket required to install your sample streaming application.

Deploying the sample streaming application from the SDK has three steps:

• Step 1: Build the streaming application (p. 28)

• Step 2: Deploy the streaming application (p. 28)

• Step 3: Stream the Streaming Application to a Device (p. 48)

Step 1: Build the streaming application

In the build step, you will compile the code in the
<SDK_dir>\example_src\server\windows\SimpleDirectXServer directory into a streaming
application. The directory contains a Visual Studio solution file, the source code, and the resource files
required to build the streaming application. To add streaming to your application, you follow the steps in
Build an Amazon AppStream Application (p. 51).

After you create the streaming application, you then create an application installer that installs your
streaming application without any user interaction. The application installer should contain the sample
streaming application along with the required dependency files. Use your favorite method to create
application installer.

Once you have an application installer, you are ready to deploy your streaming application.

To build the source code

1. Start Visual Studio.

2. Open
<SDK_dir>\example_src\server\windows\SimpleDirectXServer\SimpleDirectXServer.sln.

3. In Solution Explorer, select SimpleDirectXServer.

4. In Solution Configuration on the toolbar, click Release.

5. On the Build menu, click Build Solution.

The executable file is in the
<SDK_dir>\example_src\server\windows\SimpleDirectXServer\Release directory.

After you create your executable file, you need to create an application installer. Build an Application
Installer (p. 73) describes the requirements for a silent installer. Use your favorite method to create an
application installer that meets the requirements.

After you create your application installer, you are ready to deploy your streaming application to Amazon
AppStream.

Step 2: Deploy the streaming application

Deploying your streaming application involves five tasks:

28

Amazon AppStream Developer Guide
Step 1: Build

http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://aws.amazon.com/visualstudio/

1. Create an Amazon S3 bucket that will store your application installer. Amazon AppStream will gets
your application installer from this bucket.

2. Create a pre-signed URL to the application installer in the Amazon S3 bucket. Amazon AppStream
uses this URL to get your application installer in a secure way.

3. Create a key pair in Amazon EC2 to deploy the sample entitlement service.

4. Deploy the sample entitlement service so that specific users can connect to your streaming application.

5. Deploy your streaming application to Amazon AppStream.

Store Your Installer Application on Amazon S3
After creating your application installer, you will create a bucket in Amazon S3 and then upload the
application to this bucket.

To create an Amazon S3 bucket

When Amazon S3 successfully creates your bucket, the console displays the properties of your empty
bucket. This is the bucket where you upload the installer application.

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In the Create a Bucket—Select a Bucket Name and Region dialog box, type MyAppStreamBucket.

3. For Region, select US East (N. Virginia).

4. When the settings are as you want them, click Create.

To upload the application installer to Amazon S3

1. In the Amazon S3 console, click MyAppStreamBucket and then click Upload.

2. In the Upload—Select Files wizard, click Add Files.

3. In the File Upload dialog box, select the application installer.

4. Click Open.

5. Click Start Upload.

Generating a Pre-signed URL
After you have uploaded the application installer to Amazon S3, you need to create a pre-signed URL
that points to the application installer in that bucket. A pre-signed URL is a special URL that allows Amazon
AppStream to download and run your application installer without requiring to expose any security
credentials. This URL is only valid for a specific time period.

To generate a pre-signed URL, you need to create a user in AWS Identity and Access Management.
You'll also use this user to deploy the sample entitlement service in a later step.

After the creating the user and credentials, you need to install the AWS Toolkit for Visual Studio and then
use the AWS Explorer from within Visual Studio to generate the pre-signed URL.

29

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/s3/

To create the user

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane of the console, click Users and then click Create New Users.

3. For Enter User Names, type MyAppStreamUser. Select Generate an access key for each User
and then click Create.

30

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/iam/

4. In the Create User dialog box, click Download Credentials and save the file to a safe place. The
comma separated value file contains the access key and secret key that you will need to generate
a pre-signed URL and in a later step, deploy the sample entitlement service.

Note
Store this information in a secure place. This is the only time you will be able to get the
secret key. If you lose this information, you will need to create a new access key and secret
key.

5. Click Close Window to close the dialog box.

6. In the console, select your new user, click the Permissions tab and then click Attach User Policy.

31

Amazon AppStream Developer Guide
Step 2: Deploy

7. In Manage User Permissions, select Custom Policy and then click Select.

8. In Manage User Permissions, do the following:

a. For Policy Name, type S3andEntitlementServicePolicy.

b. For Policy Document, copy and paste the following:

32

Amazon AppStream Developer Guide
Step 2: Deploy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1403040000000",
 "Effect": "Allow",
 "Action": [
 "appstream:CreateSession",
 "appstream:GetApiRoot",
 "appstream:GetApplication",
 "appstream:GetApplications",
 "appstream:GetApplicationStatus",
 "appstream:GetSession",
 "appstream:GetSessions",
 "appstream:GetSessionStatus",
 "appstream:UpdateSessionState"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Stmt1403040053000",
 "Effect": "Allow",
 "Action": [
 "dynamodb:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Stmt1403040077000",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "*"
]
 }
]
}

c. Click Apply Policy.

To install the AWS Toolkit for Visual Studio

1. Go to AWS Toolkit for Visual Studio and click AWS Toolkit for Visual Studio.

2. Run the installation wizard, which is packaged as an .msi. Note the following:

• If your browser asks whether to save or run the msi, select Run.

• If your browser automatically saves the .msi file to your system, navigate to the download directory
and use Windows Explorer to launch the .msi.

33

Amazon AppStream Developer Guide
Step 2: Deploy

http://aws.amazon.com/visualstudio

The MSI file name depends on the version, but it will look something like
AWSToolsAndSDKForNet_sdk-2.0.13.2-ps-2.0.13.2-tk-1.6.5.4.msi.

3. Follow the installation wizard's instructions to install the toolkit.

To add a profile to the Toolkit for Visual Studio

Before you can use the Toolkit for Visual Studio, you will need to create a profile using the credentials
that you downloaded when you created the user in the previous step.The credentials allow you to access
your AWS resources through the Toolkit for Visual Studio.

1. In Visual Studio, open AWS Explorer by clicking the View menu and selecting AWS Explorer.

2. Click the "New Account Profile" icon to the right of the Profile list.

3. In the New Account Profile dialog box, do the following:

a. For Display Name, type MyAppStreamUser.

b. For Access Key ID, enter the access key ID from the credentials of the user you created earlier.

c. For Secret Access Key, enter the secret key from the credentials of the user you created earlier.

d. Click OK.

34

Amazon AppStream Developer Guide
Step 2: Deploy

4. Close the AWS Explorer.

To generate a pre-signed URL

1. Open the AWS Explorer.

2. Expand the Amazon S3 node and click MyAppStreamBucket.

3. Right-click the application installer, and then select Create Pre-Signed URL.

4. In the Create Pre-Signed URL dialog box, set an expiration date and time for the URL. Or go to the
next step if you want to use the default setting which is one hour from the current time.

5. Click the Generate button.

6. Click Copy to copy the pre-signed URL to the clipboard. Save this URL to file.You’ll need this URL
to add your streaming application to Amazon AppStream.

Creating a Key Pair
Once you have your pre-signed URL, you are ready to create the key pair you need to deploy the sample
entitlement service. If you already have an existing key pair, you can skip this step and proceed to
Deploying the Sample Entitlement Service on AWS CloudFormation (p. 36).

To create a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. From the navigation bar, select US East (N. Virginia).

35

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/ec2/

3. In the navigation pane, click Key Pairs.

4. Click Create Key Pair.

5. For Key pair name enter AppStreamKeyPair and then click Create.

6. The private key file (AppStreamKeyPair.pem) is automatically downloaded by your browser. Save
the private key file in a safe place.

Important
This is the only chance for you to save the private key file.You will need this file to connect
to the instance you will create in the next step.

Your new key pair appears in the Amazon EC2 console.

Deploying the Sample Entitlement Service on AWS
CloudFormation
An entitlement service implements code to authenticate users and—if authentication succeeds—calls
into Amazon AppStream to create a new client session and provides a connection URL which clients use
to connect to the session.

Amazon AppStream does not set requirements on the way you authenticate users.You can compare a
username and a hash of the password field to values stored in a database, use an authentication service
such as Login with Amazon (LWA), or make an application publically available by automatically
authenticating all users.You are in complete control of user authentication and authorization.

To get you started, Amazon AppStream provides:

• Default entitlement service—this is an entitlement service provided by Amazon AppStream that looks
up user-application mappings in an DynamoDB table and uses that information to authenticate users.
It's provided as a AWS CloudFormation template that you can configure and launch to host the
entitlement service on your AWS account.

• Entitlement service sample code—this is the sample code for the default entitlement service. It looks
up user-application mappings in an DynamoDB table and uses that information to authenticate users.
By examining the Java code, you can learn how the pieces of the entitlement service fit together and
use the code as a basis for writing a custom entitlement service.You can build the sample code into
a .jar file and run it on a local server or host it on AWS.

Note
While you could implement the entitlement logic directly in the client, doing so is strongly
discouraged because of the requirement to call into the Amazon AppStream service to create

36

Amazon AppStream Developer Guide
Step 2: Deploy

http://login.amazon.com/

new sessions. It is more secure to have your AWS credentials built into a web service running
on a server you control than compiled into client code running locally on end-user devices.

To deploy the default entitlement service on AWS CloudFormation

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Click Actions and then click Create Stack or Create New Stack.

3. On the Select Template page, do the following:

a. For Name under Stack, type EntitlementService.

b. Select Specify an Amazon S3 template URL and then type the pre-signed URL you created
in the previous step.

c. Click Next.

4. In Specify Parameters, do the following:

a. For AccessKey, enter the access key ID of the user you created in the previous step.

b. For CommandStr, type java -DUIPin=54321
-DappstreamEndpoint=appstream.us-east-1.amazonaws.com -jar
/opt/appstream/entitlement-service.jar.

c. For FileURL, type
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service.jar.

37

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/cloudformation/
https://s3.amazonaws.com/appstream-sdk/sample-entitlement-service.jar

d. For KeyName, type AppStreamKeyPair.

e. For SecretKey, type the secret access key of the user you created in the previous step.

f. Click Next.

5. On the Options page, do the following to identify this entitlement service in the Amazon EC2 console:

a. Under Key, type Name.

b. Under Value, type EntitlementService.

c. Click Next.

38

Amazon AppStream Developer Guide
Step 2: Deploy

On the Review page, review the configuration of the stack and then click Create to launch the stack.

39

Amazon AppStream Developer Guide
Step 2: Deploy

This process may take several minutes to complete. While the stack is launching, its status is set to
CREATE_IN_PROGRESS.

40

Amazon AppStream Developer Guide
Step 2: Deploy

When the status of your stack changes to CREATE_COMPLETE, your entitlement service is deployed
and ready to use.You will need to get the URL of the entitlement service to connect your client application
to your streaming application.

To locate the URL of the entitlement service deployed by AWS CloudFormation

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Select your entitlement service. Click the down arrow in the Events tab and click Outputs to display
details about the stack at the bottom of the browser window. The PublicDNS key displays the URL
of the entitlement service.

The AWS CloudFormation template installs the sample entitlement service on a host that has ports
22 and 8080 open. The entitlement service URL is therefore http://publicDNS:8080/.Your
clients should send entitlement requests to http://publicDNS:8080/api/.

To access the UI for the sample entitlement service, open http://publicDNS:8080/web/.

Important
Always include a trailing forward slash ("/") at the end of the URL to access the entitlement
service.

41

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/cloudformation/

To Configure the Entitlement Service

1. In a browser, open http://publicDNS:8080/web/.

Note
If you cannot connect to your entitlement service, check that your firewall settings allow you
to connect using port 8080.

2. For PIN, type 54321 and click Sign in.

In the web page, you can specify users to have access to all entitlements or you can allow any to access
the entitlement. By default, the email address of the AWS account that created the entitlement service
and the email address user@domain.com have access to the entitlements.

Deploying Your Streaming Application to Amazon AppStream
After uploading the application installer to Amazon S3 and then generating a pre-signed URL, you are
ready to add your application to Amazon AppStream.

To add your application to Amazon AppStream

1. Open the Amazon AppStream console at https://console.aws.amazon.com/appstream/.

2. Click Get Started.

42

Amazon AppStream Developer Guide
Step 2: Deploy

https://console.aws.amazon.com/appstream/

3. On the Build page, click Next step.

4. On the Configure page, do the following:

• For Streaming application name, type My Example Streaming Application.

• For Pre-signed S3 URL of Installer, type the URL you created in the previous step.

• For Path to launcher, type C:\MyApp\ExampleDirectXServer.

• Click Next step.

43

Amazon AppStream Developer Guide
Step 2: Deploy

5. In the Log page, click Next step.

44

Amazon AppStream Developer Guide
Step 2: Deploy

6. In the Review page, review the entries. If you need to change an entry, click Edit. If the entries are
correct, click Finish.

45

Amazon AppStream Developer Guide
Step 2: Deploy

7. Wait while Amazon AppStream prepares your application. This may take 30 minutes or more while
Amazon AppStream performs the following tasks:

• Copies your application installer from your Amazon S3 bucket.

• Prepares your Amazon AppStream environment.

• Installs your streaming application on an Amazon AppStream.

• Creates an Amazon Machine Image (AMI) of the server configuration that includes your installed
application.

• Starts your streaming application.

While Amazon AppStream is deploying your application, it displays the Application Summary page,
which contains the metadata for your application. The Application ID field displays the identifier
assigned to your application. Client applications specify this identifier when they call into your
entitlement service to connect to your application.

46

Amazon AppStream Developer Guide
Step 2: Deploy

When your deployment finishes, Amazon AppStream displays a message indicating whether the
deployment succeeded or failed.

47

Amazon AppStream Developer Guide
Step 2: Deploy

The wizard will tell you when your client applications can connect to your streaming application. While
waiting for your streaming application to launch, copy the Application ID to a place you can look up later.
You will need this number to connect the client application to the streaming application.

Step 3: Stream the Streaming Application to a
Device

In the stream step, you use the precompiled client applications to connect to your streaming application
on Amazon AppStream. The SDK includes an Android, iOS, Mac OS X, and Windows sample client
application that you can install on a device or computer. Consult your device documentation if you need
more information about copying and installing an application on your device.

To stream using the Android sample client application

1. Install a file manager app on your device.

2. Allow your device to install application from unknown sources other than the Google Play store.

48

Amazon AppStream Developer Guide
Step 3: Stream

3. Copy <SDK_dir>\precompiled_samples\android\AppStreamExampleClient.apk and
install it on your device.

4. Start the Amazon AppStream Example Client

5. Enter the Application ID of your streaming application and the URL of your entitlement service.

6. Click Connect.

To stream using the iOS sample client application

• Compile the source code for the iOS sample client application and then install the application on
your device. The code is in the <SDK_dir>\example_src\client\src\apple\ios directory.
Instruction for compiling the code and running the sample client application are in
<SDK_dir>\doc\html\ios_xcode.html.

To stream using the Mac OS X sample client application

1. Uncompress the
<SDK_dir>\precompiled_samples\osx\AppStreamOSXClientPrecompiled.zip file.

2. Control-click <SDK_dir>\build\AppStreamSample\AppStream.app and select Open to start
the client application.

3. Start the Amazon AppStream Example Client

4. Enter the Application ID of your streaming application and the URL of your entitlement service.

5. Click Connect.

To stream using the Windows sample client application

1. If you are using a Windows computer other than the computer you used to build and deploy your
streaming application, install the following dependency files:

a. Download the DirectX Software Development Kit from the Microsoft Download Center and install
it.

b. Download the Visual C++ Redistributable for Visual Studio 2012 from the Microsoft Download
Center and install it.

2. Open a command prompt and go to the directory where your extracted the Amazon AppStream SDK.

3. In the <SDK_dir>\precompiled_samples\windows\x64 directory, run the following command:

quickRun64.bat

4. Enter the Application ID of your streaming application and the URL of your entitlement service.

5. Click Connect.

Optional: Clean Up Resources
When you are done using Amazon AppStream, you can use the following procedures to delete the
application, service, and bucket you allocated on AWS.

To delete the streaming application from Amazon AppStream

1. Open the Amazon AppStream console at https://console.aws.amazon.com/appstream/.

2. In the AWS Management Console, click AppStream under Services to open the AppStream
Applications console.

3. In Applications, click your application to show the properties in Application Summary.

49

Amazon AppStream Developer Guide
Step 3: Stream

http://www.microsoft.com/en-us/download/details.aspx?id=6812
http://www.microsoft.com/en-us/download/details.aspx?id=30679
https://console.aws.amazon.com/appstream/

4. Click Delete this application.

5. In the confirmation message that appears, click Delete this application.

To delete your entitlement service from AWS CloudFormation

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Select your entitlement service and click Delete Stack.

3. In the confirmation message that appears, click Yes, Delete.

To delete your files and buckets from Amazon S3

1. Open the Amazon S3 console at https://console.aws.amazon.com/s3/.

2. In the All Buckets pane of the Amazon S3 console, right-click the bucket that you want to delete
and then click Delete.

3. In the confirmation message that appears, click OK.

Where to Go Next
After completing these options, you can start developing your application for Amazon AppStream by going
to these sections:

• Build an Amazon AppStream Application (p. 51)—shows how to build and test your application.

• Build a Client (p. 80)—shows how to build your client to connect to the application.

• Build an Entitlement Service (p. 73)—shows how to build an entitlement service that controls who uses
the application.

50

Amazon AppStream Developer Guide
Where to Go Next

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/S3/

Build an Amazon AppStream
Application

An Amazon AppStream application is composed of the following components:

• Streaming Application—streams to your client applications by Amazon AppStream.

• Application Installer—installs your streaming application on Amazon AppStream

• Entitlement Service—authenticates and authorizes your users.

• Client Application—connects your users on different devices to your streaming application.

This section shows you how to build these components.

Topics

• Build a Streaming Application (p. 51)

• Build an Installer (p. 73)

• Build an Entitlement Service (p. 73)

• Build a Client (p. 80)

Build a Streaming Application
An application to stream is the heart of your product. In order to be streamed, your application needs to
make initialization calls to let Amazon AppStream know that it's ready to accept client sessions, and to
have the proper interfaces implemented that Amazon AppStream can call into to connect to client sessions
and stream content.You do this using the header and library files provided in the Amazon AppStream
SDK. The following sections describe the modifications necessary for streaming and how to add this
functionality to an application.

Throughout the discussion, we'll reference code excerpts from a sample application provided in the
<install-dir>\examples_src directory of the Amazon AppStream SDK.You can download the SDK
from the links in Downloads (p. 10).

Topics

• Design Considerations (p. 52)

• Add Streaming to Your Application (p. 52)

51

Amazon AppStream Developer Guide
Build a Streaming Application

• Test Your Streaming Application (p. 65)

Design Considerations for Your Streaming
Application
Streaming your application from the cloud offers several advantages over running it natively on consumer
devices: you can run a complex application on simple devices, support new consumer devices without
updating your application, seamlessly provide new versions of your application to clients, and improve
the security of your code.

In exchange for these advantages, however, you have some new requirements to take into consideration
when building your application:

• Continuous network connection—A application requires a continuous network connection. What
user experience will you offer your customers when the network is unavailable? You might show them
an error message, or—in the case of a hybrid application—provide them access to the portion of your
application that can function offline, running entirely on the consumer device.

• Managing latency—Streaming your application from Amazon AppStream adds sources of latency, a
small amount of latency from Amazon AppStream overhead as well as variable latency from network
conditions.While in many cases, the added latency will be imperceptible to your users, your application
needs to be able to tolerate some latency and to handle latency spikes gracefully.

• Persistent storage—When you stream your application from Amazon AppStream, it runs on Amazon
AppStream hosts in the cloud. When a client session ends, the Amazon AppStream host resources
are recovered and any data stored locally on the Amazon AppStream host is lost. If your application
needs to persist state between user sessions, you'll need to record that data in a persistent data store
(such as Amazon S3, Amazon RDS, or DynamoDB) before the client session ends and load the data
from the persistent store when the next client session begins.

• Redirecting video and audio output and user input—In order to stream your application across
Amazon AppStream, you'll need to redirect the output to application libraries provided in the Amazon
AppStream SDK, and implement interfaces that listen to events from those libraries.

• Hybrid applications—Will you stream your entire application from Amazon AppStream or perform
some processing on the consumer device? Hybrid applications can offer solutions for both loss of
network as well as handling latency spikes. One way to use Amazon AppStream is to run basic
application functionality on the consumer device and enhance the experience when a network is
available, such as a game with basic character animations rendered on the device with enhanced
graphics and detailed backgrounds available through streaming.

Note
Applications with zero tolerance for latency are not recommended for streaming, such as
first-person shooter games or player vs. player fighting games. For these types of applications,
consider building a hybrid experience where the latency intolerant aspects of the experience are
run locally on the consumer device, while other aspects of the experience requiring cloud
resources are streamed.

Add Streaming to Your Application
The Amazon AppStream SDK provides server libraries that you build into your application and call in
order to receive client sessions from Amazon AppStream and to stream input and output between your
application and clients.

The following image illustrates how your application interacts with the libraries of the Amazon AppStream
SDK.Your application has a handle to each of the objects that it can use to call the functions of that

52

Amazon AppStream Developer Guide
Design Considerations

http://aws.amazon.com/s3
http://aws.amazon.com/rds
http://aws.amazon.com/dynamodb

object. It also implements callback functions and registers them with the objects in order to receive client
and session events.

The following object classes are provided by the server libraries in the Amazon AppStream SDK.
Documentation for these classes are available in the Amazon AppStream SDK.

DescriptionClass

The top level object of the server libraries.Your application
uses this object to ensure that it is calling into the version of
the libraries it was compiled against and to create the
XStxServerManager object.

XStxServerLibrary

This object manages client sessions and sends events to your
application when Amazon AppStream assigns your application
a client session or terminates a client session. When it fires
the
XStxIServerManagerListenerFcnServerInitialize
event, it returns a handle to the XStxServer object your
application uses to stream data to the client.

XStxServerManager

Your application uses this object to stream content to clients
and to receive user input from clients.

XStxServer

Your application implements callback functions that adhere to the following interfaces in order to receive
session and client events. Documentation for these interfaces is available in the Amazon AppStream
SDK. The callback functions are invoked from different threads, so your application needs to be cautious
when modifying data in the callback functions and to use thread synchronization mechanisms.

DescriptionInterface

Called by the XStxServer object to get audio frames from
your application. If a callback function implementing this
interface is not set with the XStxServerSetAudioSource
function of the XStxServer object, the XStxServer object
captures system audio and transmits that to clients instead.

XStxIAudioSource

Maps user input from a format returned by the client to a
format the application can use.

XStxIInputMapping

Receives user data from the XStxServer object. This can
be keyboard, mouse, or touch data.

XStxIInputSink

53

Amazon AppStream Developer Guide
Add Streaming to Your Application

DescriptionInterface

Receives raw user data from the XStxServer object. This
is sent as a stream of bytes.

XStxIRawInputSink

receives event messages from the XStxServer object when
it establishes or loses connection to a client.

XStxIServerListener

receives event messages from the XStxServerManager
object when Amazon AppStream creates or terminates a client
session.

XStxIServerManagerListener

Called by the XStxServer object to configure video streaming
from the application. If the video mode is set to
XSTX_VIDEO_MODE_PULL, the XStxServer object also uses
this interface to get video frames from the application.

XStxIVideoSource

Lifecycle of a Streaming Application
Your application communicates with Amazon AppStream and clients through the libraries of the Amazon
AppStream SDK.

The lifecycle of an application is as follows:

1. Create the XStxServerLibrary object. This ensures that the loaded libraries match the version
your application was compiled with. It also gives you a handle to an XStxServerLibrary object,
which is required for the next step.

2. Create the XStxServerManager object. This object communicates with Amazon AppStream to
manage the assignment of client sessions to your application.

3. Register an XStxIServerManagerListener event sink. Pass the location of a callback function
to receive events from the XStxServerManager object.

4. Start the XStxServerManager object. Your application calls XStxServerManagerStart to
cause the XStxServerManager object to start accepting client sessions from Amazon AppStream.

5. Wait for the XStxServerManager object to end the session. During this phase, your application
receives events to its XStxIServerManagerListener callback function when the session manager
accepts a new client session, prompts your application to persist state before a session ends, or
terminates a client session.

If the event is XStxIServerManagerListenerFcnServerInitialize, a new client session has
begun, and your application is passed a handle to the XStxServer object it will use to stream content
to the client. In this case, perform the following steps:

a. Initialize the XStxServer object.

b. Register event sinks for XStxIAudioSource, XStxIInputMapping, XStxIInputSink,
XStxIRawInputSink, XStxIServerListener, and XStxIVideoSource events. These
callback functions are how your application is notified about streaming events.

c. Call methods of the XStxServer object to send audio and video frames. Repeat this step
for the duration of the streaming session.

d. Terminate the XStxServer object. When the client is disconnected or the application ends
the client session, your application should call XStxServerTerminate to release resources
allocated to the XStxServer object.

54

Amazon AppStream Developer Guide
Add Streaming to Your Application

6. Recycle the XStxServerLibrary and XStxServerManager objects. After the client session
ends, release the resources allocated to the XStxServerLibrary and XStxServerManager
objects.

Sample Streaming Application
The file main.cpp is the source code for a sample implementation of a streaming application that can
be streamed from Amazon AppStream. This sample is in the
<SDK_dir>\example_src\server\windows\SimpleDirectXServer directory of the Amazon
AppStream SDK.

The sample application uses DirectX for video rendering and XAudio2 for audio rendering.Walking through
the sample code is useful in understanding how to construct an application.

Initialize a Streaming Application
Before your application can start streaming content to a client, it must create the objects that it will use
to connect to client sessions and stream content as well as register callback functions to receive event
notifications about sessions and clients. The following explanation covers steps 1–5 of Lifecycle of a
Streaming Application (p. 54).

First, your application should create an XStxServerLibrary object. This is the top level object that you
use to interact with the libraries you'll use to connect to sessions and stream content to clients.

The following excerpt from the sample streaming application illustrates this step. The excerpt is from the
runAsAppStreamGame function of the file XStxExampleServer.cpp. The file is in the
<SDK_dir>\example_src\server\common directory.

int runAsAppStreamGame(int argc, const char* argv[])
{
 ...

 /** Initialize the XStxServer library */

 XStxResult result = XStxServerLibraryCreate(
 XSTX_SERVER_API_VERSION_MAJOR,
 XSTX_SERVER_API_VERSION_MINOR,
 &serverLibraryHandle);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 ...
}

Next, your application creates an XStxServerManager object. To do so, you'll pass in the handle to the
XStxServerLibrary object you created previously.Your application uses the XStxServerManager
object to receive session assignments from Amazon AppStream.

The following excerpt from the sample streaming application illustrates this step. The excerpt is from the
runAsAppStreamGame function of the file XStxExampleServer.cpp. The file is in the
<SDK_dir>\example_src\server\common directory.

55

Amazon AppStream Developer Guide
Add Streaming to Your Application

int runAsAppStreamGame(int argc, const char* argv[])
{
 ...

 /**
 * Create a session manager instance (which in this case just fakes
 * receiving session requests from external services).
 */

 XStxResult result = XStxServerLibraryCreateXStxServerManager(
 serverLibraryHandle,
 &serverManagerHandle);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 ...

}

After the XStxServerManager object is created, your application calls
XStxServerManagerSetListener to register an event sink.

The following excerpt from the sample streaming application illustrates this step. The excerpt is from the
runAsAppStreamGame function of the file XStxExampleServer.cpp. The file is in the
<SDK_dir>\example_src\server\common directory.

The code that implements the XStxIServerManagerListener interface and handles the events sent
by the XStxServerManager object is located in the file ServerManagerListener.cpp. The file is in
the <SDK_dir>\example_src\server\common directory.

int runAsAppStreamGame(int argc, const char* argv[])
{
 ...

 /**
 * Create the application-specific server manager listener
 * that will start our hosted application and connect it to
 * an XStx server.
 */

 XStxResult result = ServerManagerListener::createServerManagerListener(
 serverLibraryHandle,
 serverManagerListener,
 (void*)&theGame);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 /* Point the session manager at our listener */

 XStxResult result = XStxServerManagerSetListener(
 serverManagerHandle,

56

Amazon AppStream Developer Guide
Add Streaming to Your Application

 serverManagerListener->getServerManagerListener());

 if (result != XSTX_RESULT_OK)
 {
 delete serverManagerListener;
 goto exit;
 }

 ...

}

After you've registered the event sink, your application is ready to start the server manager to notify
Amazon AppStream that it's ready to receive client sessions.To do so, call the XStxServerManagerStart
function.

The following excerpt from the sample streaming application illustrates this step. The excerpt is from the
runAsAppStreamGame function of the file XStxExampleServer.cpp. The file is in the
<SDK_dir>\example_src\server\common directory.

int runAsAppStreamGame(int argc, const char* argv[])
{
 ...

 /** Start the session manager */

 XStxResult result = XStxServerManagerStart(serverManagerHandle);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 ...

}

At this point, your application's main function should wait until the XStxServerManager terminates the
session. This is done by calling XStxServerManagerWait.

The following excerpt from the sample streaming application illustrates this step. The excerpt is from the
runAsAppStreamGame function of the file XStxExampleServer.cpp. The file is in the
<SDK_dir>\example_src\server\common directory.

int runAsAppStreamGame(int argc, const char* argv[])
{
 ...

 /** Wait for the session manager to exit */

 XStxResult result = XStxServerManagerWait(serverManagerHandle);

 ...

}

57

Amazon AppStream Developer Guide
Add Streaming to Your Application

While your application is waiting for the session to end, your XStxIServerManagerListener event
sink is receiving session events. When the XStxIServerManagerListenerFcnServerInitialize
event fires, it indicates that Amazon AppStream has assigned your application a client. For more
information, see Initialize a Client Session (p. 58)

Initialize a Client Session
When the XStxIServerManagerListenerFcnServerInitialize event fires it returns a handle to
an XStxServer object. This is the object that your application uses to communicate with the client:
streaming audio and video output and receiving user input and client messages.Your implementation of
a XStxIServerManagerListenerFcnServerInitialize callback function should initialize the
XStxServer object, register event sinks for the IServerListener events, and set the audio source
by calling the XStxServerSetVideoSource function. Setting the audio source by calling the
XStxServerSetAudioSource function is optional; for more information, see Stream Audio to a
Client (p. 62).

This excerpt from ServerManagerListener.cpp shows how to initialize the XStxServer object. The
file is in the <SDK_dir>\example_src\server\common directory.

XStxResult ServerManagerListenerImp::XStxIServerManagerListenerServerInitialize(

 XStxServerHandle server,
 uint32_t timeout,
 const char* applicationContext)
{

 if (mServerToInfoMap.find(server) != mServerToInfoMap.end())
 {
 return XSTX_RESULT_ALREADY_CREATED;
 }

 XStxResult result = XSTX_RESULT_OK;

 /** Create an object to hold on to server specific info */

 ServerInfo* info = new ServerInfo();
 XStxIServerListener* listener = NULL;
 info->mApp = NULL;
 info->mServer = server;

 /** Instantiate the hosted application */

 result = HostedApplication::createHostedApplication(
 server,
 applicationContext,
 mServerContext,
 info->mApp);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 /** Point the app to the server and start the app */

 result = info->mApp->setServer(info->mServer);

58

Amazon AppStream Developer Guide
Add Streaming to Your Application

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 result = info->mApp->start();

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 /** Point the server to the app and start the server */

 listener = info->mApp->getServerListener();
 if (NULL != listener)
 {
 XSTX_CALLBACK_NOT_NULL_OR_ERROR(listener, ServerReady);
 XSTX_CALLBACK_NOT_NULL_OR_ERROR(listener, ServerStopped);
 XSTX_CALLBACK_NOT_NULL_OR_ERROR(listener, MessageReceived);
 }
 result = XStxServerSetListener(
 info->mServer,
 listener);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }

 result = XStxServerSetInputSink(
 info->mServer,
 info->mApp->getInputSink());

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }
#ifdef APPLICATION_CAPTURES_AUDIO
 //The example audio source does provides timestamps
 result = XStxServerSetAudioSource(
 info->mServer,
 info->mApp->getAudioSource(), true);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;
 }
#endif
 //need to manually change the isProvidingTimestamp flag here to false
 //if it doesn't provide timestamp
 result = XStxServerSetVideoSource(
 info->mServer,
 info->mApp->getVideoSource(), true);

 if (result != XSTX_RESULT_OK)
 {
 goto exit;

59

Amazon AppStream Developer Guide
Add Streaming to Your Application

 }

 mServerToInfoMap[server] = info;

 return XSTX_RESULT_OK;

exit:

 if (info != NULL)
 {
 delete info->mApp;

XStxServerRecycle(info->mServer);
 delete info;
 }

 return result;
}

Stream Video to a Client
In order to stream video frames to the client, your application calls the XStxServerSetVideoSource
function of the XStxServer object to specify the source of video frames. For more information, see
Initialize a Client Session (p. 58).You must also define the mode that your application will use to stream
frames to the client.

Choose a Video Mode

To support a variety of applications, Amazon AppStream provides three strategies for streaming video:

• Push with frame-rate blocking—Calls to XStxServerPushVideoFrame() will block until enough
time has elapsed to gate the video frame rate of the application to that specified by
XStxIVideoSourceFcnSetFrameRate(). The amount of time blocked varies dynamically with
changes to the target frame rate and the time it takes to generate frames. To use this strategy, set the
video mode to XSTX_VIDEO_MODE_PUSH_BLOCKING.

• Push immediately—Calls to XStxServerPushVideoFrame() will return immediately. If calls are
received faster than the frame rate indicated by the last call to
XStxIVideoSourceFcnSetFrameRate() then frames will be dropped from the video stream to
achieve the target frame rate. To use this strategy, set the video mode to
XSTX_VIDEO_MODE_PUSH_IMMEDIATE.

• Pull—Video frames will be pulled from the application by calls to XStxIVideoSourceFcnGetFrame().
The thread making those calls will delay as necessary to limit the frame rate. The application is free to
perform operations on this thread as long as it returns before the next frame is due.To use this strategy,
set the video mode to XSTX_VIDEO_MODE_PULL.

The sample application uses the immediate push mode, as shown in the following excerpt from main.cpp.
This file is in the <SDK_dir>\example_src\server\windows\SimpleDirectXServer directory.

static XStxResult getVideoMode(void* context, XStxVideoMode* mode)
{
 // We push frames to AppStream when we want to.
 // AppStream will adapt by dropping frames if we're too fast
 *mode = XSTX_VIDEO_MODE_PUSH_IMMEDIATE;
 return XSTX_RESULT_OK;
}

60

Amazon AppStream Developer Guide
Add Streaming to Your Application

Choose a Color Subsampling Rate

Amazon AppStream streams the video at the YUV420 color subsampling rate to client applications.You
can set your streaming application to stream video at the YUV444 color subsampling rate to a client
application running on supported devices. The streaming application calls the
XStxServerAddChromaSamplingOption() function to notify Amazon AppStream that the streaming
application supports the YUV444 color subsampling option. The client application calls a similar function
to also notify Amazon AppStream that the client application supports the YUV444 color subsampling
option.

When the client application connects to the streaming application, Amazon AppStream compares the
color subsampling options available on the client application and the streaming application. Amazon
AppStream then selects the highest color resolution supported by both applications and then informs
both applications which color sampling option will be used for the session. Amazon AppStream then calls
the XStxIServerListener2FcnServerConfigurationSettingsReceived callback function that
the streaming application supplied and passes a structure with the XStxChromaSampling setting.

Note
Streaming at the YUV444 subsampling rate requires higher bandwidth availability than the
YUV420 rate.

The following code excerpt demonstrates how to use the YUV444 color subsampling option.

/**
 * Inform the server of server application's chroma sampling capability.
 * You can call this as many times as you want for each chroma sampling
 * listed in XStxChromaSampling. If this method is never called, then
 * XSTX_CHROMA_SAMPLING_YUV420 will be used by default chroma sampling.
 * Register a callback function at XStxIVideoSourceFcnSetChromaSampling
 * so that STX server can notify server application which chroma sampling
 * will be used for streaming.
 * @param[in] serverHandle The handle of the server.
 * @param[in] chromaSampling The chroma sampling scheme. Look at XStxAPI.h
 * @return This function will return one of these values.
 * Return code | Description
 * ----------------------------- | ---

 * XSTX_RESULT_OK | The operation is successful.
 * XSTX_RESULT_INVALID_HANDLE | serverHandle is invalid.
 * XSTX_RESULT_INVALID_ARGUMENTS | chromaSampling is not recognized.
 */
XSTX_API_EXTERN XStxResult XSTX_API XStxServerAddChromaSamplingOption(
 XStxServerHandle serverHandle,
 XStxChromaSampling chromaSampling);

Send Frames to the Client

If you are converting an existing application to work with Amazon AppStream streaming, you will need
to redirect the video output to streaming clients instead of displaying video on the local machine. The
following excerpt is from the render function in main.cpp and shows the changes you would make to
render the video to clients instead of a local machine.

...

EnterCriticalSection(&g_frameCriticalSection); // Don't want to be interrupted
 now

61

Amazon AppStream Developer Guide
Add Streaming to Your Application

// Copy back buffer data. Can also use D3DXLoadSurfaceFromSurface if we need
to resize/change pixel format
g_D3DDevice->GetRenderTargetData(g_backBuffer, g_memBuffer);
D3DLOCKED_RECT lockedRect;
g_memBuffer->LockRect(&lockedRect, NULL, D3DLOCK_READONLY);
// Convert to YUV so we can supply it to AppStream
switch (g_chromaSamplingType)
{
 case XSTX_CHROMA_SAMPLING_YUV420:
 convertToYUV420((unsigned char*)lockedRect.pBits, WINDOW_WIDTH, WIN
DOW_HEIGHT, 2, 1, 0, 4, lockedRect.Pitch, g_videoFrame.mPlanes);
 break;
 case XSTX_CHROMA_SAMPLING_YUV444:
 convertToYUV444((unsigned char*)lockedRect.pBits, WINDOW_WIDTH, WIN
DOW_HEIGHT, 2, 1, 0, 4, lockedRect.Pitch, g_videoFrame.mPlanes);
 break;
 default:
 assert(!"Unknown chroma sampling type"); // Make sure we don't get an
unknown chroma sampling type
}
g_memBuffer->UnlockRect();

XStxServerPushVideoFrame(g_serverHandle, &g_videoFrame); // Push the video frame

LeaveCriticalSection(&g_frameCriticalSection);

...

Stream Audio to a Client
There are two ways your application can transmit audio to clients:

• Explicitly send audio frames to the client—Explicitly sending audio frame-by-frame is best for
situations in which you need tight integration between the video and audio frames, for example, if you
are streaming speech synchronized with video of a person talking. To do so, call the
XStxServerSetAudioSource function of the XStxServer object and set an audio source, you can
then explicitly stream audio frames to the client by implementing the XStxIAudioSourceFcnGetFrame
function of the XStxIAudioSource interface.

• Automatically capture system audio and send that to the client —This is the easiest way to stream
audio and works best in cases where you do not need tight integration between audio and video, for
example if you are streaming background music during a puzzle game. To automatically stream audio,
do not set an audio source by calling the XStxServerSetAudioSource function. When no audio
source is set, the XStxServer object automatically captures system audio and streams that to the
client.

Audio Timestamps

Timestamps are important for keeping the audio and video frames in synchronization. If your application
uses automatic streaming of the system audio, the XStxServer object timestamps the audio frames
using a built-in timestamp manager.You can also have the XStxServer object automatically timestamp
your video frames by setting the willProvideTimestamps parameter to false when you call the
XStxServerSetVideoSource function to set the video source of your application.

If you want to set the timestamps explicitly for your video frames and your application is using the automatic
streaming of system audio, you can do so by having your application call the

62

Amazon AppStream Developer Guide
Add Streaming to Your Application

XStxServerGetTimestampUs function. This function returns the current mono timestamp from the
XStxServer object, in microseconds.

Receive Content from a Client
To provide a fully interactive experience for users, the client collects data from user input sources (such
as keyboard, mouse, or touch inputs) and sends that data to the application so the application can respond
to the user action. There are three types of content that a client may send to your application:

• Formatted user input—such as keyboard, mouse or touch input.

• Raw user input—a stream of bytes from the device. This enables your application to support new or
device-specific types of input such as a data stream from an accelerometer.

• Client messages—messages from the client to the application that are independent of user actions.
These can be status messages, additional metadata, or other content as negotiated between the client
and application developers.

Your application receives this content from the client as events sent by the XStxServer object to your
callback functions. The following sections describe how to implement the callback functions to handle
these events.

Topics

• Accept Keyboard, Mouse, and Touch User Input (p. 63)

• Receive Raw User Input from a Client (p. 63)

• Receive Client Messages (p. 63)

Accept Keyboard, Mouse, and Touch User Input

When a client sends keyboard, mouse, or touch user input to your application, the XStxServer object
fires an XStxIInputSinkFcnOnInput event.Your callback function to handle this event uses the mType
member of the XStxInputEvent structure it receives to determine the input source (keyboard, mouse,
or touch) and handle it appropriately.

Receive Raw User Input from a Client

When a client sends keyboard, mouse, or touch user input to your application, the XStxServer object
fires an XStxIRawInputSinkFcnOnRawInput event. The data is transmitted as a raw stream of bytes.
Your callback function to handle this event is responsible for interpreting the byte stream data. This
requires close integration between your application and its client applications.

Receive Client Messages

The client may send messages to your application. These are not related to user input; the content and
purpose of these messages is specific to the client. During application development, you should research
the messages that may be sent by the client and implement code to handle those messages. Sending
messages from the client is optional, and some clients may send no messages at all.

To receive and handle client messages, your application implements a callback function to handle
XStxIServerListenerMessageReceived events.When a XStxIServerListenerMessageReceived
event fires, it passes the message to your callback function as a byte array.

Store Persistent Data
When you host your application on Amazon AppStream, your application runs on an Amazon AppStream
host in the cloud. When the session ends, the Amazon AppStream host is recycled, and any data stored
on the Amazon AppStream host is lost. If your application needs to persist data between sessions, it

63

Amazon AppStream Developer Guide
Add Streaming to Your Application

should record the data in a persistent data store before terminating the session.You can record the data
to a physical server or store the data on AWS using a service such as Amazon S3, Amazon RDS, or
DynamoDB.

The XStxServerManager object fires an XStxIServerManagerListenerFcnServerSaveState
event before terminating a session to give your application a chance to record data before the session
ends. To do this, provide an implementation of XStxIServerManagerListenerServerSaveState
that records data to a persistent data store.

The following excerpt from the sample streaming application shows an implementation of
XStxIServerManagerListenerServerSaveState. It is from ServerManagerListener.cpp. This
file is in the <SDK_dir>\example_src\server\common directory.This implementation does not persist
data, but the comment shows where you would add that functionality.

XStxResult ServerManagerListenerImp::XStxIServerManagerListenerServerSaveState(
XStxServerHandle session,
uint32_t timeout,
XStxStopReason reason)
{

 // Add code here to record data to a persistent data store

 return XSTX_RESULT_OK;

}

Terminate a Client Session
When a client session ends, the XStxServerManager object fires an
XStxIServerManagerListenerFcnServerTerminate event. This gives your application a chance
to gracefully release resources associated with the client session.

The following excerpt from the sample streaming application illustrates this step. It is from
ServerManagerListener.cpp.This file is in the <SDK_dir>\example_src\server\common directory.

XStxResult ServerManagerListenerImp::XStxIServerManagerListenerServerTerminate(
XStxServerHandle session,
uint32_t timeout,
XStxStopReason reason)
{

 ...

 if (info != NULL)
 {
 XStxServerRecycle(info->mServer);
 delete info->mApp;
 delete info;
 }
 return XSTX_RESULT_OK;
}

64

Amazon AppStream Developer Guide
Add Streaming to Your Application

http://aws.amazon.com/s3
http://aws.amazon.com/rds
http://aws.amazon.com/dynamodb

Terminate a Streaming Application
The XStxServerManagerWait function returns when a client session ends and Amazon AppStream
terminates the session.Your application should release the resources allocated to the
XStxServerManager and XStxServerLibrary objects.

The following excerpt from the sample streaming application illustrates this step. It is from the
runAsAppStreamGame function of XStxExampleServer.cpp. This file is in the
<install_dir>\example_src\server\common directory.

exit:

 XStxResult cleanUpResult = XStxServerManagerRecycle(serverManagerHandle);
 if (cleanUpResult != XSTX_RESULT_OK) {
 printf("Failed to recycle ServerManager\n");
 }

 cleanUpResult = XStxServerLibraryRecycle(serverLibraryHandle);
 if (cleanUpResult != XSTX_RESULT_OK) {
 printf("Failed to recycle ServerLibrary\n");
 }

 delete serverManagerListener;

 printf("Exit! %s\n", XStxResultGetName(result));
 fflush(stdout);

 return (result != XSTX_RESULT_OK) ? -1 : 0;

Test Your Streaming Application
Although you plan to stream the production version of your streaming application from the cloud using
Amazon AppStream, you will likely want to run your streaming application locally or by using Amazon
AppStream standalone mode during testing. This lets you test changes you make to the code quickly,
without having to build an installer, upload your streaming application to Amazon S3, generated a
pre-signed URL, and the other steps required to deploy an application on Amazon AppStream.

Developing a streaming application typically has the following stages:

1. Test your application using Amazon AppStream standalone mode—in this stage, the core
functionality of your application is done, and you're adding streaming. By testing streaming on a
standalone Amazon EC2 instance that is not managed by Amazon AppStream, you can connect to
the Amazon AppStream host using a remote management service to modify your application code,
add dependency files, or change the server configuration. For more information, see Stream Your
Application Using Amazon AppStream Standalone Mode (p. 66).

2. Deploy your production-ready application on Amazon AppStream—in this stage, development
and testing of your application is done, and you are ready to deploy it on Amazon AppStream and have
the service manage client sessions. For more information, see Deploy Your Streaming Application to
Amazon AppStream (p. 123).

65

Amazon AppStream Developer Guide
Test Your Streaming Application

Stream Your Application Using Amazon AppStream
Standalone Mode
Testing your application using Amazon AppStream standalone mode provides a way to test that streaming
works without having the overhead of a full deployment to Amazon AppStream. It also gives you a way
to test your application without having to write an entitlement service or a custom client by using a AWS
CloudFormation template to create your own Amazon EC2 instance with the Amazon AppStream SDK
libraries installed.

You may incur charges when you use Amazon AppStream standalone mode. In standalone mode,
you are using your own EC2 instance rather than Amazon AppStream. Using standalone mode does not
apply to the first 20 hours of streaming from Amazon AppStream.

You can use the Windows sample client application to connect directly to the IP address of the Amazon
EC2 instance. For more information, see Connect to Your Application with the Sample Windows
Client (p. 70).

Note
Do not use a standalone streaming server to deploy your streaming application for client access.
Doing so will prevent you from taking advantage of the session management and automatic
scaling provided by Amazon AppStream.

Topics

• Use Amazon AppStream Standalone Mode (p. 66)

• Connect to Your Standalone Host (p. 70)

• Connect to Your Application with the Sample Windows Client (p. 70)

• Clean Up Resources (p. 71)

Use Amazon AppStream Standalone Mode

You can use Amazon AppStream standalone mode to test your streaming application. Amazon AppStream
standalone mode configures an Amazon EC2 instance with the Amazon AppStream SDK libraries installed;
is configured for SSH, RDP, or VNC access; and has an elastic IP address assigned to it. By using
Amazon AppStream standalone mode, all you need do is connect to your Amazon EC2 instance and
upload your application to the server and run the command to launch it.

Note
You may incur charges when you use this method to deploy a GPU EC2 instance. Use the
Simple Monthly Calculator to estimate your monthly cost. For more information, see Amazon
EC2 Pricing.

To use the AWS CloudFormation template described below, you must have:

• An active AWS account.You will need the access keys for the account or for an IAM user in the account.
If you are using the access keys of an IAM user, that user must have permissions to perform Amazon
AppStream actions. For more information, see AWS Security Credentials.

• An EC2 key pair.You can use this to connect to the instance that hosts the entitlement service with
SSH. For more information, see Amazon EC2 Key Pairs.

To create the Amazon AppStream standalone mode

1. Open the AWS CloudFormation console.

2. From the navigation bar, select the same region where you created a new key pair or are using an
existing key pair.

66

Amazon AppStream Developer Guide
Test Your Streaming Application

http://calculator.s3.amazonaws.com/calc5.html
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.aws.amazon.com/cloudformation/

Important
Do not select a region that is different from your key pair was created.

3. In the AWS CloudFormation console, select Create New Stack.

4. For Name, type a name to identify the stack. For example, StandaloneStack.

5. Select Provide an S3 URL template and then enter
https://s3.amazonaws.com/appstream-public/AppStreamDeveloper.template and
then click Next.

67

Amazon AppStream Developer Guide
Test Your Streaming Application

https://console.aws.amazon.com/cloudformation/

6. In Specify Parameters, do the following:

• For KeyPairName, type the name of your existing key pair in the same region.

• For MicrosoftVirtualAudioDrivers, type Yes.

• For NvidiaGRIDDrivers, type Yes.

• Click Next.

7. In Options, do the following:

• For Key, type Name.

• For Value, type the name that you created earlier.

• Click Next.

8. In Review, check that the parameters you entered are correct and then click Create.

68

Amazon AppStream Developer Guide
Test Your Streaming Application

When the status of your stack changes to CREATE_COMPLETE, the Amazon AppStream standalone
mode is deployed and ready to use.You can view your new server in the Amazon EC2 console.

Locate the IP Address of Your standalone Host

1. In the AWS CloudFormation console, click on the name of your standalone host to display details
about the stack at the bottom of the browser window.

2. In the details pane, click Outputs. This displays the following values:

69

Amazon AppStream Developer Guide
Test Your Streaming Application

https://console.aws.amazon.com/ec2
https://console.aws.amazon.com/cloudformation/

DescriptionKey

The identifier of the EC2 instance.You can use this value
to locate the standalone host in the EC2 console.

InstanceId

The public IP address of the EC2 instance.You can use
this value to connect the sample clients to your application
without using an entitlement service.

PublicIp

The public DNS name of the EC2 instance.PublicDnsName

Connect to Your Standalone Host

After AWS CloudFormation finished deploying the stack for your standalone streaming server, you can
use Remote Desktop Connection (RDC) to connect to the EC2 instance, upload your application, and
start your application. For more information, see Connecting to Your Windows Instance in the Amazon
Elastic Compute Cloud Microsoft Windows Guide.

To log into your EC2 instance, you will need the administrator password and public IP address to your
EC2 instance. While retrieving the administrator password and public IP address, you can download a
Remote Desktop file that contains the connection information to your EC2 instance.

To get the administrator password, public IP address, and Remote Desktop File of your
instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, select Instances. Select your instance, and click Connect.

3. In the Connect To Your Instance dialog box, record the public IP address and user name.You'll
need the public IP address to stream to your client application. Click Get Password (it will take a
few minutes after the instance is launched before the password is available).

4. Click Browse and navigate to the private key file that you saved when you created the key pair.
Select the file and click Open to copy the entire contents of the file into contents box.

5. Click Decrypt Password. The console displays the default administrator password for the instance
in the Connect To Your Instance dialog box, replacing the link to Get Password shown previously
with the actual password.

6. Record the default administrator password.You need this password to connect to the instance and
install your application.

7. Click Download Remote Desktop File.Your browser prompts you to either open or save the .rdp
file. Save the file as you might need this file to administer the instance. When you have finished, you
can click Close to dismiss the Connect To Your Instance dialog box.

Connect to Your Application with the Sample Windows Client

The Amazon AppStream SDK includes a sample pre-compiled client application, AppStreamClient.exe,
that runs on Microsoft Windows 7 or greater. This client application does not call an entitlement service
to connect to a streaming application, instead it uses the IP address of the hosted streaming application
to connect. Because it does not use an entitlement service, the client application can only be used to
connect to pre-release applications hosted locally or on a standalone GPU instance that you manually
launched and configured in Amazon EC2. It cannot be used to connect to applications that are hosted
on Amazon AppStream.

70

Amazon AppStream Developer Guide
Test Your Streaming Application

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
https://console.aws.amazon.com/ec2/

Despite this limitation, the client application is useful for testing your application during development
because it gives you a known working client to test your streaming application against and you can develop
and test your streaming application before creating a custom client application.

To use the pre-compiled client application to your streaming application, you'll need to obtain the IP
address of your application, either the IP address of your local machine if you are running the streaming
application locally, or an elastic IP address attached to an EC2 instance if you are running your streaming
application on an GPU instance that you launched manually in Amazon EC2. Once you have the IP
address, you pass it into as a command line parameter when you launch client application.

The client application accepts the following command line parameters:

DescriptionRequiredParameter

The port of the server to connect to. If not
specified, the server port defaults to port
80.

No-p serverPort

The ID of the session to connect to. If not
specified, the session identifier defaults to
9070-0.

No-i sessionId

The width of the video displayed by the
client. If not specified, the video width
defaults to 1280.

No-w videoWindowWidth

The height of the video displayed by the
client. If not specified, the video height
defaults to 720.

No-h videoWindowHeight

To connect to your streaming application using the pre-compiled client application

1. Open a command window in the <SDK_dir>\precompiled_samples\windows\x64

2. From the command line, run the following batch file.

quickRun64.bat <public IP address>

Replace <public IP address> with the public IP address of the standalone mode hosting your
streaming application.You may optionally specify other command-line parameters as described in
the preceding.

Note
The batch file sets the path to the required dependency files and starts the sample client
application.

Clean Up Resources

When you are done testing your application, you should release the AWS resources you used to deploy
the standalone streaming server to prevent further charges from accruing. To do so, you delete the AWS
CloudFormation stack you created to deploy the standalone server, see Deleting a Stack on the AWS
CloudFormation Console in the AWS CloudFormation User Guide.

71

Amazon AppStream Developer Guide
Test Your Streaming Application

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

Debug Your Streaming Application in Amazon AppStream
Standalone Mode
You can debug your streaming application in Amazon AppStream standalone mode by installing the
Remote Tools for Visual Studio on your Amazon EC2 instance. Remote Tools for Visual Studio allows
you to debug your streaming application on the EC2 instance from another computer running Visual
Studio.

To install Remote Tools for Visual Studio

1. From your computer, start Remote Desktop Connection (RDC) and connect to the EC2 instance.
For more information, see Connecting to Your Windows Instance in the Amazon Elastic Compute
Cloud Microsoft Windows Guide.

2. From the EC2 instance, download and install the version of Remote Tools for Visual Studio that
matches the version of Visual Studio on your computer.

• Remote Tools for Visual Studio 2013 at
http://www.microsoft.com/en-us/download/details.aspx?id=40781.

• Remote Tools for Visual Studio 2012 at
http://www.microsoft.com/en-us/download/details.aspx?id=38184.

3. Restart the EC2 instance and connect to it using RDC.

Note
Restarting the EC2 instance may change its Public IP address.

To configure Remote Tools for Visual Studio

1. From the Start menu of the EC2 instance, click Remote Debugger.

2. From Visual Studio Remote Debugging Monitor, click Tools > Options.

3. In the Options dialog box, do the following:

a. For TCP/IP port number, type a port number of your choice. In this section, the port number is
designated by N.

b. For Authentication mode, select Windows Authentication.

c. Click OK.

To configure your EC2 instance

In this procedure, you will configure the security group for your EC2 instance to accept inbound and
outbound traffic from a specific TCP port. By limiting the traffic to a specific port during testing, you are
reducing the chances of a malicious attack on your EC2 instance.

1. From your computer, open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the navigation pane, click Instances. Select your EC2 instance and click the link to the security
group in the Description tab.

3. In the details pane, on the Inbound tab, click Edit.

4. In the dialog, click Add Rule, and then select Custom TCP Rule from the Type list. For Port Range,
type the port number you entered in the earlier step. In the Source field, select Anywhere.

5. Click Save.

72

Amazon AppStream Developer Guide
Test Your Streaming Application

http://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html#connecting_to_windows_instance
http://www.microsoft.com/en-us/download/details.aspx?id=40781
http://www.microsoft.com/en-us/download/details.aspx?id=40781
http://www.microsoft.com/en-us/download/details.aspx?id=38184
http://www.microsoft.com/en-us/download/details.aspx?id=38184
https://console.aws.amazon.com/ec2/

To start debugging

1. From your computer, start Visual Studio.

2. From the Tools menu, click Attach to Process.

3. In the Attach to Process dialog box, do the following:

a. For Transport, select Default.

b. For Qualifier, type the Public IP address of the EC2 instance using the form,
xxx.xxx.xxx.xxx:N.

Where

• xxx.xxx.xxx.xxx is the Public IP address of your EC2 instance.

• N is the port number you specified in an earlier step.

c. Select Show process from all users.

d. In the Available Process list, select the process of your streaming application and then click
Attach.

Build an Application Installer
To install your streaming application on Amazon AppStream, you will need a streaming application installer
that does the following:. The installer must be a silent installer that is a single executable file (*.exe)
which installs the streaming application and required dependency files without any user interaction.

• Runs silently without any user interaction.

• Exists as a single executable file (*.exe). Do not use Microsoft Windows Installer files (*.msi), batch
files (*.bat), or self-extracting zip (*.zip) files.

• Installs the streaming application and any required dependency files.

• Installs the streaming application in a folder other than C:\AppStream.

• Sets the necessary file and folder permissions so that a Windows standard user account can run the
streaming application. for more information on Windows accounts, see "What is a standard user
account?" at Microsoft.com.

Build an Entitlement Service
An entitlement service authenticates and authorizes users. It is the gatekeeper between clients and your
application, ensuring that only those clients entitled to access your application do so.Your entitlement
service can authenticate users in a variety of ways: by comparing user login credentials to a list of
subscribers in a database, by using an external login service such as Login with Amazon, or by simply
authenticating all clients.

An entitlement service:

1. Processes requests from clients to connect to your application.

2. Authenticates user credentials.

3. Checks whether the user is authorized to access your application.

4. Calls into Amazon AppStream to create new client sessions for authorized users.

5. Returns an entitlement URL to authorized clients that the client uses to access your application.

73

Amazon AppStream Developer Guide
Build an Installer

http://windows.microsoft.com/en-us/windows-vista/what-is-a-standard-user-account
http://windows.microsoft.com/en-us/windows-vista/what-is-a-standard-user-account
http://login.amazon.com/

For more information about the lifecycle of a connection request, see How a Client Connects to the
Application (p. 5).

Note
While you could implement the entitlement logic directly in the client, doing so is strongly
discouraged because of the requirement to call into the Amazon AppStream service to create
new sessions. It is more secure to have your AWS credentials built into a web service running
on a server you control than compiled into client code running locally on end-user devices.

Topics

• Design Considerations (p. 74)

• Build the Entitlement Web Service (p. 74)

• Publish Your Entitlement Service (p. 79)

• Sample Entitlement Request and Response (p. 80)

Design Considerations for Your Entitlement
Service
When you design the entitlement service for your application, there are several factors to consider:

• Authentication mechanism—How will you authenticate user credentials? Will you use an external
service such as Login with Amazon (LWA), or an internal data store? If you have an existing log on
process defined for your customers, you can integrate it with your entitlement service for a seamless
customer experience when you add applications to your offerings.

• Web service hosting—Your entitlement service is a web service and must be continuously available
to clients. If your entitlement service becomes unavailable, clients will not be able to create new
connections. Because of this, you should host your entitlement service on a reliable platform.You can
choose to host it on a physical server or in the cloud, on AWS infrastructure.

• Service health monitoring—Because your entitlement service is a crucial part of your product, you
should monitor the health of your entitlement service and set alarms that trigger if it becomes slow to
respond or unavailable. If you are hosting your entitlement service on AWS, you can use CloudWatch
to monitor your entitlement service.

Build the Entitlement Web Service
Your entitlement service is a web service, handling incoming HTTP requests from clients and returning
an HTTP response. The following topics walk you through the process of creating an entitlement service.

To simplify the process of writing an entitlement service, Amazon AppStream provides the Amazon
AppStream SDK, which contains Java wrappers for the REST API of the Amazon AppStream service.
These wrapper classes handle the overhead of signing your requests to the REST API and provide
functions your entitlement service can call in order to create new client sessions.You can download the
Amazon AppStream SDK from the links in Downloads (p. 10).

Documentation for the Java wrapper classes is provided in the Amazon AppStream SDK.

To build an entitlement service in a language other than Java, you can send HTTP requests directly to
the Amazon AppStream REST API (p. 164).

Topics

• Sample Entitlement Service (p. 75)

• Authenticate the Client (p. 75)

• Check Client Authorization for the Application (p. 76)

74

Amazon AppStream Developer Guide
Design Considerations

http://login.amazon.com/
http://aws.amazon.com/cloudwatch/

• Request a New Session from Amazon AppStream (p. 77)

• Return an Entitlement URL to the Client (p. 78)

Sample Entitlement Service
Amazon AppStream provides a sample entitlement service implementation.You can download the sample
entitlement service from the links in Downloads (p. 10).

You can use this as an example for designing your own entitlement service, and use the sample
implementation during development and testing your application. .

The content of the sample organized as follows:

DescriptionDirectory

Classes to authenticate user credentials and check whether
they are authorized to access an application.

/authorization

Classes that return authorization exceptions to the client./exceptions

Classes that interact with DynamoDB./model

Classes that use JAX-RS to handle HTTP requests and
responses.

/rs

Classes providing the entitlement service logic./services

Implementation of the web-based user interface used to add
users and entitle them to access applications. .

/ui

In the following sections, we'll look at excerpts of code from the sample entitlement service to understand
how to build a custom entitlement service.

Authenticate the Client
The sample entitlement service stores user credentials and entitlement mappings of users to applications
in DynamoDB, a fast, fully managed NoSQL database service. For more information, see the DynamoDB
Developer Guide.

The following excerpt from /rs/JaxRsEntitlementService.java illustrates how the
JaxRsEntitlementService.requestEntitlement method authenticates a user. This code resides
in a try-catch block and throws an exception if a method call fails.

//look up the user credentials in DynamoDB
User user = entitlementService.getUserFromAuthorization(authorization);

The following excerpt from /services/EntitlementService.java shows the implementation of the
EntitlementService.getUserFromAuthorization method.

The getUserFromAuthorization method looks up user credentials in an DynamoDB data store. If
the user is not found, and the createUserWhenNew flag is not set, the method throws an exception. If
the createUserWhenNew flag is set, the method creates a new user in the DynamoDB data store and
populates it with the user credentials passed into the method. By default, createUserWhenNew is set
to true.

75

Amazon AppStream Developer Guide
Build the Entitlement Web Service

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/

public User getUserFromAuthorization(String authorization)
 throws AuthorizationException {
 if (authorization == null) {
 throw new AuthorizationException("Missing Authorization header.");
 }

 Identity identity = authorizationHandler.processAuthorization(authorization);

 User user = dynamoDBMapper.load(User.class, identity.getId());

 if (user == null) {
 if (!createUserWhenNew) {
 log.warn("No such user: " + identity.getId());

 throw new UserNotFoundException();
 }

 user = new User();

 user.setId(identity.getId());
 user.setName(identity.getName()); // May be null
 user.setEmail(identity.getEmail()); // May be null
 user.setEntitleAll(entitleAllWhenNew);
 user.setSessionCount(0);

 dynamoDBMapper.save(user);
 }

 return user;
}

Check Client Authorization for the Application
After your entitlement service has verified that the user credentials are valid, it should check whether the
user holding those credentials is authorized to connect to the application.

The following excerpt from /rs/JaxRsEntitlementService.java illustrates how the
JaxRsEntitlementService.requestEntitlement method checks whether a user is authorized to
access an application. The User object passed into the checkIfEntitled method was created in the
previous step, Authenticate the Client (p. 75).

//call Amazon AppStream to look up the application from its ID
Application application = entitlementService.getApplication(applicationId);

//check to see whether the user is entitled to access the application by looking
 up entitlement mappings in DynamoDB
entitlementService.checkIfEntitled(user, application);

The following excerpts from /services/EntitlementService.java shows the implementation of
the EntitlementService.getApplication and EntitlementService.checkIfEntitled methods.

The getApplication method calls Amazon AppStream to retrieve information about an application
based on an application identifier. If the application is found, the method returns an Application object

76

Amazon AppStream Developer Guide
Build the Entitlement Web Service

populated with metadata about the application. If the application does not exist in Amazon AppStream,
the method throws an exception.

public Application getApplication(String applicationId)
 throws ApplicationNotFoundException {
 try {
 return appstream.getApplications().getById(applicationId);
 } catch (Exception e) {
 log.error(e);

 throw new ApplicationNotFoundException("The application identified by
" + applicationId + " was not found.");
 }
}

The checkIfEntitled method checks the DynamoDB data store to see whether the user is entitled to
access the application. Adding user-application mappings in the sample entitlement service is handled
through a web-based interface. .

public void checkIfEntitled(User user, Application application)
 throws UserNotEntitledException {

 if (user == null || !user.isEntitled(application.getId())) {
 throw new UserNotEntitledException("You are not currently allowed to
use this application. Please ask the developer for access.");
 }
}

The implementation of the isEntitled method of the User class is located in /model/User.java.

Request a New Session from Amazon AppStream
After your entitlement service has verified that the user is authorized to access the application, it calls
the entitleSession function of the current Application object to create a new client session for that
application. If successful, the function returns the newly created Session object.

The following excerpt from /services/EntitlementService.java illustrates how to make this call.

When you call entitleSession, you have the option of passing in binary data using the opaqueData
member of the EntitleSessionInput object. If supplied, this data is passed to the application when
the new session is created. The format and content of this data is specific to the application.You might
use opaqueData, for example, to initialize the client session with state information saved the last time
this user connected to your application.

public Session entitleSession(User user, Application application) {
 Session session;

 try {
 EntitleSessionInput entitleSessionInput = new EntitleSessionInput();

 // Could optionally pass opaque data to the application that will service
 the session.
 // entitleSessionInput.setOpaqueData("some application-specific data");

77

Amazon AppStream Developer Guide
Build the Entitlement Web Service

 session = application.entitleSession(entitleSessionInput);
 } catch (AmazonServiceException e) {
 // Make the exception just a bit more obvious with an informational
message.
 // It may not be obvious where the error occurred with just a stack
trace.
 if (e.getErrorType().equals(AmazonServiceException.ErrorType.Service))
 {
 log.error("An error occurred in the AppStream service while entitling
 a session for app: " + application.getId(), e);
 }

 throw e;
 }

 user.storeSessionId(application.getId(), session.getId());
 user.setSessionCount(user.getSessionCount() + 1);

 dynamoDBMapper.save(user);

 return session;
}

Return an Entitlement URL to the Client
The following excerpt from /rs/JaxRsEntitlementService.java uses JAX-RS, a Java API for
interacting with REST-ful web services. It processes incoming HTTP requests from clients to establish a
connection to an application. If the client is entitled to access the application, this method returns an
entitlement URL that the client can use to connect to the application. If the request is denied, it returns
an error.

The logic exposed by this function is the entitlement service in a nutshell.

@POST
@Path("/{applicationId}")
@Produces(MediaType.TEXT_PLAIN)
public Response requestEntitlement(@HeaderParam("Authorization") String author
ization,
 @PathParam("applicationId") String applica
tionId,
 @FormParam("terminatePrevious") @Default
Value("false") Boolean terminatePrevious) {
 try {
 User user = entitlementService.getUserFromAuthorization(authorization);

 Application application = entitlementService.getApplication(applica
tionId);

 if (!entitlementService.shouldAlwaysEntitle()) {
 entitlementService.checkIfEntitled(user, application);
 }

78

Amazon AppStream Developer Guide
Build the Entitlement Web Service

 if (checkPreviousSession) {
 entitlementService.checkForPreviousSession(user, application, ter
minatePrevious);
 }

 Session session = entitlementService.entitleSession(user, application);

return response(Status.CREATED, session.getEntitlementUrl());
 } catch (AuthorizationException e) {
 String authenticateHeader = e.getAuthenticateHeader();

 if (authenticateHeader == null) {
 return response(Status.UNAUTHORIZED, e.getMessage());
 } else {
 return response(Status.UNAUTHORIZED, e.getMessage(), Collec
tions.singletonMap("WWW-Authenticate", authenticateHeader));
 }
 } catch (UserNotEntitledException e) {
 return response(Status.FORBIDDEN, e.getMessage());
 } catch (ApplicationNotFoundException e) {
 return response(Status.NOT_FOUND, e.getMessage());
 } catch (SessionActiveException e) {
 return response(Status.CONFLICT, e.getMessage());
 }
}

Publish Your Entitlement Service
After you develop your entitlement service, you need to host it on a server where clients can send it HTTP
requests.You host your entitlement service as you would any other web service.You can host it on a
physical server or in the cloud.

The sample entitlement service includes a AWS CloudFormation template to automate the process of
deploying it on the AWS cloud and instructions for how to use that template to deploy the sample entitlement
service..

If you host your entitlement service on AWS, there are several services that can help:

• Amazon Elastic Compute Cloud (Amazon EC2)—Launches an Amazon AppStream host that runs
your web server and performs server-side processing. For more information, see the Amazon EC2
documentation.

• AWS Elastic Beanstalk—Automatically creates, deploys, and manages the IT infrastructure needed
to run a custom application. For more information, see the AWS Elastic Beanstalk documentation.

• AWS CloudFormation—Automatically deploys IT infrastructure on AWS using templates. For more
information, see the AWS CloudFormation documentation.

• Amazon CloudWatch— Collects and reports metrics on your AWS resources. For more information,
see the CloudWatch documentation.

In addition to the content above, AWS provides two guides that walk you through the process of hosting
an web application. For more information, see Getting Started with AWS: Web Application Hosting for
Microsoft Windows and Getting Started with AWS: Web Application Hosting for Linux.

79

Amazon AppStream Developer Guide
Publish Your Entitlement Service

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/elasticbeanstalk/
http://aws.amazon.com/documentation/cloudformation/
http://aws.amazon.com/documentation/cloudwatch/
http://docs.aws.amazon.com/gettingstarted/latest/wah/web-app-hosting-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/wah/web-app-hosting-intro.html
http://docs.aws.amazon.com/gettingstarted/latest/wah-linux/web-app-hosting-intro.html

Sample Entitlement Request and Response
When a client attempts to connect to your application, it sends an HTTP request to your entitlement
service. In the request, the client transmits an application identifier and a set of user credentials.Your
entitlement service attempts to authenticate the user credentials and to authorize those credentials for
the application. If the credentials are successfully authorized, your entitlement service returns a response
indicating success that contains the entitlement URL that the client will use to connect to the application.

If authorization is not successful, your entitlement service returns a response that should include some
indication of the reason authorization was not granted. Clients should include logic to gracefully handle
failed authorizations.

Example Request from the Client

The following shows an example of the HTTP headers and JSON body of a request sent from the client
to an entitlement service. It includes user credentials and an application ID.

POST /api/entitlements/5565ba3a-7e75-4bce-baad-436843ad209e HTTP/1.1
User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8y
 zlib/1.2.5
Host: localhost:8080
Accept: */*
Authorization:Username myUserId
Content-Length: 0
Content-Type: application/x-www-form-urlencoded

Example Response from the Entitlement Service

The following shows an example of the HTTP headers and JSON body of a response sent from the
entitlement service to a client.This illustrates an successful client authorization and returns an entitlement
URL.

HTTP/1.1 201 Created
Content-Type: text/plain
Date: Fri, 01 Nov 2013 19:23:43 GMT
Content-Length: 97
Server: Jetty(9.0.6.v20130930)
https://appstream.us-east-1.amazonaws.com/entitlements/e018add2-242e-4396-8e47-
ca5cd1a6060b

Build a Client
The client application renders the video and audio stream from the application on a device. The client
application also sends the input on the device to the application. This section provides guidelines on
building client applications for the different platforms. The Amazon AppStream SDK includes both
pre-compiled clients and sample code that you can compile into a client application. This section has
excerpts from those samples.

Topics

• Design Considerations (p. 81)

• Build a Client for Android (p. 81)

80

Amazon AppStream Developer Guide
Sample Entitlement Request and Response

• Build a Client for iOS (p. 89)

• Build a Client for OS X (p. 101)

• Build a Client for Windows (p. 112)

• Codec and Open Source Licensing (p. 121)

Design Considerations for Your Clients
When creating your client, take into account the following:

• Resolution differences between the application and the device.Your application may be designed
for an resolution that is different from the resolution of your client. Consider how you will deal with that
discrepancy. the resolution difference is especially important if the client will send inputs at a high
precision to the application. An example of high precision input is if you are editing bitmap graphics at
the pixel level.

• Applications can have more mouse events that the client has input events. Amazon AppStream
interprets events from the client as key or mouse events. However, the number of device input events
are less than available mouse events. If your application handles mouse events that do not have
corresponding device events, you will need to design for those discrepancies.

Build a Client for Android
The Amazon AppStream SDK provides libraries that you build into your client to receive and decode
video and audio from the application and send device inputs and raw inputs to the application.

The following object classes are provided by the client libraries in the Amazon AppStream SDK.

DescriptionClass

This class manages client sessions between clients and
applications.

AppStreamInterface

This class creates sessions between clients and applications.ConnectDialogFragment

This class is for use with the entitlement service.DesQuery

This class is to display messages.ErrorDialogFragment

This class is for the video in the client.GL2JNIView

This class is for the client interface.SampleClientActivity

Your client implements and populate the following structures in order to receive session and application
events.

DescriptionInterface

Receives callbacks from a client.ConnectDialogListener

Receives callbacks from the entitlement serviceDesQueryListener

81

Amazon AppStream Developer Guide
Design Considerations

Lifecycle of a Client for Android
Your client communicates with the application on Amazon AppStream through libraries of the Amazon
AppStream SDK.

The lifecycle of a client for Android is as follows:

1. Request authorization from the entitlement service to connect to the application. The entitlement
service will return the URL to connect to your application.

2. Connect to the application. The object manages the session between the client and the application.

3. Send client inputs to the application.

4. Close the client.

Build the Sample Client for Android
The Amazon AppStream SDK contains source code that you can build into a sample client file. To learn
how to build the source code, see the \doc directory.

Choose a Color Subsampling Rate
Amazon AppStream streams the video at the YUV420 color subsampling rate to client applications. If
your streaming application, client application and device support YUV444, you can set your client application
to display the video at YUV444. The example client application in Amazon AppStream SDK is configured
to accept and render a stream in the YUV444 color subsampling rate.

When the client application connects to the streaming application, Amazon AppStream compares the
color subsampling options available on the client application with the options advertised on the streaming
application. Amazon AppStream then selects the highest color resolution supported by both the client
application and streaming application. Amazon AppStream then calls the
XStxIClientListener2FcnSetConfiguration callback function that the client application supplied
and passes the structure with the XStxChromaSampling setting.

The following excerpt from AndroidVideoDecoder.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\android\jni directory.

/**
 * Provide Chroma sampling capability.
 */
bool AndroidVideoDecoder::isChromaSamplingSupported(XStxChromaSampling chro
maSampling)
{
 // If we have hardware, then ask the hardware whether we have
XSTX_H264_PROFILE_HIGH444.
 // If not, then we fall back to 420.
 if (androidHWDecodeAvailable() && (androidGetProfile()!=XSTX_H264_PRO
FILE_HIGH444))
 {
 return chromaSampling == XSTX_CHROMA_SAMPLING_YUV420;
 }
 else
 {
 return chromaSampling == XSTX_CHROMA_SAMPLING_YUV420
 || chromaSampling == XSTX_CHROMA_SAMPLING_YUV444;

82

Amazon AppStream Developer Guide
Build a Client for Android

 }
}

The following excerpt from VideoPipeline.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\android\jni directory.

decoderCapabilities->mProfile = XSTX_H264_PROFILE_HIGH444;

Get Authorization to Connect to Your Application
The first activity in your client is to get the Entitlement URL from the endpoint of the entitlement service.
The entitlement service needs information in order to provide the Entitlement URL.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the makeQuery method of DesQuery.java.

public void makeQuery(String address, final String appid, final String userid)
 {

 if (!address.startsWith("http"))
 {
 address = "http://" + address;
 }

 if (!address.endsWith("/"))
 {
 address += "/";
 }

 // if there's no path, add api/entitlements/
 if (!address.matches("http[s]?://.+/.+"))
 {
 address += "api/entitlements/";
 }

 final String cleanAddress = address;

 Thread httpThread = new Thread() {

 @Override
 public void run() {
 HttpParams httpParameters = new BasicHttpParams();

 // timeout for a connection in ms
 HttpConnectionParams.setConnectionTimeout(httpParameters, 1200);

 // timeout when waiting for data
 HttpConnectionParams.setSoTimeout(httpParameters, 1500);

 HttpClient client = new DefaultHttpClient();
 HttpPost request = new HttpPost();
 String queryURL = cleanAddress+appid;
 try {

83

Amazon AppStream Developer Guide
Build a Client for Android

 request.setURI(new URI(queryURL));
 } catch (URISyntaxException e) {

 sendError("Either address or appid isn't in the correct format. Generated
URL:"+queryURL+" Error:"+e.getLocalizedMessage());
 return;
 }
 request.setHeader("Authorization", "Username"+userid);
 request.setHeader("Content-Type", "application/x-www-form-urlencoded"
);

 List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(1);

 nameValuePairs.add(new BasicNameValuePair("terminatePrevious", "true"));

 String entitlementResult = null;
 try {
 request.setEntity(new UrlEncodedFormEntity(nameValuePairs));
 HttpResponse response = client.execute(request);
 if (response.getStatusLine().getStatusCode()<200 || response.get
StatusLine().getStatusCode()>201)
 {
 if (response.getStatusLine().getStatusCode()==503) {
 sendError("All of our streaming servers are currently in use. Please try
 again in a few minutes. [503]");
 } else if (response.getStatusLine().getStatusCode()==404) {
 sendError("The link to the streaming server has expired. [404]");
 } else {
 sendError("Query failed with response: "+response.getStatusLine());
 }
 return;
 }

 BufferedReader result =
 new BufferedReader(
 new InputStreamReader(
 response.getEntity().getContent()
)
);

 final String url = result.readLine().trim();
 Log.v(TAG,"Resulting URL: "+url);
 result.close();

 HttpGet entitlementRequest = new HttpGet(url);
 response = client.execute(entitlementRequest);

 result = new BufferedReader(
 new InputStreamReader(
 response.getEntity().getContent()
)
);

 StringBuilder buffer = new StringBuilder(1024);

 char[] charBuf = new char[400];
 while (result.read(charBuf,0,400)>0)

84

Amazon AppStream Developer Guide
Build a Client for Android

 {
 buffer.append(charBuf);
 }

 entitlementResult = buffer.toString();

 JSONObject object = (JSONObject) new JSONTokener(entitlementResult).next
Value();
 final String sessionID = object.optString("sessionID");
 final String ec2Host = object.optString("ec2Host");

 if (sessionID==null || ec2Host==null)
 {
 final String message = object.optString("message");
 if (message!=null)
 {
 sendError("Entitlement query failed with response: "+message+"["+re
sponse.getStatusLine()+"]");
 return;
 }
 sendError("Error parsing entitlement result: "+entitlementResult);
 return;
 }

 mActivity.runOnUiThread(new Runnable(){
 @Override
 public void run() {
 String url =
 String.format(Locale.US,"%s:80?sessionId=%s",ec2Host,sessionID);

 Log.v(TAG,"Sending host url "+url);
 mListener.onDesQuerySuccess(url);
 }});

 } catch (ClientProtocolException e) {
 sendError("Protocol Exception: "+e.getLocalizedMessage());

 } catch (IOException e) {
 sendError("Problem With Connection: "+e.getLocalizedMessage());

 } catch (JSONException e) {
 sendError("Error reading entitlement result: "+e.getLocalizedMessage()+"
Result: "+entitlementResult);
 }
 }
 };

 httpThread.start();
}

The function is successful when the entitlement service calls a callback function with the Entitlement URL
to start the session with the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates the callback
function is called to connect the client to the application. The excerpt is from the onDesQuerySuccess
method of SampleClietActivity.java.

85

Amazon AppStream Developer Guide
Build a Client for Android

public void onDesQuerySuccess(String address) {
 AppStreamInterface.connect(address);
 AppStreamInterface.newFrame();
}

Send Your Client Inputs to Your Application
The client sends inputs to the application through several methods, depending on the input type.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a method that
sends motion inputs to the application.The excerpt is from the dispatchGenericMotionEvent method
in SampleClientActivity.java.

public boolean dispatchGenericMotionEvent (MotionEvent event) {
 if (event.getSource()==InputDevice.SOURCE_MOUSE)
 {
 event.getPointerCoords(0, mCoordHolder);
 switch (event.getAction())
 {
 case MotionEvent.ACTION_HOVER_MOVE :
 AppStreamInterface.mouseEvent((int)mCoordHolder.x,(int)mCoordHolder.y,
0); break;

 default:
 return super.dispatchGenericMotionEvent(event);
 }
 return true;
 }
 else if (event.getSource()==InputDevice.SOURCE_JOYSTICK
 && event.getAction() == MotionEvent.ACTION_MOVE) {
 Log.v(TAG,"Joystick event:"+event.toString());
 /// @todo: Handle motion event
 return true;
 }

 return super.dispatchGenericMotionEvent(event);
}

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a method that
sends touch inputs to the application. The excerpt is from the dispatchTouchEvent method in
SampleClientActivity.java.

public boolean dispatchTouchEvent (MotionEvent event) {

 if (mScaleGestureDetector.onTouchEvent(event))
 {
 if (mScaleGestureDetector.isInProgress())
 return true;
 }

 int flags = 0;
 if (event.getSource()==InputDevice.SOURCE_TOUCHSCREEN)

86

Amazon AppStream Developer Guide
Build a Client for Android

 {
 flags = AppStreamInterface.CET_TOUCH_FLAG ;
 }

 event.getPointerCoords(0, mCoordHolder);
 switch (event.getAction())
 {
 case MotionEvent.ACTION_MOVE :
 AppStreamInterface.mouseEvent((int)mCoordHolder.x,(int)mCoordHold
er.y, flags); break;
 case MotionEvent.ACTION_DOWN :
 AppStreamInterface.mouseEvent((int)mCoordHolder.x,(int)mCoordHold
er.y, AppStreamInterface.CET_MOUSE_1_DOWN|flags); break;
 case MotionEvent.ACTION_UP :
 AppStreamInterface.mouseEvent((int)mCoordHolder.x,(int)mCoordHold
er.y, AppStreamInterface.CET_MOUSE_1_UP|flags);
 AppStreamInterface.mouseEvent((int)-1000,(int)-1000, flags); break;

 default:
 return super.dispatchGenericMotionEvent(event);
 }
 return super.dispatchTouchEvent(event);
}

The following excerpt from the sample client in the Amazon AppStream SDK illustrates methods that
sends key inputs to the application. The excerpt is from SampleClientActivity.java.

private void onKey(KeyEvent msg, boolean down)
{
 int keyCode =msg.getKeyCode();
 switch (keyCode)
 {
 case KeyEvent.KEYCODE_DPAD_RIGHT :
 AppStreamInterface.keyPress(0x27,down); break;
 case KeyEvent.KEYCODE_DPAD_LEFT :
 AppStreamInterface.keyPress(0x25,down); break;
 case KeyEvent.KEYCODE_DPAD_UP :
 AppStreamInterface.keyPress(0x26,down); break;
 case KeyEvent.KEYCODE_DPAD_DOWN :
 AppStreamInterface.keyPress(0x28,down); break;
 case KeyEvent.KEYCODE_FORWARD_DEL:
 AppStreamInterface.keyPress(0x2E,down); break;
 case KeyEvent.KEYCODE_DEL:
 AppStreamInterface.keyPress(0x08,down); break;
 case KeyEvent.KEYCODE_ALT_LEFT:
 AppStreamInterface.keyPress(0x12,down);
 AppStreamInterface.keyPress(0xA4,down); break;
 case KeyEvent.KEYCODE_ALT_RIGHT:
 AppStreamInterface.keyPress(0x12,down);
 AppStreamInterface.keyPress(0xA5,down); break;
 case KeyEvent.KEYCODE_CTRL_LEFT:
 AppStreamInterface.keyPress(0x11,down);
 AppStreamInterface.keyPress(0xA2,down); break;
 case KeyEvent.KEYCODE_CTRL_RIGHT:
 AppStreamInterface.keyPress(0x11,down);

87

Amazon AppStream Developer Guide
Build a Client for Android

 AppStreamInterface.keyPress(0xA3,down); break;
 case KeyEvent.KEYCODE_SHIFT_LEFT:
 AppStreamInterface.keyPress(0x10,down);
 AppStreamInterface.keyPress(0xA0,down); break;
 case KeyEvent.KEYCODE_SHIFT_RIGHT:
 AppStreamInterface.keyPress(0x10,down);
 AppStreamInterface.keyPress(0xA1,down); break;
 case KeyEvent.KEYCODE_APOSTROPHE:
 AppStreamInterface.keyPress('\'',down); break;
 case KeyEvent.KEYCODE_AT:
 AppStreamInterface.keyPress('@',down); break;
 case KeyEvent.KEYCODE_ENTER:
 AppStreamInterface.keyPress(0x0D,down); break;
 case KeyEvent.KEYCODE_BREAK:
 AppStreamInterface.keyPress(0x03,down); break;
 case KeyEvent.KEYCODE_VOLUME_UP:
 AppStreamInterface.keyPress(0xAF,down); break;
 case KeyEvent.KEYCODE_VOLUME_DOWN:
 AppStreamInterface.keyPress(0xAE,down); break;
 case KeyEvent.KEYCODE_MEDIA_NEXT:
 AppStreamInterface.keyPress(0xB0,down); break;
 case KeyEvent.KEYCODE_MEDIA_PREVIOUS:
 AppStreamInterface.keyPress(0xB1,down); break;
 case KeyEvent.KEYCODE_MEDIA_STOP:
 AppStreamInterface.keyPress(0xB2,down); break;
 case KeyEvent.KEYCODE_MEDIA_PLAY:
 AppStreamInterface.keyPress(0xFA,down); break;
 case KeyEvent.KEYCODE_MEDIA_PLAY_PAUSE:
 AppStreamInterface.keyPress(0xB3,down); break;
 case KeyEvent.KEYCODE_ESCAPE:
 case KeyEvent.KEYCODE_BACK:
 AppStreamInterface.keyPress(0x1b,down); break;

 default:
 {
 String key = new String(Character.toString((char)msg.getUnico
deChar()));

 keyCode = key.toUpperCase(Locale.US).codePointAt(0);
 AppStreamInterface.keyPress(keyCode,down);
 }
 }
}

@Override
public boolean onKeyDown(int keyCode, KeyEvent msg) {
 onKey(msg,true);
 return super.onKeyDown(keyCode, msg);
}

@Override
public boolean onKeyUp(int keyCode, KeyEvent msg) {
 onKey(msg,false);
 return super.onKeyUp(keyCode, msg);
}

88

Amazon AppStream Developer Guide
Build a Client for Android

Build a Client for iOS
The Amazon AppStream SDK provides client libraries that you build into your client to receive and decode
video and audio from the application and send device inputs and raw inputs to the application.

The following object classes are provided by the client libraries in the Amazon AppStream SDK.

DescriptionClass

The top level object of the client libraries.Your client uses
this object to ensure that it is calling into the version of the
libraries it was compiled against and to create the
XStxClient object.

XStxClientLibrary

This object manages client sessions and sends events to your
application when Amazon AppStream assigns your application
a client session or terminates a client session.

XStxClient

Your client implements and populate the following structures in order to receive session and application
events.

DescriptionInterface

Receives callbacks from a client.XStxIClientListener

Receives and decodes the video frame.XStxIVideoDecoder

Renders the video frame.XStxIVideoRenderer

Receives and recycles the video frame.XStxIRawVideoFrameAllocator

Receives and decodes the audio frame.XStxIAudioDecoder

Renders the audio frame.XStxIAudioRenderer

Receives and recycles the audio frame.XStxIRawAudioFrameAllocator

Lifecycle of a Client for iOS
Your client communicates with the application on Amazon AppStream through libraries of the Amazon
AppStream SDK.

The lifecycle of a client is as follows:

1. Create the XStxClientLibraryHandle object by calling the XStxClientLibraryCreate
function to return a clientLibraryHandle. The object interacts with the client side portion of
the API through the clientLibraryHandle.

2. Create the XStxClient object by calling the XStxClientCreate function to return a
XStxClientHandle client handle. The object manages the session between the client and the
application.

3. Instantiate and populate the XStxIClientListener structure. This object responds to the
callback functions from the application when a session is established between the client and the
application. After populating the listener structure, call the XStxClientSetListener function with
the client handle and a pointer to the XStxIClientListener structure.

4. Initialize a video module to get, decode, and render the video frames. To initialize this module,
the client has to instantiate the following structures:

89

Amazon AppStream Developer Guide
Build a Client for iOS

• XStxIVideoDecoder Gets and decodes the video frame.

• XStxIVideoRenderer Renders the video frame.

• XStxIRawVideoFrameAllocator Gets and recycles the video frame.

5. Initialize an audio module to get, decode, and render the audio frames. To initialize this module,
the client has to instantiate the following structures:

• XStxIAudioDecoder Gets and decodes the audio frame.

• XStxIAudioRenderer Renders the audio frame.

• XStxIRawAudioFrameAllocator Gets and recycles the audio frame.

6. Configure a session between the client and application. Call the
XStxClientSetEntitlementUrl function with the endpoint of the entitlement service to configure
this session.

7. Call the XStxClientStart function to start the session. Once the session is established, the
XStxClient object will invoke the XStxIClientListenerFcnClientReady function on the
XStxIClientListener structure.You can then call the xStxClientLibraryRecycle function
to recycle the client library handle.

8. The client sends user inputs to the application

9. The client closes the session.

Build the Sample Client for iOS
The Amazon AppStream SDK contains source code that you can build into a sample client file. To learn
how to build the source code, see the \doc directory.

Create Your Client
To create a client, create an XStxClientLibraryHandle object by using the
XStxClientLibraryCreate function. The XStxClientLibraryHandle object is the top level object
that you will use to interact with the libraries you will use to connect to sessions, render the audio and
video, and send inputs to the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the initXStxClient function of AppStreamSampleClientViewController.m.

-(XStxResult) initXStxClient
{
 XStxResult createResult = XSTX_RESULT_OK;

 /// create Singleton of client library handle
 createResult = XStxClientLibraryCreate(XSTX_CLIENT_API_VERSION_MAJOR,
 XSTX_CLIENT_API_VERSION_MINOR,
&mClientLibraryHandle);

 if (createResult != XSTX_RESULT_OK)
 {
 [self printResult:createResult withMessage:@"XStxClientLibraryCreate
failed"];
 return createResult;

90

Amazon AppStream Developer Guide
Build a Client for iOS

 }

 return XSTX_RESULT_OK;
}

The function creates a client library handle (clientLibraryHandle) that the client will use to create a
client object. The client then creates a client object by calling the
XStxClientCreate(mClientLibraryHandle function with the client library handle. The function
returns a handle to the client.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the connectXStxClient function of AppStreamSampleClientViewController.m.

// Create a XStx Client instance
result = XStxClientCreate(mClientLibraryHandle, &mClientHandle);
if (result != XSTX_RESULT_OK)
{
 [self printResult:result withMessage:@"XStxClientCreate failed"];
 return;
}

The client object needs a structure to respond to the callback functions from the application. The client
creates and populates this structure.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the H264ToYuv::init function of H264to Yuv.cpp.

/** initialize */
XStxResult H264ToYuv::init()
{

 AvHelper::initialize();

 AVCodec *codec = avcodec_find_decoder(CODEC_ID_H264);
 if(NULL == codec)
 {
 return XSTX_RESULT_AUDIO_DECODER_NULL;
 }

 mCodecContext = avcodec_alloc_context3(codec);
 if(NULL == mCodecContext)
 {
 return XSTX_RESULT_VIDEO_DECODING_ERROR;
 }

 mCodecContext->codec_type = AVMEDIA_TYPE_VIDEO;
 mCodecContext->codec_id = CODEC_ID_H264;
 mCodecContext->pix_fmt = PIX_FMT_YUV420P;

 if(avcodec_open2(mCodecContext, codec,NULL) < 0)
 {
 return XSTX_RESULT_VIDEO_DECODING_ERROR;
 }

91

Amazon AppStream Developer Guide
Build a Client for iOS

 av_init_packet(&mAvPacket);

 return XSTX_RESULT_OK;
}

After populating the structure, call a function to configure a listener for callback functions.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the clientReady function of AppStreamSampleClientViewController.m.

// start a client listener
if ((result = XStxClientSetListener(mClientHandle, &mClientListener))
 != XSTX_RESULT_OK)
{
 [self printResult:result withMessage:@"XStxClientSetListener failed"];
 return;
}

The client uses structures to get, render, and decode video and audio frames.. The next step is to create
and populate these structures.The sample client instantiates a class to create and populate the structures.

To handle a video frame, the client create and populate the following structures defined in VideoModule.h:

• XStxIVideoDecoder. Used to get and decode a video frame.

• XStxIVideoRenderer. Used to render a video frame.

• XStxIRawVideoFrameAllocator. Used to get and recycle a video frame.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for video. The excerpt is from VideoModule.m.

bool VideoModule::initialize(XStxClientHandle mClientHandle,
 VideoDecoder* decoder, GLKView & rw)
{
 // initialize frame allocator

 if(decoder == nil)
 {
 return false;
 }

 mDecoder = decoder;

 mStxFrameAllocator.mInitFcn = &allocatorInit;
 mStxFrameAllocator.mInitCtx = this;
 mStxFrameAllocator.mGetVideoFrameBufferFcn = &allocatorGetFrame;
 mStxFrameAllocator.mGetVideoFrameBufferCtx = this;
 mStxFrameAllocator.mRecycleVideoFrameBufferFcn = &allocatorRecycleFrame;
 mStxFrameAllocator.mRecycleVideoFrameBufferCtx = this;
 mStxFrameAllocator.mSize = sizeof(mStxFrameAllocator);
 if (XStxClientSetVideoFrameAllocator(mClientHandle, &mStxFrameAllocator)
 != XSTX_RESULT_OK)
 {

92

Amazon AppStream Developer Guide
Build a Client for iOS

 printf("Failed to SetVideoFrameAllocator.\n");
 return false;
 }

 mRenderer = &rw;

 mStxRenderer.mRenderVideoFrameFcn = &renderFrame;
 mStxRenderer.mRenderVideoFrameCtx = this;
 mStxRenderer.mSetMaxResolutionFcn = &rendererMaxResolution;
 mStxRenderer.mSetMaxResolutionCtx = this;
 mStxRenderer.mSize = sizeof(mStxRenderer);
 if (XStxClientSetVideoRenderer(mClientHandle, &mStxRenderer)
 != XSTX_RESULT_OK)
 {
 printf("Failed to set VideoRenderer.\n");
 return false;
 }

 ((GLViewManager *)mRenderer.delegate).decodeType = mDecoder->getDecodeType();

 mStxDecoder.mGetCapabilitiesCtx = mDecoder;
 mStxDecoder.mGetCapabilitiesFcn = &videoDecoderGetCapabilities;
 mStxDecoder.mDecodeVideoFrameFcn = &decodeFrame;
 mStxDecoder.mDecodeVideoFrameCtx = mDecoder;
 mStxDecoder.mStartFcn = &videoDecoderStart;
 mStxDecoder.mStartCtx = mDecoder;
 mStxDecoder.mSize = sizeof(mStxDecoder);
 if (XStxClientSetVideoDecoder(mClientHandle, &mStxDecoder)
 != XSTX_RESULT_OK)
 {
 printf("Failed to set SetVideoDecoder.\n");
 return false;
 }
 return true;
}

To handle an audio frame, the client create and populate the following structures defined in
AudioModule.h:

• XStxIAudioDecoder. Used to get and decode an audio frame.

• XStxIAudioRenderer. Used to render an audio frame.

• XStxIRawAudioFrameAllocator. Used to get and recycle an audio frame.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for audio. The excerpt is from AudioModule.m.

/**
 * Initialize audio module
 * @param[in] clientHandle handle to XStx client
 */
bool AudioModule::initialize(XStxClientHandle clientHandle)

93

Amazon AppStream Developer Guide
Build a Client for iOS

{
 mStxFrameAllocator.mInitFcn = &allocatorInit;
 mStxFrameAllocator.mInitCtx = this;
 mStxFrameAllocator.mGetAudioFrameBufferFcn = &allocatorGetFrame;
 mStxFrameAllocator.mGetAudioFrameBufferCtx = this;
 mStxFrameAllocator.mRecycleAudioFrameBufferFcn = &allocatorRecycleFrame;
 mStxFrameAllocator.mRecycleAudioFrameBufferCtx = this;
 mStxFrameAllocator.mSize = sizeof(mStxFrameAllocator);

 if (XStxClientSetAudioFrameAllocator(clientHandle, &mStxFrameAllocator)
 != XSTX_RESULT_OK)
 {
 printf("XStxClientSetAudioFrameAllocator() failed.\n");
 return false;
 }

 // initialize decoder
 mDecoder = new (std::nothrow) OpusToPcm();
 if (!mDecoder)
 {
 printf("Failed to create audio decoder.\n");
 return false;
 }

 mStxDecoder.mStartFcn = &decoderStart;
 mStxDecoder.mStartCtx = mDecoder;
 mStxDecoder.mDecodeAudioFrameFcn = &decoderDecodeFrame;
 mStxDecoder.mDecodeAudioFrameCtx = mDecoder;
 mStxDecoder.mSize = sizeof(mStxDecoder);
 if (XStxClientSetAudioDecoder(clientHandle, &mStxDecoder)
 != XSTX_RESULT_OK)
 {
 printf("XStxClientSetAudioDecoder() failed.\n");
 return false;
 }

 // initialize renderer
 mRenderer = new (std::nothrow) AudioRenderer(mFramePool,
 clientHandle);
 if (!mRenderer)
 {
 return false;
 }
 mStxRenderer.mStartFcn = &start;
 mStxRenderer.mStartCtx = mRenderer;
 mStxRenderer.mSize = sizeof(mStxRenderer);
 if (XStxClientSetAudioRenderer(clientHandle, &mStxRenderer)
 != XSTX_RESULT_OK)
 {
 printf("XStxClientSetAudioRenderer() failed. \n");
 return false;
 }

 return true;
}

The client is now ready to configure and start a session with the application. The client configures a
session by calling a function with the Entitlement URL.

94

Amazon AppStream Developer Guide
Build a Client for iOS

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the connectXStxClient function in AppStreamSampleClientViewController.m.

if ((result = XStxClientSetEntitlementUrl(mClientHandle, [url UTF8String]))
 != XSTX_RESULT_OK)
 {
 [self printResult:result withMessage:@"XStxClientSetEntitlementUrl
failed"];
 return;
 }

The client starts a session by calling the XStxClientStart function.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the connectXStxClient function in AppStreamSampleClientViewController.m.

 // this method is non-blocking
 // defer XStxClientLibraryRecycle call for unload methods
 if ((result = XStxClientStart(mClientHandle)) != XSTX_RESULT_OK)
 {
 [self printResult:result withMessage:@"XStxClientStart failed"];
 return;
 }

 NSString *message = [NSString stringWithFormat:@"STX client initialized.
Connecting to %@:",url];
 [self printResult:result withMessage:message];

 [self hideBackground];
 [self setupInputs];

Choose a Color Subsampling Rate
Amazon AppStream streams the video at the YUV420 color subsampling rate to client applications. If
your streaming application, client application and device support YUV444, you can set your client application
to display the video at YUV444. The example client application in Amazon AppStream SDK is configured
to accept and render a stream in the YUV444 color subsampling rate.

When the client application connects to the streaming application, Amazon AppStream compares the
color subsampling options available on the client application with the options advertised on the streaming
application. Amazon AppStream then selects the highest color resolution supported by both the client
application and streaming application. Amazon AppStream then calls the
XStxIClientListener2FcnSetConfiguration callback function that the client application supplied
and passes the structure with the XStxChromaSampling setting.

The following excerpt from H264ToYUV.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\apple\ios directory.

bool H264ToYuv::isChromaSamplingSupported(XStxChromaSampling chromaSampling)
{
 return chromaSampling == XSTX_CHROMA_SAMPLING_YUV420

95

Amazon AppStream Developer Guide
Build a Client for iOS

 || chromaSampling == XSTX_CHROMA_SAMPLING_YUV444;
}

The following excerpt from VideoPipeline.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\apple\ios directory.

decoderCapabilities->mProfile = XSTX_H264_PROFILE_HIGH444;

Send Your Client Inputs to the Application
The client can send key, and touch inputs to the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates how keyboard
events are handled. The excerpt is from the setupInputs function of
AppStreamSampleClientViewController.m.

-(void) setupInputs
{
 // KEYBOARD EVENTS -- pass through iOS key presses

 CGFloat y = 30.0f;

 // add a button for keyboard input
 UIButton *kbbutton = [UIButton buttonWithType:UIButtonTypeCustom];
 [kbbutton addTarget:self action:@selector(toggleKeyboard:) forContro
lEvents:UIControlEventTouchUpInside];
 CGFloat buttonWidth = 72.0f;
 kbbutton.frame = CGRectMake(self.view.bounds.size.width-buttonWidth,
 y,buttonWidth,buttonWidth);
 [kbbutton setImage:[UIImage imageNamed:@"button-keyboard"] forState:UICon
trolStateNormal];
 kbbutton.autoresizingMask = UIViewAutoresizingFlexibleBottomMar
gin|UIViewAutoresizingFlexibleLeftMargin;
 [self.view addSubview:kbbutton];

 // add offscreen text field for keyboard input and set delegate
 // note: text field is off screen to hide input from user
 mInputText = [[UITextField alloc]initWithFrame:CGRectMake(-500,-500,100,20)];

 [self.view addSubview:mInputText];
 mInputText.delegate = self;

 /// SENDING TOUCH AS MOUSE EVENTS
 mTreatTouchesAsMouse = NO;
 // add a button for mouse input
 UIButton *mousebutton = [UIButton buttonWithType:UIButtonTypeCustom];
 [mousebutton addTarget:self action:@selector(toggleMouse:) forContro
lEvents:UIControlEventTouchUpInside];
 mousebutton.frame = CGRectMake(self.view.bounds.size.width-(buttonWidth*2),

 y,buttonWidth,buttonWidth);
 [mousebutton setImage:[UIImage imageNamed:@"button-mouse"] forState:UICon
trolStateNormal];

96

Amazon AppStream Developer Guide
Build a Client for iOS

 mousebutton.autoresizingMask = UIViewAutoresizingFlexibleBottomMar
gin|UIViewAutoresizingFlexibleLeftMargin;
 [self.view addSubview:mousebutton];

 mShouldTrackGesture = false;
 UIButton *handbutton = [UIButton buttonWithType:UIButtonTypeCustom];
 [handbutton addTarget:self action:@selector(toggleGesture:) forContro
lEvents:UIControlEventTouchUpInside];
 handbutton.frame = CGRectMake(self.view.bounds.size.width-(buttonWidth*3),

 y,buttonWidth,buttonWidth);
 [handbutton setImage:[UIImage imageNamed:@"button-hand"] forState:UIControl
StateNormal];
 handbutton.autoresizingMask = UIViewAutoresizingFlexibleBottomMar
gin|UIViewAutoresizingFlexibleLeftMargin;
 [self.view addSubview:handbutton];

 mPanGestureRecognizer = [[UIPanGestureRecognizer alloc]initWithTarget:self
 action:@selector(handlePanGesture:)];
 mPanGestureRecognizer.enabled = false;
 [self.view addGestureRecognizer:mPanGestureRecognizer];
}

The following excerpt from the sample client in the Amazon AppStream SDK illustrates how gesture
events are handled. The excerpt is from the handlePanGesture function of
AppStreamSampleClientViewController.m.

void) handlePanGesture:(UIPanGestureRecognizer*) gestureRecognizer
{

 CGPoint location = [gestureRecognizer locationInView:self.view];

 NSString *jsonString = [NSString stringWith
Format:@"{\"state\":\"%d\",\"xy\":[%.2f,%.2f]}",gestureRecognizer.state,loca
tion.x, location.y];

 switch (gestureRecognizer.state) {
 case UIGestureRecognizerStateEnded:
 [self showStatus:@""];
 break;
 case UIGestureRecognizerStatePossible:
 case UIGestureRecognizerStateBegan:
 case UIGestureRecognizerStateChanged:
 case UIGestureRecognizerStateFailed:
 case UIGestureRecognizerStateCancelled:
 default:
 [self sendRawInput:jsonString];
 break;
 }

}

Touch events are handled as mouse events.

97

Amazon AppStream Developer Guide
Build a Client for iOS

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from AppStreamSampleClientViewController.m.

// In this example we send the touch events as mouse input
-(void) toggleMouse:(UIButton*)sender
{
 if(mShouldTrackGesture)
 {
 mShouldTrackGesture = false;
 mPanGestureRecognizer.enabled = false;
 mTreatTouchesAsMouse = true;

 } else {

 if(mTreatTouchesAsMouse)
 {
 mTreatTouchesAsMouse = false;
 [self showStatus:@"touches passed as touches"];
 }
 else
 {
 mTreatTouchesAsMouse = true;
 [self showStatus:@"mouse input emulated by touch "];
 }
 }
}

#pragma mark UIResponder touch methods

-(void) touchesBegan:(NSSet *)touches withEvent:(UIEvent *)event
{
 if (!mTreatTouchesAsMouse)
 {
 [self sendTouchEvent: XSTX_TOUCH_DOWN withTouches: touches withEvent:
event];
 return;
 }

 UITouch *touch = [touches anyObject];
 [self sendMouseEvent:[touch locationInView:self.view] flags:RI_MOUSE_BUT
TON_1_DOWN];
}

-(void) touchesCancelled:(NSSet *)touches withEvent:(UIEvent *)event
{
 //When passing touches as touches we need to separate out touch_cancelled
 if (!mTreatTouchesAsMouse)
 {
 [self sendTouchEvent: XSTX_TOUCH_CANCELLED withTouches: touches
withEvent: event];
 return;
 }
 //Handle touchesCancelled exactly like touchesEnded
 [self touchesEnded:touches withEvent:event];
}

-(void) touchesEnded:(NSSet *)touches withEvent:(UIEvent *)event

98

Amazon AppStream Developer Guide
Build a Client for iOS

{
 if (!mTreatTouchesAsMouse)
 {
 [self sendTouchEvent: XSTX_TOUCH_UP withTouches: touches withEvent:
event];
 return;
 }

 UITouch *touch = [touches anyObject];
 [self sendMouseEvent:[touch locationInView:self.view] flags:RI_MOUSE_BUT
TON_1_UP];
 //After the mouseUp move the mouse way offscreen to prevent any unwanted
mouse hover effects
 [self sendMouseEvent:CGPointMake(-10000, -10000) flags:0];

 // clear status
 [self showStatus:@""];

}

-(void) touchesMoved:(NSSet *)touches withEvent:(UIEvent *)event
{
 if (!mTreatTouchesAsMouse)
 {
 [self sendTouchEvent: XSTX_TOUCH_MOVE withTouches: touches withEvent:
event];
 return;
 }

 UITouch *touch = [touches anyObject];
 [self sendMouseEvent:[touch locationInView:self.view] flags:0];
}

#pragma mark XStx touch event handling

-(void) sendTouchEvent: (XStxTouchType) theType withTouches: (NSSet *) touches
 withEvent: (UIEvent *) event
{
 if (mWidthScale==0)
 {
 return;
 }

 // here we are just going to emulate the mouse as a touch event,
 // just to demonstrate how to use it
 XStxInputEvent inputEvent;
 inputEvent.mTimestampUs = CACurrentMediaTime() * 1000000.0;
 inputEvent.mUserId = 0;
 inputEvent.mType = XSTX_INPUT_EVENT_TYPE_TOUCH;

 //How many touches we are sending
 inputEvent.mInfo.mTouch.mPointerCount = [touches count];
 //Array to hold the pointer data
 inputEvent.mInfo.mTouch.mPointers = new XStxPointer[[touches count]];

 int currPointer = 0;
 for (UITouch *currTouch in touches) {
 //Convert the touch location from the view to the server coordinates

99

Amazon AppStream Developer Guide
Build a Client for iOS

 CGPoint touchLoc = [currTouch locationInView:self.view];
 //Make sure touchLoc is within the viewport area
 touchLoc = CGPointMake(MIN(MAX(touchLoc.x - mVideoRect.origin.x, 0),
mVideoRect.size.width), MIN(MAX(touchLoc.y - mVideoRect.origin.y, 0), mVideoR
ect.size.height));

 float scaledX = (touchLoc.x * mWidthScale);
 float scaledY = (touchLoc.y * mHeightScale);
 //Use the address of the touchObject as the pointerID
 inputEvent.mInfo.mTouch.mPointers[currPointer].mPointerId =
(uint64_t)currTouch;
 //Set the X & Y
 inputEvent.mInfo.mTouch.mPointers[currPointer].mX = scaledX;
 inputEvent.mInfo.mTouch.mPointers[currPointer].mY = scaledY;
 //No pressure support so always pass 1.0
 inputEvent.mInfo.mTouch.mPointers[currPointer].mPressure = 1.0f;

 inputEvent.mInfo.mTouch.mPointers[currPointer].mTouchType = theType;
 currPointer++;
 }
 inputEvent.mSize = sizeof(inputEvent);
 inputEvent.mDeviceId = 0;

 //Send the touches to the server
 [self sendInput:inputEvent];

 //Clean up the mPointers array
 delete [] inputEvent.mInfo.mTouch.mPointers;
}

// fill out XStxInputEvent struct emulating win32 RAWMOUSE
-(void) sendMouseEvent:(CGPoint) xy flags:(uint32_t)flags
{
 if (mWidthScale==0)
 {
 return;
 }

 //Make sure xy is within the viewport area
 xy = CGPointMake(MIN(MAX(xy.x - mVideoRect.origin.x, 0), mVideoRect.size.width),
 MIN(MAX(xy.y - mVideoRect.origin.y, 0), mVideoRect.size.height));

 int scaledX = (xy.x * mWidthScale);
 int scaledY = (xy.y * mHeightScale);

 XStxInputEvent xstxevent = { 0 };
 xstxevent.mTimestampUs = CACurrentMediaTime() * 1000000.0;
 xstxevent.mType = XSTX_INPUT_EVENT_TYPE_MOUSE;
 xstxevent.mInfo.mMouse.mLastX = scaledX;
 xstxevent.mInfo.mMouse.mLastY = scaledY;
 xstxevent.mInfo.mMouse.mButtonFlags = flags ;
 xstxevent.mInfo.mMouse.mFlags = 1; //absolute, 0 would be relative
 xstxevent.mInfo.mMouse.mButtons = 0;// not needed
 [self sendInput:xstxevent];
 NSString *outputString = [NSString stringWithFormat:@"sending mouse event with
 coordinates:x:%i y:%i",scaledX,scaledY];
 [self showStatus:outputString];
}

100

Amazon AppStream Developer Guide
Build a Client for iOS

Terminate Your Client
The client ends the session by calling the XStxClientLibraryRecycle function and then free the
resources.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the recycleXStxClient and dealloc functions of
AppStreamSampleClientViewController.m.

-(void) recycleXStxClient
{
 XStxClientLibraryRecycle(mClientLibraryHandle);
}

// clean up
-(void) dealloc {
 [[NSNotificationCenter defaultCenter] removeObserver:self];
 [self recycleXStxClient];
}

Build a Client for OS X
The Amazon AppStream SDK provides client libraries that you build into your client to receive and decode
video and audio from the application and send device inputs and raw inputs to the application.

The following object classes are provided by the client libraries in the Amazon AppStream SDK.

DescriptionClass

The top level object of the client libraries.Your client uses
this object to ensure that it is calling into the version of the
libraries it was compiled against and to create the
XStxClient object.

XStxClientLibrary

This object manages client sessions and sends events to your
application when Amazon AppStream assigns your application
a client session or terminates a client session.

XStxClient

Your client implements and populates the following structures in order to receive session and application
events.

DescriptionInterface

Receives callbacks from a client.XStxIClientListener

Receives and decodes the video frame.XStxIVideoDecoder

Renders the video frame.XStxIVideoRenderer

Receives and recycles the video frame.XStxIRawVideoFrameAllocator

Receives and decodes the audio frame.XStxIAudioDecoder

Renders the audio frame.XStxIAudioRenderer

101

Amazon AppStream Developer Guide
Build a Client for OS X

DescriptionInterface

Receives and recycles the audio frame.XStxIRawAudioFrameAllocator

Lifecycle of a Client for OS X
Your client communicates with the application on Amazon AppStream through libraries of the Amazon
AppStream SDK.

The lifecycle of a client is as follows:

1. Create the XStxClientLibraryHandle object by calling the XStxClientLibraryCreate
function to return a clientLibraryHandle. The object interacts with the client side portion of
the API through the clientLibraryHandle.

2. Create the XStxClient object by calling the XStxClientCreate function to return a
XStxClientHandle client handle. The object manages the session between the client and the
application.

3. Instantiate and populate the XStxIClientListener structure. This object responds to the
callback functions from the application when a session is established between the client and the
application. After populating the listener structure, call the XStxClientSetListener function with
the client handle and a pointer to the XStxIClientListener structure.

4. Initialize a video module to get, decode, and render the video frames. To initialize this module,
the client has to instantiate the following structures:

• XStxIVideoDecoder Gets and decodes the video frame.

• XStxIVideoRenderer Renders the video frame.

• XStxIRawVideoFrameAllocator Gets and recycles the video frame.

The Amazon AppStream SDK contains VideoPipeline.cpp which shows how to create the
VideoDecoder and VideoRenderer objects. The source code is in
<install_dir>\example_src\client\src\apple\osx.The implementation of VideoDecoder
in the sample client attempts to use VDADecoder for hardware accelerated H.264 video decoding.
If the hardware decoder is not available, then the client will use the software decoder FFmpeg.

5. Initialize an audio module to get, decode, and render the audio frames. To initialize this module,
the client has to instantiate the following structures:

• XStxIAudioDecoder Gets and decodes the audio frame.

• XStxIAudioRenderer Renders the audio frame.

• XStxIRawAudioFrameAllocator Gets and recycles the audio frame.

The Amazon AppStream SDK contains AudioPipeline.cpp which shows how to create the
AudioDecoder and AudioRenderer objects. The source code is in
<install_dir>\example_src\client\src\apple\shared.

6. Configure a session between the client and application. Call the
XStxClientSetEntitlementUrl with the endpoint of the entitlement service to configure this
session.

7. Call the XStxClientStart function to start the session. Once the session is established, the
XStxClient object will invoke the XStxIClientListenerFcnClientReady function on the
XStxIClientListener structure.You can then call xStxClientLibraryRecycle to recycle the
client library handle.

8. The client sends user inputs to the application

9. The client closes the session.

102

Amazon AppStream Developer Guide
Build a Client for OS X

Build the Sample Client for OS X
The Amazon AppStream SDK contains source code that you can build into a sample client file. To learn
how to build the source code, see the \doc directory.

Create Your Client
To create a client, your client must create an XStxClientLibraryHandle object. This is the top level
object that you will use to interact with the libraries you will use to connect to sessions, render the audio
and video, and send inputs to the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::init() function of XStxModule.cpp.

Note
We strongly recommend using the provided source code and pre-compiled clients rather than
creating your own implementation based on these excerpts.

XStxResult XStxModule::init()
{
 XStxResult createResult = XSTX_RESULT_OK;
 if ((createResult = XStxClientLibraryCreate(XSTX_CLIENT_API_VERSION_MAJOR,

 XSTX_CLIENT_API_VERSION_MINOR,
 &mClientLibraryHandle)) != XSTX_RESULT_OK)
 {
 const char *name; const char *desc;
 XStxResultGetInfo(createResult, &name, &desc);
 LOGE("XStxClientLibraryCreate failed with: %s", name);
 return createResult;
 }

 mVideoRenderer = newVideoRenderer();

 return XSTX_RESULT_OK;
}

The function creates a client library handle (mclientLibraryHandle) that the client will use to create
a client object. The sample client creates the client object by instantiating an object from a user-defined
class.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::connect function of XStxModule.cpp.

if ((result = XStxClientCreate(mClientLibraryHandle, &mClientHandle))
 != XSTX_RESULT_OK)
 {
 LOGE("Failed to create client.");
 const char *name; const char *desc;
 XStxResultGetInfo(result, &name, &desc);
 LOGE("XStxClientCreate failed with: %s", name);
 return result;
 }

103

Amazon AppStream Developer Guide
Build a Client for OS X

The object needs a structure to respond to the callback functions from the application. The client creates
and populates a XStxIClientListener structure to respond to the callback functions.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::connect function of XStxModule.cpp.

...
memset(&mStxListener, 0, sizeof(mStxListener));
...

mStxListener.mClientReadyFcn = &::clientReady;
mStxListener.mClientReadyCtx = this;
mStxListener.mClientStoppedFcn = &::clientStopped;
mStxListener.mClientStoppedCtx = this;
mStxListener.mMessageReceivedFcn = &::messageReceived;
mStxListener.mMessageReceivedCtx = this;
mStxListener.mStreamQualityMetricsReceivedFcn = &::clientQoS;
mStxListener.mStreamQualityMetricsReceivedCtx = this;
mStxListener.mSize = sizeof(mStxListener);

After populating the structure, call the XStxClientSetListener function to configure a listener that
responds to the callback functions.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::connect function of XStxModule.cpp.

if ((result = XStxClientSetListener(mClientHandle, &mStxListener))
 != XSTX_RESULT_OK)
{
 LOGE("Failed to set listener");
 const char *name; const char *desc;
 XStxResultGetInfo(result, &name, &desc);
 LOGE("XStxClientSetListener failed with: %s", name);
 platformErrorMessage(true, desc);
 return result;
}

The client uses structures to get, render, and decode video and audio frames.. The next step is to create
and populate these structures.The sample client instantiates a class to create and populate the structures.

To handle a video frame, the client create and populate the following structures defined in VideoModule.h:

• XStxIVideoDecoder. Used to get and decode a video frame.

• XStxIVideoRenderer. Used to render a video frame.

• XStxIRawVideoFrameAllocator. Used to get and recycle a video frame.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for video. The excerpt is from the XStxModule::connect function of XStxModule.cpp.

// initialize video module
if (!mVideoModule.initialize(mClientHandle, *mVideoRenderer))
{

104

Amazon AppStream Developer Guide
Build a Client for OS X

 LOGE("Failed to create video decoder/renderer");
 return XSTX_RESULT_NOT_INITIALIZED_PROPERLY;
}

To handle an audio frame, the client create and populate the following structures defined in
AudioModule.h:

• XStxIAudioDecoder. Used to get and decode an audio frame.

• XStxIAudioRenderer. Used to render an audio frame.

• XStxIRawAudioFrameAllocator. Used to get and recycle an audio frame.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for audio. The excerpt is from XStxModule::connect function of XStxModule.cpp.

// initialize audio module
if (!mAudioModule.initialize(mClientHandle))
{
 LOGE("Failed to create audio decoder/renderer");
 return XSTX_RESULT_NOT_INITIALIZED_PROPERLY;
}

The client is now ready to configure and start a session with the application. The client configures a
session by calling the XStxClientSetEntitlementUrl function with the endpoint of the entitlement
service.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::connect function of XStxModule.cpp.

if ((result = XStxClientSetEntitlementUrl(mClientHandle, address.c_str()))
 != XSTX_RESULT_OK)
{
 const char *name; const char *desc;
 XStxResultGetInfo(result, &name, &desc);
 LOGE("XStxClientSetEntitlementUrl failed with: %s", name);
 return result;
}

The client starts a session by calling a function.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::connect function of XStxModule.cpp.

// non-blocking!
if ((result = XStxClientStart(mClientHandle)) != XSTX_RESULT_OK)
{
 LOGE("Failed to start client.");
 const char *name; const char *desc;
 XStxResultGetInfo(result, &name, &desc);
 LOGE("XStxClientStart failed with: %s", name);
 return result;
}

105

Amazon AppStream Developer Guide
Build a Client for OS X

Choose a Color Subsampling Rate
Amazon AppStream streams the video at the YUV420 color subsampling rate to client applications. If
your streaming application, client application and device support YUV444, you can set your client application
to display the video at YUV444. The example client application in Amazon AppStream SDK is configured
to accept and render a stream in the YUV444 color subsampling rate.

When the client application connects to the streaming application, Amazon AppStream compares the
color subsampling options available on the client application with the options advertised on the streaming
application. Amazon AppStream then selects the highest color resolution supported by both the client
application and streaming application. Amazon AppStream then calls the
XStxIClientListener2FcnSetConfiguration callback function that the client application supplied
and passes the structure with the XStxChromaSampling setting.

The following excerpt from H264ToYUV.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\apple\osx directory.

bool H264ToYuv::isChromaSamplingSupported(XStxChromaSampling chromaSampling)
{
 return chromaSampling == XSTX_CHROMA_SAMPLING_YUV420
 || chromaSampling == XSTX_CHROMA_SAMPLING_YUV444;
}

The following excerpt from VideoPipeline.cpp illustrates this step. This file is in the
<SDK_dir>\example_src\client\src\apple\osx directory.

decoderCapabilities->mProfile = XSTX_H264_PROFILE_HIGH444;

Send Your Client Inputs to the Application
The client can send keyboard, mouse, touch, or raw inputs to the application. The client sends an input
by filling out the XStxInputEvent structure that describes the input and then calling a function that
passes the structure to the application.

Keyboard

Before the client can fill out the XStxInputEvent structure, the keyboard input must first be converted
to a Windows keyboard input from an OS X keyboard input. In the processKeyEvent function is the call
to getConvertedKeyUsingCharacter which converts the keyboard input to a Windows keyboard
input.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates the function that
converts the OS X keyboard input to a Windows keyboard input. The excerpt is from the
getConvertedKeyUsingCharacter function in AppStreamSampleClientWindowController.m.

(int) getConvertedKeyUsingCharacter: (NSEvent *) theEvent withModifierMask:
(uint16_t &) modifierKeyMask withModifierKeyIgnoreMask: (uint16_t &) modifier
KeysIgnoreMask
{
 //Get the characters from the key being pressed
 NSString *theKeyString = [theEvent charactersIgnoringModifiers];

106

Amazon AppStream Developer Guide
Build a Client for OS X

 if ([theKeyString length] <= 0) {
 //Reject dead keys
 return -1;
 }

 //Get the characters as a char
 uint16_t theChar = [theKeyString characterAtIndex:0];

 //First check the generic key mapping, this should convert any non-system
 // specific keys
 bool didMapKey = getVirtualKeyUsingChar(theChar, modifierKeyMask, modifier
KeysIgnoreMask);

 if (!didMapKey) {
 //The generic key mapping didn't map the key so check the platform
specific ones
 didMapKey = appleGetVirtualKeyUsingChar(theChar, modifierKeyMask, modi
fierKeysIgnoreMask);
 }

 if (!didMapKey) {
 //Neither the generic nor the system specific mapping could remap the
key
 NSLog(@"\n======== Unmapped KEY! =========");
 unichar upperKeyChar = [[theKeyString uppercaseString] characterAtIn
dex:0];
 NSString *modKeyString = [theEvent characters];

 NSLog(@"Key: %hu String: %@ Mod: %@", upperKeyChar, theKeyString, mod
KeyString);

 return -1;
 }

 return theChar;
}

The following excerpt from the sample client in the Amazon AppStream SDK illustrates the function that
processes the keyboard action from the client. The excerpt is from the processKeyEvent function in
AppStreamSampleClientWindowController.m.

(void) processKeyEvent: (NSEvent *) theEvent
{
 //Depending on your application you might want to block repeat keys
 // if ([theEvent isARepeat]) {
 // //Ignore repeats
 // return;
 // }

 //Setup a couple bitmasks for the command keys
 uint16_t modifierKeyMask = 0;
 uint16_t modifierKeysIgnoreMask = 0;
 int newKey = [self getConvertedKeyUsingCharacter:theEvent withModifier
Mask:modifierKeyMask withModifierKeyIgnoreMask:modifierKeysIgnoreMask];

 if (newKey < 0)

107

Amazon AppStream Developer Guide
Build a Client for OS X

 {
 //Not a valid key mapping just return
 return;
 }

 BOOL needAlt = (modifierKeyMask & STX_ALT_KEY_MASK) == STX_ALT_KEY_MASK;
 BOOL needControl = (modifierKeyMask & STX_CONTROL_KEY_MASK) == STX_CON
TROL_KEY_MASK;
 BOOL needShift = (modifierKeyMask & STX_SHIFT_KEY_MASK) ==
STX_SHIFT_KEY_MASK;
 BOOL needWin = (modifierKeyMask & STX_WINDOWS_KEY_MASK) == STX_WIN
DOWS_KEY_MASK;

 //Check the status of the command keys
 if ((modifierKeysIgnoreMask & STX_SHIFT_KEY_MASK) != STX_SHIFT_KEY_MASK) {

 if (needShift && !shiftIsDown) {
 //Need shift pressed but it isn't
 [[AppStreamClient sharedClient] sendKeyDown:VK_SHIFT];
 } else if (!needShift && shiftIsDown)
 {
 //Need shift released but it is pressed
 [[AppStreamClient sharedClient] sendKeyUp:VK_SHIFT];
 }
 }

 if ((modifierKeysIgnoreMask & STX_ALT_KEY_MASK) != STX_ALT_KEY_MASK) {
 if (needAlt && !altIsDown) {
 [[AppStreamClient sharedClient] sendKeyDown:VK_MENU];
 } else if (!needAlt && altIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyUp:VK_MENU];
 }
 }

 if ((modifierKeysIgnoreMask & STX_CONTROL_KEY_MASK) != STX_CONTROL_KEY_MASK)
 {
 if (needControl && !controlIsDown) {
 [[AppStreamClient sharedClient] sendKeyDown:VK_CONTROL];
 } else if (!needControl && controlIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyUp:VK_CONTROL];
 }
 }

 if ((modifierKeysIgnoreMask & STX_WINDOWS_KEY_MASK) != STX_WINDOWS_KEY_MASK)
 {
 if (needWin && !windowsIsDown) {
 [[AppStreamClient sharedClient] sendKeyDown:VK_LWIN];
 } else if (!needWin && windowsIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyUp:VK_LWIN];
 }
 }

 //Now send the actual keydown event
 if (theEvent.type == NSKeyDown) {
 [[AppStreamClient sharedClient] sendKeyDown:newKey];

108

Amazon AppStream Developer Guide
Build a Client for OS X

 } else
 {
 //Not keyDown so must be keyUp
 [[AppStreamClient sharedClient] sendKeyUp:newKey];
 }

 //Reset the command keys state
 if ((modifierKeysIgnoreMask & STX_SHIFT_KEY_MASK) != STX_SHIFT_KEY_MASK) {

 if (needShift && !shiftIsDown) {
 //Need shift pressed but it isn't
 [[AppStreamClient sharedClient] sendKeyUp:VK_SHIFT];
 } else if (!needShift && shiftIsDown)
 {
 //Need shift released but it is pressed
 [[AppStreamClient sharedClient] sendKeyDown:VK_SHIFT];
 }
 }

 if ((modifierKeysIgnoreMask & STX_ALT_KEY_MASK) != STX_ALT_KEY_MASK) {
 if (needAlt && !altIsDown) {
 [[AppStreamClient sharedClient] sendKeyUp:VK_MENU];
 } else if (!needAlt && altIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyDown:VK_MENU];
 }
 }

 if ((modifierKeysIgnoreMask & STX_CONTROL_KEY_MASK) != STX_CONTROL_KEY_MASK)
 {
 if (needControl && !controlIsDown) {
 [[AppStreamClient sharedClient] sendKeyUp:VK_CONTROL];
 } else if (!needControl && controlIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyDown:VK_CONTROL];
 }
 }

 if ((modifierKeysIgnoreMask & STX_WINDOWS_KEY_MASK) != STX_WINDOWS_KEY_MASK)
 {
 if (needWin && !windowsIsDown) {
 [[AppStreamClient sharedClient] sendKeyUp:VK_LWIN];
 } else if (!needWin && windowsIsDown)
 {
 [[AppStreamClient sharedClient] sendKeyDown:VK_LWIN];
 }
 }
}

After converting the keyboard input, the client populates the XStxInputEvent structure. The structure
is then sent to AppStream.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a keyboard action
that populates the structures and then sending that structure to the application. The excerpt is from the
XStxModule::keyPress function in XStxModule.cpp.

109

Amazon AppStream Developer Guide
Build a Client for OS X

void XStxModule::keyPress(int key, bool down)
{
 XStxInputEvent xstxevent = { 0 };
 xstxevent.mTimestampUs = mud::TimeVal::mono().toMilliSeconds();
 xstxevent.mType = XSTX_INPUT_EVENT_TYPE_KEYBOARD;
 xstxevent.mInfo.mKeyboard.mVirtualKey = key;
 xstxevent.mInfo.mKeyboard.mIsKeyDown = down;
 xstxevent.mSize = sizeof(XStsxInputEvent);

 sendInput(xstxevent);
}

Mouse

The following excerpt from the sample client in the Amazon AppStream SDK illustrates how the mouse
actions are sent to the structure. The excerpt is from AppStreamSampleClientWindowControll.m.

(void) mouseDown:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:RI_MOUSE_BUT
TON_1_DOWN];
}

(void) mouseUp:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:RI_MOUSE_BUT
TON_1_UP];
}

(void) mouseDragged:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:0];
}

(void) rightMouseDown:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:RI_MOUSE_BUT
TON_2_DOWN];
}

110

Amazon AppStream Developer Guide
Build a Client for OS X

(void) rightMouseUp:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:RI_MOUSE_BUT
TON_2_UP];
}

(void) rightMouseDragged:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:0];
}

(void) mouseMoved:(NSEvent *)theEvent
{
 NSPoint theLoc = [theEvent locationInWindow];

 theLoc.y = _glView.bounds.size.height - theLoc.y;

 [[AppStreamClient sharedClient] sendMouseEvent:theLoc flags:0];
}

The client then populates the XStxInputEvent structure. The structure is then sent to AppStream.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a mouse action
that populates the structures and then sends that structure to the application. The excerpt is from the
XStxModule::mouseEvent function in XStxModule.cpp.

void XStxModule::mouseEvent(int x, int y, uint32_t flags)
{
 // no video renderer? Return!
 if (!mVideoRenderer)
 {
 return;
 }

 int xOff, yOff;
 float scale;
 mVideoRenderer->getScaleAndOffset(scale, xOff, yOff);

 // no scale yet; ignore!
 if (scale == 0) return;

 XStxInputEvent xstxevent = { 0 };
 xstxevent.mTimestampUs = mud::TimeVal::mono().toMilliSeconds();
 xstxevent.mType = XSTX_INPUT_EVENT_TYPE_MOUSE;
 xstxevent.mInfo.mMouse.mButtonFlags = flags;
 xstxevent.mInfo.mMouse.mFlags = 1; //absolute

111

Amazon AppStream Developer Guide
Build a Client for OS X

 static int lastX = 0, lastY = 0;

 if (flags & CET_MOUSE_WHEEL)
 {
 LOGV("Mouse wheel data: %d", x);
 // mouse wheel data goes in mButtonData.
 xstxevent.mInfo.mMouse.mButtonData = x;
 xstxevent.mInfo.mMouse.mLastX = lastX;
 xstxevent.mInfo.mMouse.mLastY = lastY;
 }
 else
 {
 lastX = xstxevent.mInfo.mMouse.mLastX = (int)((x + xOff) * scale);
 lastY = xstxevent.mInfo.mMouse.mLastY = (int)((y + yOff) * scale);
// LOGV("Mouse data: x:%d,y:%d", lastX, lastY);
 }

 sendInput(xstxevent);
}

Terminate Your Client
The client can end the session with the application in the following ways:

• End the session and then confirm the session ended.

• End the session without regard as to when the session ends.

To end the session and then confirm the session ended, first call XStxClientStop.This is a non-blocking
function call that immediately returns a result. If the call was successful, then call XStxClientWait to
wait until the session actually ends. When the XStxClientWait call is successful, call
XStxClientRecycle to recycle the client handle.

To end the session without regard as to when the session ends, call XStxClientRecycle. The session
then ends without further interaction from the client.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the XStxModule::recycle function in XStxModule.cpp.

XStxResult XStxModule::recycle()
{
XStxResult result = XStxClientRecycle(mClientHandle);
if (result != XSTX_RESULT_OK)
 return result;
else
 return XStxClientLibraryRecycle(mClientLibraryHandle);
}

Build a Client for Windows
The Amazon AppStream SDK provides client libraries that you build into your client to receive and decode
video and audio from the application and send device inputs and raw inputs to the application.

The following object classes are provided by the client libraries in the Amazon AppStream SDK.

112

Amazon AppStream Developer Guide
Build a Client for Windows

DescriptionClass

The top level object of the client libraries.Your client uses
this object to ensure that it is calling into the version of the
libraries it was compiled against and to create the
XStxClient object.

XStxClientLibrary

This object manages client sessions and sends events to your
application when Amazon AppStream assigns your application
a client session or terminates a client session.

XStxClient

Your client implements and populate the following structures in order to receive session and application
events.

DescriptionInterface

Receives callbacks from a client.XStxIClientListener

Receives and decodes the video frame.XStxIVideoDecoder

Renders the video frame.XStxIVideoRenderer

Receives and recycles the video frame.XStxIRawVideoFrameAllocator

Receives and decodes the audio frame.XStxIAudioDecoder

Renders the audio frame.XStxIAudioRenderer

Receives and recycles the audio frame.XStxIRawAudioFrameAllocator

The Amazon AppStream SDK includes source code so that you can build into a sample client. The
documentation is in the \doc directory.

Lifecycle of a Client for Windows
Your client communicates with the application on Amazon AppStream through libraries of the Amazon
AppStream SDK.

The lifecycle of a client is as follows:

1. Create the XStxClientLibraryHandle object by calling the XStxClientLibraryCreate
function to return a clientLibraryHandle. The object interacts with the client side portion of
the API through the clientLibraryHandle.

2. Create the XStxClient object by calling the XStxClientCreate function to return a
XStxClientHandle client handle. The object manages the session between the client and the
application.

3. Instantiate and populate the XStxIClientListener structure. This object responds to the
callback functions from the application when a session is established between the client and the
application. After populating the listener structure, call the XStxClientSetListener function with
the client handle and a pointer to the XStxIClientListener structure.

4. Initialize a video module to get, decode, and render the video frames. To initialize this module,
the client has to instantiate the following structures:

• XStxIVideoDecoder Gets and decodes the video frame.

• XStxIVideoRenderer Renders the video frame.

• XStxIRawVideoFrameAllocator Gets and recycles the video frame.

113

Amazon AppStream Developer Guide
Build a Client for Windows

5. Initialize an audio module to get, decode, and render the audio frames. To initialize this module,
the client has to instantiate the following structures:

• XStxIAudioDecoder Gets and decodes the audio frame.

• XStxIAudioRenderer Renders the audio frame.

• XStxIRawAudioFrameAllocator Gets and recycles the audio frame.

6. Configure a session between the client and application. Call the
XStxClientSetEntitlementUrl function with the endpoint of the entitlement service to configure
this session.

7. Call the XStxClientStart function to start the session. Once the session is established, the
XStxClient object will invoke the XStxIClientListenerFcnClientReady function on the
XStxIClientListener structure.You can then call xStxClientLibraryRecycle to recycle the
client library handle.

8. The client sends user inputs to the application

9. The client closes the session.

Build the Sample Client for Windows
The Amazon AppStream SDK contains source code that you can build into a sample client file. To learn
how to build the source code, see the \doc directory.

Create Your Client
To create a client, your client must create an XStxClientLibraryHandle object. This is the top level
object that you will use to interact with the libraries you will use to connect to sessions, render the audio
and video, and send inputs to the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the main function of XStxExampleClient.cpp.

/** instantiate client library handle */
XStxClientLibraryHandle clientLibraryHandle;
XStxResult createResult = XSTX_RESULT_OK;

if ((createResult = XStxClientLibraryCreate(
XSTX_CLIENT_API_VERSION_MAJOR,
XSTX_CLIENT_API_VERSION_MINOR,
&clientLibraryHandle)) != XSTX_RESULT_OK)
{
 const char * name; const char * desc;
 XStxResultGetInfo(createResult, &name, &desc);
 printf("XStxClientLibraryCreate failed with: %s\n", name);
 return 1;
}

The function creates a client library handle (clientLibraryHandle) that the client will use to create a
client object. The sample client creates the client object by instantiating an object from a user-defined
class.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the WindowListener class definition of XStxExampleClient.cpp.

114

Amazon AppStream Developer Guide
Build a Client for Windows

// setup xstx client and start making the connection
if ((result = XStxClientCreate(mClientLibraryHandle, &mClientHandle))
 != XSTX_RESULT_OK)
{
 mRenderWindow->setErrorText("Failed to create client");
 const char * name; const char * desc;
 XStxResultGetInfo(result, &name, &desc);
 printf("XStxClientCreate failed with: %s\n", name);
 return;
}

The object needs a structure to respond to the callback functions from the application. The client creates
and populates a XStxIClientListener structure to respond to the callback functions.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the readyForConnection function of XStxExampleClient.cpp.

...
XStxIClientListener mStxListener;
...
mStxListener.mClientReadyFcn = &clientReady;
mStxListener.mClientReadyCtx = this;
mStxListener.mClientStoppedFcn = &clientStopped;
mStxListener.mClientStoppedCtx = this;
mStxListener.mMessageReceivedFcn = &messageReceived;
mStxListener.mMessageReceivedCtx = this;

After populating the structure, call the XStxClientSetListener function to configure a listener that
responds to the callback functions.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the readyForConnection function of XStxExampleClient.cpp.

if ((result = XStxClientSetListener(mClientHandle, &mStxListener))
!= XSTX_RESULT_OK)
{
 mRenderWindow->setErrorText("Failed to set listener");
 const char * name; const char * desc;
 XStxResultGetInfo(result, &name, &desc);
 printf("XStxClientSetListener failed with: %s\n", name);
 return;
}

The client uses structures to get, render, and decode video and audio frames.. The next step is to create
and populate these structures.The sample client instantiates a class to create and populate the structures.

To handle a video frame, the client create and populate the following structures defined in VideoModule.h:

• XStxIVideoDecoder. Used to get and decode a video frame.

• XStxIVideoRenderer. Used to render a video frame.

• XStxIRawVideoFrameAllocator. Used to get and recycle a video frame.

115

Amazon AppStream Developer Guide
Build a Client for Windows

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for video. The excerpt is from VideoModule.cpp.

/**
* Initialize video module
* @param[in] clientHandle handle to XStx client
* @param[in] rw renderer
*/
bool VideoModule::initialize(XStxClientHandle mClientHandle,
 RenderWindow & rw)
{
 // initialize frame allocator
 mStxFrameAllocator.mInitFcn = &allocatorInit;
 mStxFrameAllocator.mInitCtx = this;
 mStxFrameAllocator.mGetVideoFrameBufferFcn = &allocatorGetFrame;
 mStxFrameAllocator.mGetVideoFrameBufferCtx = this;
 mStxFrameAllocator.mRecycleVideoFrameBufferFcn = &allocatorRecycleFrame;
 mStxFrameAllocator.mRecycleVideoFrameBufferCtx = this;
 mStxFrameAllocator.mSize = sizeof(mStxFrameAllocator);
 if (XStxClientSetVideoFrameAllocator(mClientHandle, &mStxFrameAllocator)
 != XSTX_RESULT_OK)
 {
 printf("Failed to SetVideoFrameAllocator.\n");
 return false;
 }

 // initialize renderer
 mRenderer = &rw;

 mStxRenderer.mRenderVideoFrameFcn = &renderFrame;
 mStxRenderer.mRenderVideoFrameCtx = mRenderer;
 mStxRenderer.mSetMaxResolutionFcn = &rendererMaxResolution;
 mStxRenderer.mSetMaxResolutionCtx = mRenderer;
 mStxRenderer.mSize = sizeof(mStxRenderer);
 if (XStxClientSetVideoRenderer(mClientHandle, &mStxRenderer)
 != XSTX_RESULT_OK)
 {
 printf("Failed to set SetVideoRenderer.\n");
 return false;
 }

 // initialize decoder
 mDecoder = new H264ToYuv();
 if (!mDecoder)
 {
 return false;
 }
 mStxDecoder.mGetCapabilitiesCtx = mDecoder;
 mStxDecoder.mGetCapabilitiesFcn = &videoDecoderGetCapabilities;
 mStxDecoder.mDecodeVideoFrameFcn = &decodeFrame;
 mStxDecoder.mDecodeVideoFrameCtx = mDecoder;
 mStxDecoder.mStartFcn = &videoDecoderStart;
 mStxDecoder.mStartCtx = mDecoder;
 mStxDecoder.mSize = sizeof(mStxDecoder);
 if (XStxClientSetVideoDecoder(mClientHandle, &mStxDecoder)
 != XSTX_RESULT_OK)
 {

116

Amazon AppStream Developer Guide
Build a Client for Windows

 printf("Failed to set SetVideoDecoder.\n");
 return false;
 }

To handle an audio frame, the client create and populate the following structures defined in
AudioModule.h:

• XStxIAudioDecoder. Used to get and decode an audio frame.

• XStxIAudioRenderer. Used to render an audio frame.

• XStxIRawAudioFrameAllocator. Used to get and recycle an audio frame.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates populating the
structures for audio. The excerpt is from AudioModule.cpp.

/**
 * Initialize audio module
 * @param[in] clientHandle handle to XStx client
 */
bool AudioModule::initialize(XStxClientHandle clientHandle)
{
 // initialize frame allocator
 mStxFrameAllocator.mInitFcn = &allocatorInit;
 mStxFrameAllocator.mInitCtx = this;
 mStxFrameAllocator.mGetAudioFrameBufferFcn = &allocatorGetFrame;
 mStxFrameAllocator.mGetAudioFrameBufferCtx = this;
 mStxFrameAllocator.mRecycleAudioFrameBufferFcn = &allocatorRecycleFrame;
 mStxFrameAllocator.mRecycleAudioFrameBufferCtx = this;
 mStxFrameAllocator.mSize = sizeof(mStxFrameAllocator);
 if (XStxClientSetAudioFrameAllocator(clientHandle, &mStxFrameAllocator)
 != XSTX_RESULT_OK)
 {
 printf("Failed to SetAudioFrameAllocator\n");
 return false;
 }

 // initialize decoder
 mDecoder = new (std::nothrow) OpusToPcm();
 if (!mDecoder)
 {
 printf("Failed to create Decoder\n");
 return false;
 }
 mStxDecoder.mDecodeAudioFrameFcn = &decoderDecodeFrame;
 mStxDecoder.mDecodeAudioFrameCtx = mDecoder;
 mStxDecoder.mStartFcn = &decoderStart;
 mStxDecoder.mStartCtx = mDecoder;
 mStxDecoder.mSize = sizeof(mStxDecoder);
 if (XStxClientSetAudioDecoder(clientHandle, &mStxDecoder)
 != XSTX_RESULT_OK)
 {
 printf("Failed to SetAudioDecoder\n");
 return false;
 }

117

Amazon AppStream Developer Guide
Build a Client for Windows

 // initialize renderer
 mRenderer = new (std::nothrow) AudioRenderer(mFramePool,
 clientHandle);
 if (!mRenderer)
 {
 return false;
 }

 // Set XStx callbacks and contexts on for the XStxIAudioRenderer struct
 mStxRenderer.mStartFcn = &start;
 mStxRenderer.mStartCtx = mRenderer;
 mStxRenderer.mSize = sizeof(mStxRenderer);

 // set the XStxIAudioRenderer to be used with the given clientHandle
 if (XStxClientSetAudioRenderer(clientHandle, &mStxRenderer)
 != XSTX_RESULT_OK)
 {
 printf("Failed to SetAudioRenderer\n");
 return false;
 }
 return true;
}

The client is now ready to configure and start a session with the application. The client configures a
session by calling the XStxClientSetEntitlementUrl function with the endpoint of the entitlement
service.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the readyForConnection function in XStxExampleClient.cpp.

if ((result = XStxClientSetEntitlementUrl(
 mClientHandle, mEntitlementUrl.c_str())) != XSTX_RESULT_OK)
{
 mRenderWindow->setErrorText("Failed to set entitlement URL");
 const char * name; const char * desc;
 XStxResultGetInfo(result, &name, &desc);
 printf("XStxClientSetEntitlementUrl failed with: %s\n", name);
 return;
}

The client starts a session by calling a function.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the readyForConnection function in XStxExampleClient.cpp.

// non-blocking!
if ((result = XStxClientStart(mClientHandle)) != XSTX_RESULT_OK)
{
 mRenderWindow->setErrorText("Failed to start client");
 const char * name; const char * desc;
 XStxResultGetInfo(result, &name, &desc);
 printf("XStxClientStart failed with: %s\n", name);
 return;

118

Amazon AppStream Developer Guide
Build a Client for Windows

}

// success !
mRenderWindow->setErrorText("Starting STX");

Choose a Color Subsampling Rate
Amazon AppStream streams the video at the YUV420 color subsampling rate to client applications. If
your streaming application, client application and device support YUV444, you can set your client application
to display the video at YUV444. The example client application in Amazon AppStream SDK is configured
to accept and render a stream in the YUV444 color subsampling rate.

When the client application connects to the streaming application, Amazon AppStream compares the
color subsampling options available on the client application with the options advertised on the streaming
application. Amazon AppStream then selects the highest color resolution supported by both the client
application and streaming application. Amazon AppStream then calls the
XStxIClientListener2FcnSetConfiguration callback function that the client application supplied
and passes the structure with the XStxChromaSampling setting.

Send Your Client Inputs to the Application
The client can send keyboard, mouse, touch, or raw inputs to the application. The client sends an input
by filling out the XStxInputEvent structure that describes the input and then calling a function that
passes the structure to the application.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a keyboard action
that populates the structures and then sending that structure to the application. The excerpt is from the
keyChange function in DirectXRenderWindow.cpp.

/** Handles WM_KEYDOWN & WM_KEYUP messages. */
void keyChange(WPARAM wParam, LPARAM lParam, bool isKeyDown)
{
 if (!mListener)
 {
 return;
 }
 XStxInputEvent inputEvent;
 inputEvent.mTimestampUs = mud::TimeVal::mono().toMicroSeconds();
 inputEvent.mDeviceId = 0;
 inputEvent.mUserId = 0;
 inputEvent.mType = INPUT_EVENT_TYPE_KEYBOARD;

 inputEvent.mInfo.mKeyboard.mIsKeyDown = isKeyDown;
 inputEvent.mInfo.mKeyboard.mVirtualKey = wParam;
 inputEvent.mInfo.mKeyboard.mScanCode = lParam;

 inputEvent.mSize = sizeof(inputEvent);

 mListener->sendInput(inputEvent);
}

The following excerpt from the sample client in the Amazon AppStream SDK illustrates a mouse action
that populates the structures and then sending that structure to the application. The excerpt is from the
mouseChange function in DirectXRenderWindow.cpp.

119

Amazon AppStream Developer Guide
Build a Client for Windows

void mouseChange(WPARAM wParam, LPARAM lParam, bool isDown, bool isLeft)
{
 if (!mListener)
 {
 return;
 }
 XStxInputEvent inputEvent;
 inputEvent.mTimestampUs = mud::TimeVal::mono().toMicroSeconds();
 inputEvent.mDeviceId = 0;
 inputEvent.mUserId = 0;
 inputEvent.mType = INPUT_EVENT_TYPE_MOUSE;

 inputEvent.mInfo.mMouse.mFlags = MOUSE_MOVE_ABSOLUTE;

 int32_t leftchange = 0;
 int32_t rightChange = 0;
 if (isLeft) {
 leftchange = isDown ? RI_MOUSE_LEFT_BUTTON_DOWN : RI_MOUSE_LEFT_BUT
TON_UP;
 } else {
 rightChange = isDown ? RI_MOUSE_RIGHT_BUTTON_DOWN :
RI_MOUSE_RIGHT_BUTTON_UP;
 }

 inputEvent.mInfo.mMouse.mButtonFlags = leftchange | rightChange;
 inputEvent.mInfo.mMouse.mButtons = 0;// not needed
 inputEvent.mInfo.mMouse.mButtonData = 0; // not sending wheel data
 rescaleMouseInput(lParam, inputEvent.mInfo.mMouse.mLastX,
 inputEvent.mInfo.mMouse.mLastY);

 inputEvent.mSize = sizeof(inputEvent);
 mListener->sendInput(inputEvent);
}

If the client is a different size from the application, the client rescales the mouse position to adjust for the
different sizes.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the rescaleMouseInput function in DirectXRenderWindow.cpp.

/** Rescales absolute mouse position. */
void rescaleMouseInput(LPARAM lParam, int32_t & outX, int32_t & outY)
{
 // if we send absolute input, we need to rescale it
 RECT desktopRect;
 GetWindowRect(mWindow, &desktopRect);
 float rescaleHeight = mLastSetHeight /
 (float) (desktopRect.bottom - desktopRect.top - mWindowBorderAdjus
tHeight);
 float rescaleWidth = mLastSetWidth /
 (float) (desktopRect.right - desktopRect.left - mWindowBorderAd
justWidth);

 outX = GET_X_LPARAM(lParam) * rescaleWidth + 0.5f; // add 0.5 for rounding

120

Amazon AppStream Developer Guide
Build a Client for Windows

 outY = GET_Y_LPARAM(lParam) * rescaleHeight + 0.5f;
}

Touch input is sent as a mouse action.

Terminate Your Client
The client can end the session with the application in the following ways:

• End the session and then confirm the session ended.

• End the session without regard as to when the session ends.

To end the session and then confirm the session ended, first call the XStxClientStop function. This is
a non-blocking function call that immediately returns a result. If the call was successful, then call the
XStxClientWait function to wait until the session actually ends. When the XStxClientWait call is
successful, call the XStxClientRecycle function to recycle the client handle.

To end the session without regard as to when the session ends, call the XStxClientRecycle function.
The session then ends without further interaction from the client.

The following excerpt from the sample client in the Amazon AppStream SDK illustrates this step. The
excerpt is from the windowClosed function in XStxExampleClient.cpp.

/** Clean up */
void windowClosed()
{
 // the window was closed, do what I need
 if (!mClientHandle)
 {
 return;
 }
 // ensure the audio stopped pulling
 mAudioModule.stop();

 XStxClientRecycle(mClientHandle);
 mClientHandle = NULL;
}

Codec and Open Source Licensing

What audio and video formats does Amazon AppStream
use?
AppStream utilizes the H.264/AVC video format for encoding streamed video, and the open-source Opus
audio format for encoding streamed audio.

How does my client decode video from Amazon AppStream?
You may need to include an H.264/AVC decoder with your client application. In our experience, the built-in
decoder included with Windows 7 provides sufficient functionality, but the decoders provided with the iOS
and Android platforms do not. The sample client we provide for developer education and testing uses
FFmpeg, an LGPL2.1-licensed open-source decoder. We have also found that CoreAVC, a proprietary

121

Amazon AppStream Developer Guide
Codec and Open Source Licensing

decoder available from CoreCodec, Inc., is a good option as well.You are responsible for complying with
the license terms which apply to the decoder you use in your client application.

Does use of Amazon AppStream require proprietary
licenses?
You may have to obtain a license from MPEG-LA for use of a video decoder with your client application
and transmission of video of your hosted application, depending on the nature of your application and
the video content transmitted to your end users.You should reach out to the provider of your decoder
and/or MPEG-LA for guidance.

Content that you or any End User run on, cause to interface with, or upload to Amazon AppStream is
Your Content.You are responsible for determining whether your content or technology used in your
Amazon AppStream hosted applications, entitlement service, or clients require any additional licensing.

Are there any open source considerations?
Amazon AppStream components, including client binary components, utilize certain open source packages,
which are noted in the notice.txt files provided with the Amazon AppStream SDK.When you distribute
your Amazon AppStream client, you should include the attributions for the Amazon AppStream client
binary component, which are listed in the applicable notice.txt file for the particular client in the Amazon
AppStream SDK. In addition, Amazon AppStream sample code provided in the SDK also includes several
open source packages, which carry their own licenses; if you use this sample code you need to comply
with the applicable license terms.

122

Amazon AppStream Developer Guide
Codec and Open Source Licensing

Deploy Your Streaming Application
to Amazon AppStream

Adding your application to Amazon AppStream gives the service the information it needs to deploy your
application on Amazon AppStream hosts.

Prerequisites
Before you deploy your application on Amazon AppStream, you must do the following:

1. Add streaming functionality to your application. For more information, see Build an Amazon AppStream
Application (p. 51).

2. Create an application installer for your application. For more information see Build an Application
Installer (p. 73)

3. Upload the application installer to Amazon S3. For more information, see Upload the Application
Installer to Amazon Simple Storage Service (p. 123).

4. Generate a pre-signed URL for the application installer stored in Amazon S3. For more information,
see Create a Pre-signed URL (p. 124).

5. Build and deploy an entitlement service. For more information, see Build an Entitlement Service (p. 73).

For a walkthrough of how to host an application on Amazon AppStream using sample components, see
Get Started (p. 12).

Upload the Application Installer to Amazon
Simple Storage Service

Amazon AppStream starts the application installer to install the application from an Amazon Simple
Storage Service (Amazon S3) bucket.

To create a bucket and upload the application installer, follow these steps:

123

Amazon AppStream Developer Guide
Prerequisites

To Create a Bucket

1. In the Amazon S3 console, click Create Bucket.

2. In the Region box, expand the Region Selector on the navigation bar, and select US East (N.
Virginia).

3. In the Create a Bucket—Select a Bucket Name and Region dialog box, type a name in the Bucket
Name box.

The bucket name you choose must be unique across all existing bucket names in Amazon S3.Your
bucket name must be between 3 and 63 characters long, composed of lowercase letters and numbers.

Important
After you create a bucket, you cannot change the bucket name.

4. When the settings are as you want them, click Create.

When Amazon S3 successfully creates your bucket, the console displays the bucket name in the All
Buckets pane. This is the bucket where you'll upload the installer application.

To Upload the Application Installer to Amazon S3

1. In the Amazon S3 console, select the bucket that you previously created.

2. Click Actions and then click Upload.

3. In the Upload—Select Files dialog box, click Add Files.

4. In the File Upload dialog box, select the application installer that you downloaded and saved to your
local drive.

5. Click Open.

6. Click Start Upload.

Create a Pre-signed URL
To upload your the application installer to Amazon S3, you need to create a pre-signed URL that points
to the file. The pre-signed URL must be generated using the HTTPS protocol. When you add your
application installer to Amazon AppStream, you'll type the pre-signed URL into the online form that
describes your application. Be sure to set the expiration time of the URL far enough in the future that you
have time to deploy your application using the application installer.

To generate a pre-signed URL, you can use the AWS Toolkit for Visual Studio, which installs the AWS
Explorer into Visual Studio.You will use the AWS Explorer to generate the pre-signed URL. To use the
AWS Explorer, you will need the access ID key and the secret key of the AWS account that has access
to the Amazon S3 bucket that contains your application installer.

To install the AWS Toolkit for Visual Studio

1. Go to AWS Toolkit for Visual Studio and click AWS Toolkit for Visual Studio.

2. Run the installation wizard, which is packaged as an .msi.

• If your browser asks whether to save or run the msi, select Run.

• If your browser automatically saves the .msi file to your system, navigate to the download directory
and use Windows Explorer to launch the .msi.

The MSI file name depends on the version, but it will look something like
AWSToolsAndSDKForNet_sdk-2.0.13.2-ps-2.0.13.2-tk-1.6.5.4.msi.

3. Follow the installation wizard's instructions to install the toolkit.

124

Amazon AppStream Developer Guide
Create a Pre-signed URL

https://console.aws.amazon.com/s3/
http://aws.amazon.com/visualstudio

To add a profile to the Toolkit for Visual Studio

1. In Visual Studio, open AWS Explorer by clicking the View menu and selecting AWS Explorer.

2. Click the "New Account Profile" icon to the right of the Profile list.

3. In the New Account Profile dialog box, do the following:

a. For Display Name, type a name to identify the profile.

b. For Access Key ID, enter the access key ID of the user with access to the Amazon S3 bucket
with your application installer.

c. For Secret Access Key, enter the secret key of the user with access to the Amazon S3 bucket
with your application installer.

d. Click OK.

4. Close the AWS Explorer.

125

Amazon AppStream Developer Guide
Create a Pre-signed URL

To generate a pre-signed URL

1. Open the AWS Explorer.

2. In AWS Explorer, expand the Amazon S3 node until you see your application installer, right-click
the application installer, and then select Create Pre-Signed URL.

3. In the Create Pre-Signed URL dialog box, set an expiration date and time for the URL or go to the
next step if you want to use the default setting which is one hour from the current time.

4. Click the Generate button.

5. Click Copy to copy the pre-signed URL to the clipboard. Save this URL to file.

Deploy Your Streaming Application
To deploy your streaming application, do the following:

1. In the Amazon AppStream console, click Get Started.

2. On the Build page, click Next step.

3. On the Configure page, do the following and then click Next step:

126

Amazon AppStream Developer Guide
Deploy Your Streaming Application

https://console.aws.amazon.com/appstream/

• In Streaming application name, enter a name for the application. This name is used only in the
Amazon AppStream console, it is not displayed to users. The name can be up to 64 characters
long, and can include letters, numbers, spaces, and punctuation.

• (Optional) In Streaming application description, enter a description for the application. This
description is used only in the Amazon AppStream console, it is not displayed to users. The name
can be up to 512 characters long, and can include letters, numbers, spaces, and punctuation.

• In Pre-signed S3 URL to Installer, enter a pre-signed URL that points to the location of a file
stored in Amazon S3 that installs your application. The installer must be a single file that installs
your application as well as all of its resources and dependencies. Ensure that the pre-signed URL
has not expired. Instead of a pre-signed URL, you can enter the URL to a public S3 bucket. Use
a public bucket only for testing sample code; putting content in a public S3 bucket makes it
accessible to all users and is strongly discouraged for production applications.

• (Optional) In Installer Parameters, enter any command-line parameters that Amazon AppStream
includes when it runs the installer.

• In Path to launcher, enter the local path and filename that Amazon AppStream calls to launch
your application on a host.

• (Optional) In Launcher parameters, enter command-line parameters that Amazon AppStream
includes when it launches your application on an Amazon AppStream host.

127

Amazon AppStream Developer Guide
Deploy Your Streaming Application

4. You can enable logging on the Log page in Application logs or click Next step to continue deploying
your streaming application.
If you want to enable logging on your streaming application, select Yes, save application logs. After
you select the check box, a text box appears below so that you can optionally specify another path
to a directory that contains other log files or a path to a log file that will be added to the other log files.
You can specify more than one path or file by filling out the other text box that appears after you fill
in the text box.

After specifying the paths and log files, click Next step.

128

Amazon AppStream Developer Guide
Deploy Your Streaming Application

The custom log files and paths must meet the following requirements:

• Log files must be located in the C:\ directory.

• Log paths must be fully qualified paths. Do not use relative paths.You can use wildcards.

• Log paths must be less than the path length limits. See Naming Files, Paths, and Namespaces.

• Log file names cannot contain Windows reserved characters. See Naming Conventions.

• Your application must have read access to the paths.

Note
The total size of logs in the .zip file is subject to the Amazon S3 key size limits.

The following log files are included in the .zip file:

• A file called launch.txt.failed with the output if Amazon AppStream fails to start the streaming
application.

• Minidump files (.dmp)

• Standard error stream (launch.txt.stderr)

• Standard output stream (launch.txt.stdout)

• Utilization metrics (utilization.csv) which is a file that provides operational metrics. The first
row contains column headings and the following rows are comma-separated values:

129

Amazon AppStream Developer Guide
Deploy Your Streaming Application

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#naming_conventions
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680369%28v=vs.85%29.aspx

UTC Time—Time in Universal Coordinated Time (UTC) when the row was created.•

• Processor (n) %—The percentage of use for each CPU core starting with Core 0.

• Memory in Use (Bytes)—Memory that was used in bytes.

• Memory Available (Bytes)—Memory that was available in bytes.

• Disk Read (Bytes)—Disk read speed in bytes per second.

• Disk Write (Bytes)—Disk write speed in bytes per second.

• GPU Utilization %—The percentage of use for the GPU.

• GPU Memory Utilization %—The percentage of GPU memory that was used.

• GPU Memory Total (MB)—The total GPU memory available in the megabytes (MB).

• GPU Memory Used (MB)—The amount of GPU memory used in MB.

• GPU Memory Free (MB)—The amount of GPU memory available in MB.

• GPU Temperature (C)—The temperature of the GPU in degrees centigrade.

• GPU Power Draw (W),—The number of watts the GPU is using.

• GPU Power Limit (W)—The maximum number of watts required by the GPU.

The following is an example of the metrics in this utilization log.

UTC Time,Processor(0) %,Processor(1) %,Processor(2) %,Processor(3) %,Memory
 In Use (Bytes),Memory Available (Bytes),Disk Write (Bytes/sec),Disk Read
 (Bytes/sec),GPU Utilization %,GPU Memory Utilization %,GPU Memory Total
(MB),GPU Memory Used (MB),GPU Memory Free (MB),GPU Temperature (C),GPU
Power Draw (W),GPU Power Limit (W)
2014/05/15
11:17:39,0.92,3.14,6.58,1.88,2724400196.27,14014595549.87,614818.20,103422.13,0,
 1, 4095, 4063, 32, 33, 18.44, 125.00
2014/05/15
11:18:40,0.95,1.15,0.32,1.24,2745420390.40,14010372983.47,8689.31,99415.41,0,
 1, 4095, 4063, 32, 33, 18.26, 125.00
2014/05/15
11:19:41,0.36,0.67,0.20,1.30,2734278997.33,14029225574.40,6994.11,18322.61,0,
 1, 4095, 4063, 32, 33, 18.44, 125.00
2014/05/15
11:20:42,0.08,0.69,0.10,0.97,2724477064.53,14033759027.20,27142.17,14072.01,0,
 1, 4095, 4063, 32, 33, 18.54, 125.00
2014/05/15
11:21:43,0.18,0.27,0.10,1.42,2719389627.73,14038990438.40,40446.51,203.51,0,
 1, 4095, 4063, 32, 33, 18.53, 125.00
2014/05/15
11:22:44,0.13,0.44,0.12,0.87,2720666555.73,14039756800.00,43574.68,1696.60,0,
 1, 4095, 4063, 32, 32, 18.67, 125.00
2014/05/15
11:23:45,0.18,0.44,0.24,0.92,2718720887.47,14040533674.67,44824.72,271.31,0,
 1, 4095, 4063, 32, 32, 18.43, 125.00
2014/05/15
11:24:46,0.30,0.50,0.14,1.73,2707566796.80,14053706888.53,72334.31,209776.90,0,
 1, 4095, 4063, 32, 32, 18.21, 125.00
2014/05/15
11:25:46,0.34,0.44,0.14,1.52,2654716040.53,14106968064.00,43219.86,1479.45,0,
 1, 4095, 4063, 32, 33, 18.41, 125.00
2014/05/15
11:26:47,0.05,0.88,0.16,1.08,2655204010.67,14107344554.67,43875.24,0.00,0,
 1, 4095, 4063, 32, 32, 18.31, 125.00
2014/05/15

130

Amazon AppStream Developer Guide
Deploy Your Streaming Application

11:27:48,0.38,0.79,0.16,1.25,2653159219.20,14107987626.67,40567.09,0.00,0,
 1, 4095, 4063, 32, 33, 18.23, 125.00
2014/05/15
11:28:49,0.17,0.59,0.09,1.32,2650824772.27,14108805666.13,43111.49,0.00,0,
 1, 4095, 4063, 32, 33, 18.20, 125.00
2014/05/15
11:29:50,0.16,0.45,0.07,0.76,2651427157.33,14109135803.73,43341.33,0.00,0,
 1, 4095, 4063, 32, 33, 18.33, 125.00
2014/05/15
11:30:51,0.05,0.83,0.11,0.92,2650787703.47,14109916501.33,44690.80,0.00,0,
 1, 4095, 4063, 32, 33, 18.30, 125.00
2014/05/15
11:31:52,0.13,0.64,0.29,0.79,2651821602.13,14110050781.87,44109.33,0.00,0,
 0, 4095, 4063, 32, 33, 18.18, 125.00
2014/05/15
11:32:52,0.14,0.99,0.44,1.34,2655279445.33,14108282675.20,56575.66,2570.57,0,
 0, 4095, 4063, 32, 32, 17.78, 125.00

The log files are saved to a .zip file which is then uploaded to the bucket. Logs are saved with the
filename: <bucketName>/AppStream/<region>/<Application ID>/yyyy-mm-dd/<log
file name>.zip

5. For Save Location, you can choose to have Amazon AppStream create an Amazon S3 bucket. To
use a bucket created by Amazon AppStream, click Create a default bucket. To use one of your
existing Amazon S3 buckets, click the down arrow next to Create a default bucket and select one
of your buckets.

Note
Your bucket must allow Amazon AppStream to use the PutObject method.You can allow
this method by using a bucket policy similar to the following:

{ "Version": "2008-10-17",
 "Id": "Policy1396472828471",
 "Statement": [
 {
 "Sid": "Stmt1396472820469",
 "Effect": "Allow",
 "Principal": {"AWS":"arn:aws:iam::990116983315:root"},
 "Action": ["s3:PutObject"],
 "Resource": "arn:aws:s3:::your bucket name/*"
 }
]
}

For more information about modifying the Amazon S3 bucket policy, see Bucket Policy
Examples in the Amazon S3 Developer Guide.

The log files are saved to a .zip file which is then uploaded to the bucket. Logs are saved with the
following filename:

<bucketName>/AppStream/<region>/<Application ID>/yyyy-mm-dd/<log file
name>.zip

6. On the Review page, check that the values are correct. If the values are correct, then click Finish
to add your streaming application to Amazon AppStream. If you need to change a value, click Previous
until you return to page where you can change the value.

131

Amazon AppStream Developer Guide
Deploy Your Streaming Application

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

7. Wait while Amazon AppStream prepares your application. This may take 30 minutes or more while
Amazon AppStream performs the following tasks:

• Copies your application installer from your Amazon S3 bucket.

• Prepares your Amazon AppStream environment.

• Installs your streaming application on an Amazon AppStream.

• Creates an Amazon Machine Image (AMI) of the server configuration that includes your installed
application.

• Starts your streaming application.

While Amazon AppStream is deploying your application, it displays the Application Summary page,
which contains the metadata for your application. The Application ID field displays the identifier
assigned to your application. Client applications specify this identifier when they call into your
entitlement service to connect to your application.

132

Amazon AppStream Developer Guide
Deploy Your Streaming Application

When your deployment finishes, Amazon AppStream displays a message indicating whether the
deployment succeeded or failed.

133

Amazon AppStream Developer Guide
Deploy Your Streaming Application

134

Amazon AppStream Developer Guide
Deploy Your Streaming Application

Manage Your Application

You can use the Amazon AppStream console to manage your streaming applications in Amazon
AppStream.

Topics

• View All Applications (p. 135)

• View Application Summary (p. 136)

• Edit an Application (p. 137)

• Clone an Application (p. 140)

• Archive an Application (p. 145)

• Enable Logging on an Application (p. 147)

• Increase Your Service Limits (p. 152)

View All Applications
To view a list of your applications in Amazon AppStream

• In the Amazon AppStream console, click View Your Streaming Applications. This button appears
only if you have added applications to Amazon AppStream.

135

Amazon AppStream Developer Guide
View All Applications

https://console.aws.amazon.com/appstream/
https://console.aws.amazon.com/appstream/

Amazon AppStream displays a list of your applications.

View Application Summary
The application summary page displays the settings associated with your application, including the
application identifier.

To view detailed information about an application

1. In the Amazon AppStream console, click View Your Streaming Applications. This button appears
only if you have added applications to Amazon AppStream.

2. In the list of applications, click the name of the streaming application to view.

136

Amazon AppStream Developer Guide
View Application Summary

https://console.aws.amazon.com/appstream/

The Streaming Application Summary page displays information about the streaming application.

Edit an Application
To modify an application

1. In the Amazon AppStream console, click View Your Streaming Applications. This button appears
only if you have added applications to Amazon AppStream.

137

Amazon AppStream Developer Guide
Edit an Application

https://console.aws.amazon.com/appstream/

2. In the list of applications, click the name of the streaming application to view.

3. On the Streaming Application Summary page, click Edit.

138

Amazon AppStream Developer Guide
Edit an Application

4. On the Edit Streaming Application Details page, you can enter new values for one or more of the
following fields:

• Streaming application name, enter a name for the application. This name is visible only in the
Amazon AppStream console, it is not displayed to users. The name can be up to 64 characters
long, and can include letters, numbers, spaces, and punctuation.

• (Optional) Streaming application description, a description for the application. This description
is used only in the Amazon AppStream console, it is not displayed to users. The name can be up
to 512 characters long, and can include letters, numbers, spaces, and punctuation.

• Path to launcher, the local path and filename that Amazon AppStream calls to launch your
streaming application on a host.

• (Optional) In Launcher Parameters, enter any command-line parameters that Amazon AppStream
should include when it launches your application on an Amazon AppStream host.

Click Save.

139

Amazon AppStream Developer Guide
Edit an Application

Clone an Application
Cloning an application is a quick way to deploy a copy of your application.You can then change parameters
on the cloned copy to make it behave differently from the original.You might, for example, use one set
of launcher parameters to launch a version of your application that records logs and uploads the files to
Amazon S3 for debugging purposes later and use the same application with a different set of launcher
parameters in production.

To clone an application

1. In the Amazon AppStream console, click View Your Streaming Applications. This button appears
only if you have added applications to Amazon AppStream.

140

Amazon AppStream Developer Guide
Clone an Application

https://console.aws.amazon.com/appstream/

2. In the list of applications, click the name of the application to view.

3. On the Application Summary page, click Clone.

141

Amazon AppStream Developer Guide
Clone an Application

4. On the Build page, click Next step.

5. On the Configure page, the application settings are pre-populated with the values from the copied
application.You can modify the settings. After you modify the settings, click Next step.

142

Amazon AppStream Developer Guide
Clone an Application

• In Streaming application name, enter a name for the streaming application. This name is visible
only in the Amazon AppStream console, it is not displayed to users. The name can be up to 64
characters long, and can include letters, numbers, spaces, and punctuation.

• (Optional) In Streaming application description, enter a description for the streaming application.
This description is used only in the Amazon AppStream console, it is not displayed to users. The
name can be up to 512 characters long, and can include letters, numbers, spaces, and punctuation.

• In Pre-signed S3 URL to installer, enter a pre-signed URL that points to the location of a file
stored in Amazon S3 that installs your application. The installer must be a single file that installs
your application as well as all of its resources and dependencies. Ensure that the pre-signed URL
has not expired.

• (Optional) In Installer parameters, enter any command-line parameters that Amazon AppStream
includes when it runs the installer on an Amazon AppStream host.

• In Path to launcher, enter the local path and filename that Amazon AppStream calls to launch
your streaming application on a host.

• (Optional) In Launcher parameters, enter command-line parameters that Amazon AppStream
includes when it launches your streaming application on an Amazon AppStream host.

6. Wait while Amazon AppStream prepares your application. This may take 30 minutes or more while
Amazon AppStream performs the following tasks:

143

Amazon AppStream Developer Guide
Clone an Application

Copies your application installer from your Amazon S3 bucket.•

• Prepares your Amazon AppStream environment.

• Installs your streaming application on an Amazon AppStream.

• Creates an Amazon Machine Image (AMI) of the server configuration that includes your installed
application.

• Starts your streaming application.

While Amazon AppStream is deploying your application, it displays the Application Summary page,
which contains the metadata for your application. The Application ID field displays the identifier
assigned to your application. Client applications specify this identifier when they call into your
entitlement service to connect to your application.

When your deployment finishes, Amazon AppStream displays a message indicating whether the
deployment succeeded or failed.

144

Amazon AppStream Developer Guide
Clone an Application

Archive an Application
You can deprecate a streaming application and prevent it from accepting new client connections. When
you do this, the streaming application is put into the archived state. The application can be restored to
production at a later time. While the streaming application is being archived, the streaming application
continues to stream content to current client sessions, but does not accept new client sessions. When
all the existing client sessions have finished, the streaming application enters the archived state.

To archive an application

1. In the Amazon AppStream console, click View Your Streaming Applications. This button appears
only if you have added applications to Amazon AppStream.

145

Amazon AppStream Developer Guide
Archive an Application

https://console.aws.amazon.com/appstream/

2. In the list of applications, click the name of the streaming application to view.

3. On the Application Summary page, click Archive.

146

Amazon AppStream Developer Guide
Archive an Application

4. In the Archive message box, click Archive.

Amazon AppStream moves the application into the archived state. This may take a few minutes.

When the application is archived, it no longer appears in the list of applications.

Enable Logging on a Streaming Application
When your application exhibits unusual behaviors, such as unexpected shutdowns, intermittent streaming,
or poor performance, or you want to know what your streaming application is doing, you can enable
logging to see what is happening.

147

Amazon AppStream Developer Guide
Enable Logging on an Application

When logging is enabled, Amazon AppStream creates a .zip file of all the logs that you specify and
uploads that .zip file is then uploaded to a specified Amazon S3 bucket in your account. Once the logs
are stored in Amazon S3, you can download them and see what was happening within your streaming
application during the session.

Although Amazon AppStream only upload logs after a session terminates, log creation during a session
can adversely affect the streaming experience. Balance the need for logging events with the effect on
the streaming experience by enabling logging.

Note
Amazon AppStream does not encrypt the log files by default. If you want encrypted logs, encrypt
them when they are generated (client side encryption) or on the Amazon S3 bucket (server side
encryption).

AppStream Log Names
Amazon AppStream uses this pattern to name the .zip file:

<bucketName>/AppStream/<region>/<Application ID>/yyyy-mm-dd/<log file name>.zip

Default Amazon AppStream Logs
By default, Amazon AppStream saves the following logs:

• A file called launch.txt.failed with the output if Amazon AppStream fails to start the streaming
application.

• Minidump files (.dmp)

• Standard error stream (launch.txt.stderr)

• Standard output stream (launch.txt.stdout)

• Utilization metrics (utilization.csv) which is a file that provides operational metrics. The first row
contains column headings and the following rows are comma-separated values:

• UTC Time—Time in Universal Coordinated Time (UTC) when the row was created.

• Processor (n) %—The percentage of use for each CPU core starting with Core 0.

• Memory in Use (Bytes)—Memory that was used in bytes.

• Memory Available (Bytes)—Memory that was available in bytes.

• Disk Read (Bytes)—Disk read speed in bytes per second.

• Disk Write (Bytes)—Disk write speed in bytes per second.

• GPU Utilization %—The percentage of use for the GPU.

• GPU Memory Utilization %—The percentage of GPU memory that was used.

• GPU Memory Total (MB)—The total GPU memory available in the megabytes (MB).

• GPU Memory Used (MB)—The amount of GPU memory used in MB.

• GPU Memory Free (MB)—The amount of GPU memory available in MB.

• GPU Temperature (C)—The temperature of the GPU in degrees centigrade.

• GPU Power Draw (W),—The number of watts the GPU is using.

• GPU Power Limit (W)—The maximum number of watts required by the GPU.

The following is an example of the metrics in this utilization log.

UTC Time,Processor(0) %,Processor(1) %,Processor(2) %,Processor(3) %,Memory
In Use (Bytes),Memory Available (Bytes),Disk Write (Bytes/sec),Disk Read
(Bytes/sec),GPU Utilization %,GPU Memory Utilization %,GPU Memory Total

148

Amazon AppStream Developer Guide
AppStream Log Names

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680369%28v=vs.85%29.aspx

(MB),GPU Memory Used (MB),GPU Memory Free (MB),GPU Temperature (C),GPU Power
 Draw (W),GPU Power Limit (W)
2014/05/15
11:17:39,0.92,3.14,6.58,1.88,2724400196.27,14014595549.87,614818.20,103422.13,0,
 1, 4095, 4063, 32, 33, 18.44, 125.00
2014/05/15
11:18:40,0.95,1.15,0.32,1.24,2745420390.40,14010372983.47,8689.31,99415.41,0,
 1, 4095, 4063, 32, 33, 18.26, 125.00
2014/05/15
11:19:41,0.36,0.67,0.20,1.30,2734278997.33,14029225574.40,6994.11,18322.61,0,
 1, 4095, 4063, 32, 33, 18.44, 125.00
2014/05/15
11:20:42,0.08,0.69,0.10,0.97,2724477064.53,14033759027.20,27142.17,14072.01,0,
 1, 4095, 4063, 32, 33, 18.54, 125.00
2014/05/15
11:21:43,0.18,0.27,0.10,1.42,2719389627.73,14038990438.40,40446.51,203.51,0,
 1, 4095, 4063, 32, 33, 18.53, 125.00
2014/05/15
11:22:44,0.13,0.44,0.12,0.87,2720666555.73,14039756800.00,43574.68,1696.60,0,
 1, 4095, 4063, 32, 32, 18.67, 125.00
2014/05/15
11:23:45,0.18,0.44,0.24,0.92,2718720887.47,14040533674.67,44824.72,271.31,0,
 1, 4095, 4063, 32, 32, 18.43, 125.00
2014/05/15
11:24:46,0.30,0.50,0.14,1.73,2707566796.80,14053706888.53,72334.31,209776.90,0,
 1, 4095, 4063, 32, 32, 18.21, 125.00
2014/05/15
11:25:46,0.34,0.44,0.14,1.52,2654716040.53,14106968064.00,43219.86,1479.45,0,
 1, 4095, 4063, 32, 33, 18.41, 125.00
2014/05/15
11:26:47,0.05,0.88,0.16,1.08,2655204010.67,14107344554.67,43875.24,0.00,0, 1,
 4095, 4063, 32, 32, 18.31, 125.00
2014/05/15
11:27:48,0.38,0.79,0.16,1.25,2653159219.20,14107987626.67,40567.09,0.00,0, 1,
 4095, 4063, 32, 33, 18.23, 125.00
2014/05/15
11:28:49,0.17,0.59,0.09,1.32,2650824772.27,14108805666.13,43111.49,0.00,0, 1,
 4095, 4063, 32, 33, 18.20, 125.00
2014/05/15
11:29:50,0.16,0.45,0.07,0.76,2651427157.33,14109135803.73,43341.33,0.00,0, 1,
 4095, 4063, 32, 33, 18.33, 125.00
2014/05/15
11:30:51,0.05,0.83,0.11,0.92,2650787703.47,14109916501.33,44690.80,0.00,0, 1,
 4095, 4063, 32, 33, 18.30, 125.00
2014/05/15
11:31:52,0.13,0.64,0.29,0.79,2651821602.13,14110050781.87,44109.33,0.00,0, 0,
 4095, 4063, 32, 33, 18.18, 125.00
2014/05/15
11:32:52,0.14,0.99,0.44,1.34,2655279445.33,14108282675.20,56575.66,2570.57,0,
 0, 4095, 4063, 32, 32, 17.78, 125.00

149

Amazon AppStream Developer Guide
Default Amazon AppStream Logs

Custom Amazon AppStream Logs
In addition to the above files, Amazon AppStream also collects logs located in directories that you specify.
To specify custom files or directories simply include that information during the create application process
or by updating the metadata of your application.

If you want Amazon AppStream to create the bucket, the new bucket name will use the following naming
convention:

AppStream-<region>-<Account ID>

If you want to use your own bucket, you must allow Amazon AppStream to use the PutObject method.
To allow this method, use a bucket policy similar to the following:

{ "Version": "2008-10-17",
 "Id": "Policy1396472828471",
 "Statement": [
 {
 "Sid": "Stmt1396472820469",
 "Effect": "Allow",
 "Principal": {"AWS":"arn:aws:iam::990116983315:root"},
 "Action": ["s3:PutObject"],
 "Resource": "arn:aws:s3:::your bucket name/*"
 }
]
}

For more information about modifying the Amazon S3 bucket policy, see Bucket Policy Examples in the
Amazon S3 Developer Guide.

You can also specify log files from other directories by filling the text box with the paths to directories that
contain the log files or the path and filename of the log. Separate each path with a semi-colon (;). The
paths and files must meet the following requirements:

• Log files must be located in the C:\ directory.

• Log paths must be fully qualified paths. Do not use relative paths.You can use wildcards.

• Log paths must be less than the path length limits. See Naming Files, Paths, and Namespaces.

• Log file names cannot contain Windows reserved characters. See Naming Conventions.

• Your application must have read access to the paths.

Note
The total size of logs in the .zip file is subject to the Amazon S3 key size limits.

Enabling Amazon AppStream Logging through The Console

1. Sign in to the AWS Management Console and open the Amazon AppStream console at
https://console.aws.amazon.com/appstream/.

2. Click View your streaming applications.

3. Click on the streaming application that you want to enable logging.

4. On the Streaming Application Summary page, click Edit.

5. On the Edit Streaming Application Details page in Application Logs, select Yes, save application
logs.

6. (Optional) Use the text box that appears to specify other paths or log files to include in the .zip file.
Each time you fill in a text box, another text box appears so that you can specify other paths or logs.

150

Amazon AppStream Developer Guide
Custom Amazon AppStream Logs

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#naming_conventions
https://console.aws.amazon.com/appstream/

7. To have Amazon AppStream send your logs to the default Amazon S3 bucket, click Create a default
bucket. To use one of your existing Amazon S3 buckets, click the down arrow next to Create a
default bucket and select one of your buckets.

8. Click Save.

Enabling Amazon AppStream Logging
Programatically
You can enable logging programmatically when you add your streaming application to Amazon AppStream
or update the metadata for an existing streaming application. In either case, use one of the methods to
provide the relevant data in the applicationManifest input field.

151

Amazon AppStream Developer Guide
Enabling Amazon AppStream Logging Programatically

To enable logging when creating a new streaming application:

1. Access the root by calling /.

2. Follow the Applications (p. 173) link to get a list of applications.

3. Follow the application:create (p. 181) link to create the application.

4. Fill in the necessary information in the applicationManifest input field.

To enable logging on an existing streaming application:

1. Access the root by calling /.

2. Follow the Applications (p. 173) link to get a list of applications.

3. Follow the application:by-id (p. 181) link to get the proper application representation.

4. Follow the application:update (p. 183) link to update the streaming application.

5. Fill in the necessary information in the applicationManifest input field.

Increase Your Amazon AppStream Service
Limits

By default, your streaming application has a service limit of up to 10 simultaneous sessions. This means
that your streaming application can stream to 10 users at any given time. If you need more simultaneous
connections, you can request a service limit increase by starting a new case at the Support Center .

Before contacting the Support Center, you should gather the following information:

• The number of simultaneous sessions you need

• Expected date on which you need your new limit.

• How many months the limit needs to be in effect.

• A description of your use case.

• Email addresses of other people who need to know about your request.

After you submit a new case, the Amazon AppStream product team will contact you within three business
days to discuss your service limit increase. Depending on the number of simultaneous sessions you need,
increasing your service limits can take from 2 weeks to 10 weeks to complete. The product team
representative will discuss your needs with you and provide more information about the amount of time
required to fulfill your request.

As soon as you know how many simultaneous sessions you’ll need, request a session limit increase so
that you will have the capacity when you need it.

To request a service limit increase

1. Go to the Support Center and click Open a new case.

2. Select Service Limit increase. The form changes after you make this selection.

152

Amazon AppStream Developer Guide
Increase Your Service Limits

https://aws.amazon.com/support/createCase?serviceLimitIncreaseType=appstream-limits&type=service_limit_increase
https://aws.amazon.com/support/createCase?serviceLimitIncreaseType=appstream-limits&type=service_limit_increase

3. For Regarding, click Service Limit Increase.

4. For Limit Type, click AppStream.

5. Fill in all of the required options in the form and then click Web.

153

Amazon AppStream Developer Guide
Increase Your Service Limits

Security Considerations

Topics

• Controlling Access Using IAM (p. 154)

• Security Best Practices (p. 157)

Using IAM to Control Access to Amazon
AppStream Resources

Amazon AppStream integrates with AWS Identity and Access Management (IAM), which allows you to
control access to Amazon AppStream.

For general information about IAM, go to:

• Identity and Access Management (IAM)

• Using IAM

You can give IAM users of your AWS account access to all Amazon AppStream operations or to a subset
of them. The following is the list of Amazon AppStream operations that can be made available to IAM
users.

appstream:GetApiRoot
appstream:GetApplications
appstream:GetApplication
appstream:GetApplicationStatus
appstream:GetApplicationErrors
appstream:GetApplicationError
appstream:CreateApplication
appstream:UpdateApplication
appstream:DeleteApplication
appstream:UpdateApplicationState
appstream:GetSessions
appstream:GetSession
appstream:GetSessionStatus

154

Amazon AppStream Developer Guide
Controlling Access Using IAM

http://aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/

appstream:CreateSession
appstream:UpdateSessionState

Example IAM User Policies for Amazon AppStream
By default, IAM users have no access to Amazon AppStream or to the resources that it uses. If you want
IAM users to be able to work with Amazon AppStream, for example, in the AWS Management Console,
you must grant them permissions.

This section shows simple policies for controlling access to Amazon AppStream. To use these policies,
you create an IAM user and attach one of these policies to the user or to the IAM group that the user
belongs to.

Give users access to DynamoDB and a specific set of
AppStream API calls
The following policy lets users access DynamoDB.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1394569913000",
 "Effect": "Allow",
 "Action": [
 "dynamodb:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Sid": "Stmt1394569933000",
 "Effect": "Allow",
 "Action": [
 "appstream:CreateSession",
 "appstream:GetApiRoot",
 "appstream:GetApplication",
 "appstream:GetApplications",
 "appstream:GetApplicationStatus",
 "appstream:GetSession",
 "appstream:GetSessions",
 "appstream:GetSessionStatus",
 "appstream:UpdateSessionState"
],
 "Resource": [
 "*"
]
 }
]
 }

155

Amazon AppStream Developer Guide
Example IAM User Policies for Amazon AppStream

Give IAM users broad access to Amazon AppStream
The following policy lets users perform any Amazon AppStream action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:*"
],
 "Resource": ["*"]
 }
]
}

Give users permission to modify applications and sessions
The following policy grants users the permission to create, update, and delete applications and sessions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:Create*",
 "appstream:Update*",
 "appstream:Delete*"
],
 "Resource": ["*"]
 }
]
}

Give users permission to modify applications
The following policy grants users the permission to deploy applications on Amazon AppStream and to
update or delete those applications.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:CreateApplication",
 "appstream:UpdateApplication*",
 "appstream:DeleteApplication"
],
 "Resource": ["*"]
 }

156

Amazon AppStream Developer Guide
Example IAM User Policies for Amazon AppStream

]
}

Give users read-only access to Amazon AppStream
The following policy grants users read-only access to Amazon AppStream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "appstream:Get*"
],
 "Resource": ["*"]
 }
]
}

Security Best Practices
AWS has several features to help you keep your assets secure.

Versioning
Versioning offers an additional level of protection by providing a means of recovery when customers
accidentally overwrite or delete objects. This allows you to easily recover from unintended user actions
and application failures.You can also use versioning for data retention and archiving. For more information,
see Amazon Simple Storage Service FAQs and the Amazon Simple Storage Service Developer Guide.

Multi-Factor Authentication
AWS multi-factor authentication (MFA) is an additional layer of security that offers enhanced control over
your AWS account settings and the management of the AWS resources to which the account has
subscribed.When you enable this opt-in feature, you need to provide a six-digit single-use code in addition
to your user name and password before access is granted.You get this single use code from an
authentication device or a special application on a mobile phone that you keep in your physical possession.

This feature is called multi-factor authentication because two factors are checked before access is granted
to your account: you need to provide both your AWS email ID and password (the first factor: something
you know) and the particular code from your authentication device (the second factor: something you
have).You can enable multi-factor authentication for your AWS account as well as for the users you have
created under your AWS account using IAM.

It's easy to obtain an authentication device from a participating third-party provider.You can also download
and install appropriate software on your mobile phone, then set it up for use via the AWS website. For
more information, see AWS Multi-Factor Authentication.

157

Amazon AppStream Developer Guide
Security Best Practices

http://aws.amazon.com/s3/faqs/
http://docs.aws.amazon.com/AmazonS3/latest/dev/
http://aws.amazon.com/mfa/

Key Rotation
You should keep your AWS passwords and access keys safe for the same reasons it is important to
change your password frequently. AWS recommends that you rotate your access keys and certificates
on a regular basis. To let you do this without potential impact to the availability of your applications, AWS
supports multiple concurrent access keys and certificates.With this feature, you can regularly rotate keys
and certificates into and out of operation without any downtime to your application. This can help to
mitigate risk from lost or compromised access keys or certificates.You can use the IAM APIs to rotate
the access keys of your AWS account as well as for users created under your AWS account. For more
information, see AWS Security Credentials.

Use A Strong Password For Remote Management
Use a strong password with remote management services such as SSH and VNC to restrict access to
your instances. If you do not configure a strong password with these remote management services,
malicious users could access your instances.

Restrict Access to Your Streaming Application
Restrict your security groups to allow connections only from ports required to support the necessary
services. The following are suggested ports to allow incoming connections:

• SSH—port 22

• STX—port 80

• STX TCP—port 5900

• STX UDP—ports 9070-9080

For additional protection, restrict access to incoming traffic to a group of IP addresses.

158

Amazon AppStream Developer Guide
Key Rotation

http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

Troubleshooting Amazon
AppStream

If you encounter a problem with your product, the following topics offer information about possible causes
of your issue as well as proposed solutions.

If you are still having a problem, check the Amazon AppStream forum or contact Amazon AppStream
support.

Topics

• Deployment Problems (p. 159)

• Streaming Problems (p. 160)

• Error Codes (p. 160)

Deployment Problems
If you encounter an issue with deploying your application, the following checks may help you locate the
source of the problem.

Is Your Installer Corrupted?
Download your application installer from Amazon S3 and verify that it works as intended.

Has Your Pre-Signed URL Expired?
The URL you pass in to Amazon AppStream for your application installer must point to a file stored in
Amazon S3. The URL must be a pre-signed URL that has not expired. If you are not sure when your
pre-signed URL expires, generate a new pre-signed URL and pass that in.

Does Your Pre-Signed URL Use HTTP Protocol?
The pre-signed URL you pass in to Amazon AppStream; for your application installer must use HTTPS
protocol instead of HTTP.You can check the protocol by looking at the beginning of your pre-signed URL.

159

Amazon AppStream Developer Guide
Deployment Problems

https://forums.aws.amazon.com/forum.jspa?forumID=171
https://aws.amazon.com/support
https://aws.amazon.com/support

It should begin with the characters https://. If it does not, generate a new pre-signed URL using the
HTTPS protocol. .

Streaming Problems
If you encounter a problem with your streaming application, such as unexpected behaviors or poor
streaming quality, enable logging to get a log file with the events that have occurred while your streaming
application was running on Amazon AppStream.The events may provide detailed information about your
problem. Simply write to any log directory you have access to and configure Amazon AppStream to upload
those logs to the specified Amazon S3 bucket.

To enable logging, see Enable Logging on a Streaming Application (p. 147).

Error Codes
The following are the error messages you may encounter using Amazon AppStream.You can see these
error messages through application:errors (p. 185) and Application Error (p. 177).

Topics

• APPLICATION_DELETION_FAILED (p. 160)

• APPLICATION_INSTALLATION_FAILED (p. 160)

• APPLICATION_LAUNCH_FAILED (p. 161)

• APPLICATION_INSTALLATION_NOT_SILENT (p. 161)

• APPLICATION_INSTALLATION_TIMED_OUT (p. 161)

• APPLICATION_LAUNCH_TIMED_OUT (p. 161)

• APPLICATION_RUNTIME_FAILURE (p. 162)

• INTERNAL_FAILURE (p. 162)

• SDK_VERSION_DETECTION_FAILED (p. 162)

• S3_URL_INVALID (p. 162)

APPLICATION_DELETION_FAILED
This error occurs when Amazon AppStream attempts to delete your application.

Cause
Amazon AppStream generated an unknown error while deleting an application.

Solution
Contact Amazon AppStream support

APPLICATION_INSTALLATION_FAILED
This error occurs when Amazon AppStream attempts to install your application.

160

Amazon AppStream Developer Guide
Streaming Problems

https://aws.amazon.com/support

Cause
Amazon AppStream generated an unknown error while installing your application.

Solution
Ensure that your application installer installs your application in a reasonable amount of time. If the
application installer works, then contact Amazon AppStream support.

APPLICATION_LAUNCH_FAILED
This error occurs when Amazon AppStream starts your application.

Cause
Amazon AppStream generated an unknown error while starting your application.

Solution
Contact Amazon AppStream support

APPLICATION_INSTALLATION_NOT_SILENT
This error occurs when Amazon AppStream detects that the application installer requires user interaction.

Cause
Amazon AppStream detected that the application installer requires user interaction.

Solution
Revise the application installer to run without any user interaction. For more information, see Build an
Application Installer (p. 73).

APPLICATION_INSTALLATION_TIMED_OUT
This error occurs when Amazon AppStream runs the application installer.

Cause
Amazon AppStream timed out waiting for the application installer to complete installing the application.

Solution
Revise the application installer to complete the installation in a reasonable amount of time. For more
information, see Build an Application Installer (p. 73). Deploy the updated application installer.

APPLICATION_LAUNCH_TIMED_OUT
This error occurs when Amazon AppStream attempted to start your application.

161

Amazon AppStream Developer Guide
APPLICATION_LAUNCH_FAILED

https://aws.amazon.com/support
https://aws.amazon.com/support

Cause
Amazon AppStream timed out while starting your application.

Solution
Verify that your application installer installs the files and sets the correct permission. The application
installer must meet the requirements in Build an Application Installer (p. 73). Deploy the updated application
installer.

APPLICATION_RUNTIME_FAILURE
This error occurs when Amazon AppStream runs your application.

Cause
Your application has stopped.

Solution
Contact Amazon AppStream support

INTERNAL_FAILURE
This error occurs in Amazon AppStream.

Cause
An unknown error occurred in Amazon AppStream.

Solution
Contact Amazon AppStream support

SDK_VERSION_DETECTION_FAILED
This error occurs when Amazon AppStream runs the application installer.

Cause
Your application does not integrate with the libraries in the Amazon AppStream SDK.

Solution
Revise the application code to integrate the libraries in the Amazon AppStream SDK. Deploy the updated
application.

S3_URL_INVALID
This error occurs when Amazon AppStream runs the application installer.

162

Amazon AppStream Developer Guide
APPLICATION_RUNTIME_FAILURE

https://aws.amazon.com/support
https://aws.amazon.com/support

Cause
• The specified pre-signed URL to the Amazon S3 bucket with your application installer is incorrect.

• The application installer in the Amazon S3 bucket is not set to public.

• The expiry time you set when creating the pre-signed URL is inadequate.

• You used the HTTP protocol to create the pre-signed URL.

Solution
• Use the correct pre-signed Amazon S3 URL.

• Change the application installer in the Amazon S3 bucket to public. In the Amazon S3 bucket, click
your application installer, click Actions, and then click Make Public.

• Create a pre-signed URL with a longer expiry time.

• Create a pre-signed URL with the HTTPs protocol.

163

Amazon AppStream Developer Guide
S3_URL_INVALID

Amazon AppStream REST API

The Amazon AppStream web service provides APIs you can call to manage applications hosted on
Amazon AppStream and to manage client sessions connecting to those applications.

You can use this API to:

• Programmatically manage applications hosted on Amazon AppStream. For example, you can add new
applications to Amazon AppStream and automate tasks you would otherwise perform through the
console.

• Create tools or services to control access to your applications.The example found in the section called
“Build an Entitlement Service” (p. 73) demonstrates one such service.

You can call an API provided by Amazon AppStream by either submitting a REST request, or by calling
wrapper functions in the Amazon AppStream SDK.You can download the Amazon AppStream SDK from
the links in Downloads (p. 10).

Topics

• Hypertext Application Language (p. 164)

• Making HTTP Requests (p. 165)

• Signing Requests (p. 168)

• Handling Errors (p. 169)

• Resources (p. 172)

• Link Relations (p. 181)

Hypertext Application Language
The Amazon AppStream web service is a resource-based API that uses Hypertext Application Language
(HAL). HAL provides a standard way for expressing the resources and relationships of an API as hyperlinks.
Using HAL, you use HTTP methods (GET, PUT, POST, DELETE) to submit requests and receive
information about the API in the response. Applications can use the information returned to explore the
functionality of the API.

For example, you can inspect the JSON returned in the response from the web service on an
Application (p. 174) resource to discover the session:entitle (p. 185) link. By extracting the href property
of that link, you can programmatically build the request needed to create a new client session for that
application. For more information about HAL, see the JSON Hypertext Application Language draft.

164

Amazon AppStream Developer Guide
Hypertext Application Language

http://tools.ietf.org/html/draft-kelly-json-hal-06

Making HTTP Requests to Amazon AppStream
Amazon AppStream REST requests are HTTP requests as defined in RFC 2616. (For more information,
go to http://www.ietf.org/rfc/rfc2616.txt.) This section describes the structure of an Amazon AppStream
REST request. For detailed descriptions of the resources and references of the API, see Resources (p. 172).

A typical REST action consists of sending an HTTP request to Amazon AppStream and waiting for the
response. Like any HTTP request, a REST request to Amazon AppStream contains a request method,
a URI, request headers, and sometimes a query string or request body. The response contains an HTTP
status code, response headers, and sometimes a response body.

Topics

• Limits on Request Rates (p. 165)

• HTTP Header Contents (p. 165)

• HTTP Request Body (p. 166)

• HTTP Responses (p. 166)

Limits on Request Rates
Amazon AppStream limits the rate at which you can submit requests:

• You can submit a maximum of two POSTs to the applications resource per second per AWS account.

• You can submit a maximum of four POSTs to an application's sessions resource per second per AWS
account.

If you submit requests at a faster rate, Amazon AppStream may respond with HTTP 429 errors as explained
in API Error Codes (Client and Server Errors) (p. 169).

HTTP Header Contents
Amazon AppStream requires the following information in the headers of an HTTP request:

Host (Required)
The Amazon AppStream endpoint. This value must be
https://appstream.us-east-1.amazonaws.com.

x-amz-date or Date (Required)
The date used to create the signature contained in the Authorization header. Specify the date in
ISO 8601 standard format, in UTC time, as in the following example: X-Amz-Date:
20130613T203622Z.

You must include either x-amz-date or Date. (Some HTTP client libraries don't let you set the Date
header). When an x-amz-date header is present, the system ignores any Date header when
authenticating the request.

The time stamp must be within 15 minutes of the AWS system time when the request is received. If
it isn't, the request fails with the RequestExpired error code to prevent someone else from replaying
your requests.

Authorization (Required)
The information required for request authentication. For more information about constructing this
header, see Signing Requests (p. 168).

Content-Type (Conditional)
Specifies JSON and the version, for example, Content-Type: application/x-amz-json-1.0.

165

Amazon AppStream Developer Guide
Making HTTP Requests

http://www.ietf.org/rfc/rfc2616.txt

Condition: Required for PUT and POST requests.

Content-Length (Conditional)
Length of the message (without the headers) according to RFC 2616.

Condition: Required if the request body itself contains information (most toolkits add this header
automatically).

The following are example headers for an HTTP request to entitle a new client session.

POST /applications/e407fbc8-5c27-48e6-9412-a876167546e8/sessions HTTP/1.1
host: appstream.us-east-1.amazonaws.com
x-amz-date: 20120116T174952Z
Authorization: AWS4-HMAC-SHA256 Credential=AccessKeyID/20120116/us-east-
1/ets/aws4_request,SignedHeaders=host;x-amz-date;x-amz-target,Signa
ture=145b1567ab3c50d929412f28f52c45dbf1e63ec5c66023d232a539a4afd11fd9
content-type: application/x-amz-json-1.0
content-length: 56
{
 "opaqueData": "TYtYS00MaWQ9Y2JmOmM4hhZWNS00MjJ"
}

HTTP Request Body
Many Amazon AppStream API actions require you to include JSON-formatted data in the body of the
request. The JSON conforms to the Amazon AppStream schema.

Note
JSON values in the request body are strings.

HTTP Responses
All Amazon AppStream API actions include JSON-formatted data in the response. The JSON conforms
to the Amazon AppStream schema.

Note
JSON values in the response are strings.

Here are some important headers in the HTTP response and how you should handle them in your
application, if applicable:

HTTP/1.1
This header is followed by a status code. Status code 200 indicates a successful operation. For
information about error codes, see API Error Codes (Client and Server Errors) (p. 169).

Type: String

x-amzn-RequestId
A value created by Amazon AppStream that uniquely identifies your request, for example,
K2QH8DNOU907N97FNA2GDLL8OBVV4KQNSO5AEMVJF66Q9ASUAAJG. If you have a problem
with Amazon AppStream, AWS can use this value to troubleshoot the problem. We recommend that
you log these values.

Type: String

Content-Length
The length of the response body in bytes.

Type: String

166

Amazon AppStream Developer Guide
HTTP Request Body

Content-Type
The type of the message's content. Usually application/hal+json.

Type: String

Date
The date and time that Amazon AppStream responded, for example, Sun, 25 Mar 2012 12:00:00
GMT. The format of the date must be one of the full date formats specified by RFC 2616, section 3.3.

Type: String

167

Amazon AppStream Developer Guide
HTTP Responses

Signing Requests
Amazon AppStream requires that you authenticate every request you send by signing the request. To
sign a request, you calculate a digital signature using a cryptographic hash function, which returns a hash
value based on the input. The input includes the text of your request and your secret access key. The
hash function returns a hash value that you include in the request as your signature. The signature is
part of the Authorization header of your request.

After receiving your request, Amazon AppStream recalculates the signature using the same hash function
and input that you used to sign the request. If the resulting signature matches the signature in the request,
Amazon AppStream processes the request. Otherwise, the request is rejected.

Amazon AppStream supports authentication using AWS Signature Version 4.The process for calculating
a signature can be broken into three tasks:

• Task 1: Create a Canonical Request

Create your HTTP request in canonical format as described in Task 1: Create a Canonical Request
For Signature Version 4 in the Amazon Web Services General Reference.

• Task 2: Create a String to Sign

Create a string that you will use as one of the input values to your cryptographic hash function. The
string, called the string to sign, is a concatenation of the name of the hash algorithm, the request date,
a credential scope string, and the canonical request from the previous task.The credential scope string
itself is a concatenation of date, region, and service information.

For the X-Amz-Credential parameter, specify:

• The code for the endpoint to which you're sending the request, for example, us-east-1. For a list
of regions and endpoints for Amazon AppStream, see the Regions and Endpoints chapter of the
Amazon Web Services General Reference. When specifying the code for the endpoint, include only
the part between appstream. and .amazonaws.com

• appstream for the service abbreviation

For example:

X-Amz-Credential=AKIAIOSFODNN7EXAMPLE/20130501/us-east-1/appstream/aws4_request

• Task 3: Create a Signature

Create a signature for your request by using a cryptographic hash function that accepts two input
strings: your string to sign and a derived key. The derived key is calculated by starting with your secret
access key and using the credential scope string to create a series of hash-based message
authentication codes (HMACs).

168

Amazon AppStream Developer Guide
Signing Requests

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-canonical-request.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-create-string-to-sign.html
http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/sigv4-calculate-signature.html

Handling Errors in Amazon AppStream
Topics

• API Error Codes (Client and Server Errors) (p. 169)

• Catching Errors (p. 171)

• Error Retries and Exponential Backoff (p. 172)

When you send requests to and get responses from the Amazon AppStream API, you might encounter
two types of API errors:

• Client errors: Client errors are indicated by a 4xx HTTP response code. Client errors indicate that
Amazon AppStream found a problem with the client request, such as an authentication failure or missing
required parameters. Fix the issue in the client application before submitting the request again.

• Server errors: Server errors are indicated by a 5xx HTTP response code, and need to be resolved by
Amazon.You can resubmit/retry the request until it succeeds.

For each API error, Amazon AppStream returns the following values:

• A status code, for example, 400

• An error code, for example, ValidationException

• An error message, for example, Supplied AttributeValue is empty, must contain exactly
one of the supported datatypes

For a list of error codes that Amazon AppStream returns for client and server errors, see API Error Codes
(Client and Server Errors) (p. 169).

API Error Codes (Client and Server Errors)
HTTP status codes indicate whether an operation is successful or not.

A response code of 2xx indicates the operation was successful. Other error codes indicate either a client
error (4xx) or a server error (5xx).

The following table lists the errors returned by Amazon AppStream. Some errors are resolved if you
simply retry the same request. The table indicates which errors are likely to be resolved with successive
retries. If the value of the Retry column is:

• Yes: Submit the same request again.

• No: Fix the problem on the client side before submitting a new request.

For more information about retrying requests, see Error Retries and Exponential Backoff (p. 172).

RetryCauseMessageError codeHTTP
Status
Code

NoExample: The expected value did
not match what was stored in the
system.

The conditional request failed.Conditional
Check Failed
Exception

400

169

Amazon AppStream Developer Guide
Handling Errors

RetryCauseMessageError codeHTTP
Status
Code

NoThe signature in the request did
not include all of the required
components. See HTTP Header
Contents (p. 165).

The request signature does not
conform to AWS standards.

Incomplete
Signature
Exception

400

NoThe request did not include the
required
x-amz-security-token. See
Making HTTP Requests to
Amazon AppStream (p. 165).

The request must contain a valid
(registered) AWS Access Key ID.

Missing
Authentication
Token
Exception

400

NoOne or more values in a request
were missing or invalid; for
example, a value was empty or
was greater than the maximum
valid value.

Various.Validation
Exception

400

NoYou attempted to delete a system
preset, the signature in a call to
the Amazon AppStream API was
invalid, or the IAM user whose
credentials were used for this
request is not authorized to
perform the operation.

• Deleting a system preset is not
allowed: account=<accountId>,
presetId=<presetId>.

• General authentication failure.
The client did not correctly sign
the request. See Signing
Requests (p. 168).

AccessDenied
Exception

403

NoExample:The application to which
you're trying to create a new
session doesn't exist or is still
being created.

• The specified <resource> could
not be found: <resourceId>.

ResourceNot
Found
Exception

404

NoExample:You attempted to delete
an application that is currently in
use.

• The <resource> was already in
use: accountId=<accountId>,
resourceId=<resourceId>.

Resource
InUse
Exception

409

The current AWS account has
exceeded limits on Amazon
AppStream objects. .

• The account already has the
maximum number of sessions
allowed: account=<accountId>,
maximum number of
sessions=<maximum>

Limit
Exceeded
Exception

429

170

Amazon AppStream Developer Guide
API Error Codes (Client and Server Errors)

RetryCauseMessageError codeHTTP
Status
Code

YesExample:Your request rate is too
high. The AWS SDKs for Amazon
AppStream automatically retry
requests that receive this
exception.Your request is
eventually successful unless your
retry queue is too large to finish.
Reduce the frequency of requests.
For more information, see Error
Retries and Exponential
Backoff (p. 172).

You exceeded your maximum
allowed provisioned throughput.

Provisioned
Throughput
Exceeded
Exception

429

YesYou are submitting requests too
rapidly; for example, requests to
entitle new sessions.

Rate of requests exceeds the
allowed throughput.

Throttling
Exception

429

YesThe server encountered an error
while processing your request.

The server encountered an
internal error trying to fulfill the
request.

Internal Failure500

YesThe server encountered an error
while processing your request.

The server encountered an
internal error trying to fulfill the
request.

Internal Server
Error

500

YesThe service encountered an
unexpected exception while trying
to fulfill the request.

Internal
Service
Exception

500

YesThere was an unexpected error
on the server while processing
your request.

The service is currently
unavailable or busy.

Service
Unavailable
Exception

500

Sample Error Response
The following is an HTTP response indicating that the value for inputBucket was null, which is not a
valid value.

HTTP/1.1 400 Bad Request
x-amzn-RequestId: b0e91dc8-3807-11e2-83c6-5912bf8ad066
x-amzn-ErrorType: ValidationException
Content-Type: application/json
Content-Length: 124
Date: Mon, 26 Nov 2012 20:27:25 GMT

{"message":"1 validation error detected: Value null at 'InstallS3Bucket' failed
 to satisfy constraint: Member must not be null"}

Catching Errors
For your application to run smoothly, you need to build in logic to catch and respond to errors. One typical
approach is to implement your request within a try block or if-then statement.

171

Amazon AppStream Developer Guide
Catching Errors

The AWS SDKs perform their own retries and error checking. If you encounter an error while using one
of the AWS SDKs, you should see the error code and description.You should also see a Request ID
value. The Request ID value can help troubleshoot problems with Amazon AppStream support.

Error Retries and Exponential Backoff
Numerous components on a network, such as DNS servers, switches, load balancers, and others can
generate errors anywhere in the life of a given request.

The usual technique for dealing with these error responses in a networked environment is to implement
retries in the client application. This technique increases the reliability of the application and reduces
operational costs for the developer.

Each AWS SDK supporting Amazon AppStream implements automatic retry logic. The AWS SDK for
Java automatically retries requests, and you can configure the retry settings using the
ClientConfiguration class. For example, in some cases, such as a web page making a request with
minimal latency and no retries, you might want to turn off the retry logic. Use the ClientConfiguration
class and provide a maxErrorRetry value of 0 to turn off the retries.

If you're not using an AWS SDK, you should retry original requests that receive server errors (5xx).
However, client errors (4xx, other than a ThrottlingException or a
ProvisionedThroughputExceededException) indicate you need to revise the request itself to correct
the problem before trying again.

In addition to simple retries, we recommend using an exponential backoff algorithm for better flow control.
The idea behind exponential backoff is to use progressively longer waits between retries for consecutive
error responses. For example, you might let one second elapse before the first retry, four seconds before
the second retry, 16 seconds before the third retry, and so on. However, if the request has not succeeded
after a minute, the problem might be a hard limit and not the request rate. For example, you may have
reached the maximum number of pipelines allowed. Set the maximum number of retries to stop around
one minute.

Resources
The Amazon AppStream API includes the following resources.

Topics

• AppStream (p. 172)

• Applications (p. 173)

• Application (p. 174)

• Application Errors (p. 176)

• Application Error (p. 177)

• Application Status (p. 177)

• Sessions (p. 179)

• Session (p. 179)

• Session Status (p. 180)

AppStream
The root of the Amazon AppStream service.

172

Amazon AppStream Developer Guide
Error Retries and Exponential Backoff

Links

TemplatedMethodsDescriptionRelation

No.GETThe root resource of
Amazon AppStream.

self

No.GETA link to the applications
resource for the service.

appstream:applications

Properties
The AppStream resource has no properties.

Applications
The Applications resource is a collection resource that contains zero or more references to your existing
applications, and links that guide you on ways to interact with your collection. The collection offers a
paginated view of the contained applications.

Links

TemplatedMethodsDescriptionRelation

No.GETThe collection of
applications you have
hosted on Amazon
AppStream.

self

Yes. Requires the
application identifier.

GETRetrieves an individual
Application resource
based on the specified
identifier.

application:by-id (p. 181)

No.POSTAdds a new application to
Amazon AppStream.You
must have previously
uploaded the application
package to Amazon S3
and created a pre-signed
URL. For more information
about generating
pre-signed URLs, see
Share an Object with
Others in the Amazon
Simple Storage Service
Developer Guide.

application:create (p. 181)

No.GETAn array of links to the
current page of Application
resources.

item (p. 187)

173

Amazon AppStream Developer Guide
Applications

rest-api-appstream-applications.html
rest-api-application.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
rest-api-application.html

TemplatedMethodsDescriptionRelation

No.GETThe next page of items in
a collection. If there are no
further pages of items, this
link is not returned in the
response.

next (p. 187)

No.GETThe first page of items in
a collection. This link is
returned only when on
pages other than the first
one.

first (p. 187)

Properties
The Applications resource has no properties.

Application
An application you have added to Amazon AppStream.You are only able to access applications added
to your AWS account.

Links

TemplatedMethodsDescriptionRelation

No.GETAn application hosted on
Amazon AppStream.

self

No.GETThe current status of this
application.

application:status

No.POSTUpdate selected metadata
for this application.

application:update (p. 183)

No.GETThe collection of errors for
this application.

application:errors

No.PUTArchives the application.application:archive

No.PUTActivates a previously
archived application.

application:reactivate

No.DELETEDeletes an application that
is in the Error state.

application:delete

No.GETThe collection of sessions
associated with this
application.

application:sessions

Yes. Requires the session
identifier.

GETThe session which has the
specified identifier.

session:by-id (p. 185)

No.POSTCreate a new client
session for this
application.

session:entitle (p. 185)

174

Amazon AppStream Developer Guide
Application

rest-api-application-status.html
rest-api-application-errors.html
rest-api-application-archive.html
rest-api-application-reactivate.html
rest-api-application-delete.html
rest-api-application-sessions.html

TemplatedMethodsDescriptionRelation

No.GETThe collection of
applications you have
hosted on Amazon
AppStream.The collection
includes this application.

collection (p. 187)

Properties
The following properties of the application are set when you create the application, either by using the
REST API or the Amazon AppStream console.

DescriptionName

The application identifier. This is unique across all your
applications in Amazon AppStream.

id

The name of the application.name

(Optional) The description of the application.This description
is used to describe the application in Amazon AppStream, it
is not displayed to end users.

description

A pre-signed URL that points to the location in Amazon S3
that contains the installation package for the application. For
more information on creating a pre-signed URL, see Share
an Object with Others in the Amazon Simple Storage Service
Developer Guide.

installerUrl

The parameters required by the application installer to install
that application on a host managed by Amazon AppStream.

installerParameters

The command to run in order to launch the application after
it is hosted on Amazon AppStream.

Important
This command should not should include any
command-line parameters.

launchCommand

The name of the Amazon S3 bucket where the .zip files
contains the logs are uploaded.The bucket must already exist
and allow Amazon AppStream to use the PutObject method.

logBucket

175

Amazon AppStream Developer Guide
Application

http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html

DescriptionName

A string array whose elements contain the log filenames or
directory path where logs are stored.The filenames and paths
must meet the following requirements:

• Log files must be located in the C:\ directory.

• Log paths must be fully qualified paths. Do not use relative
paths.You can use wildcards.

• Log paths must be less than the path length limits. See
Naming Files, Paths, and Namespaces.

• Log file names cannot contain Windows reserved
characters. See Naming Conventions.

• Your application must have read access to the paths.

Note
The total size of logs in the .zip file is subject to the
Amazon S3 key size limits.

logPaths

The total number of errors associated with this application.
This does not include errors associated with client sessions,
which are enumerated in sessionErrorCount.

applicationErrorCount

The total number of client sessions currently connected to
this application.

activeSessions

The additional capacity available to accept client sessions.availableSessions

The total number of errors associated with client sessions
connected to this application.

sessionErrorCount

The date the application was created, in ISO 8601 format.createdDate

The date the application metadata was last updated in
Amazon AppStream, in ISO 8601 format.

lastUpdatedDate

Application Errors
The collection of Application Error resources associated with an application hosted on Amazon AppStream.

Links

TemplatedMethodsDescriptionRelation

No.GETThe collection of errors
associated with an
application.

self

No.GETAn array of links to the
current page of Application
Error resources.

item (p. 187)

176

Amazon AppStream Developer Guide
Application Errors

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#naming_conventions
rest-api-application-error.html
rest-api-application-error.html
rest-api-application-error.html

TemplatedMethodsDescriptionRelation

No.GETThe next page of items in
a collection. If there are no
further pages of items, this
link is not returned in the
response.

next (p. 187)

No.GETThe first page of items in
a collection. Only available
if on a page other than the
first.

first (p. 187)

Properties
The Application Errors resource does not have any properties.

Application Error
An error associated with the current application.

Links

TemplatedMethodsDescriptionRelation

No.GETThe error state.self

No.GETThe collection of errors
associated with the current
application. The collection
includes this error.

collection (p. 187)

Properties

DescriptionName

The identifier of the error. For more information about the
errors returned by the Amazon AppStream service, see
Handling Errors in Amazon AppStream (p. 169).

id

The current state of the error.This can be one of the following:
New, Read, or Deleted.

state

The type of error. This can either be Application or
Session.

type

A message that describes the error.message

The date the error occurred, in ISO 8601 format.errorDate

Application Status
The current status of an application hosted on Amazon AppStream.

177

Amazon AppStream Developer Guide
Application Error

Links

TemplatedMethodsDescriptionRelation

No.GETThe status of an
application.

self

No.GETThe application to which
this status applies.

up (p. 187)

Properties

DescriptionName

The state of the current application. This can be one of the
following values:

• Active—The application is ready to accept client sessions.

• Archived—The application must be reactivated before
accepting client sessions.

• Archiving—The application is in the process of archiving.
No new sessions can be entitled, but existing sessions will
continue until these sessions finish. To end the existing
sessions, explicitly terminate the existing session.

• Blocked—The application is waiting on dependencies.

• Building—Amazon AppStream is allocating resources to
host the application.

• Deleting—The application is in the process of being
deleted.

• Error—The application failed to build or deploy properly.

• New—The application has just been created.

• Unknown—The application state cannot be determined.

state

This property is present when the state is either Building
or Error. It indicates either the currently processing step if
the state is Building, or the step that was processing if the
state is Error. It can be one of the following values:

• Copying—Copying the installer data into the hosting
environment.

• Installing—Installing the application into the hosting
environment.

• Preparing—Preparing the host environment for application
installation.

• Provisioning—Provisioning the hosting environment to
run your application.

buildStep

178

Amazon AppStream Developer Guide
Application Status

Sessions
The list of sessions associated with the current application.You can only access sessions for applications
associated with your AWS account.

Links

TemplatedMethodsDescriptionRelation

No.GETThe collection of sessions
associated with the current
application.

self

Yes. Requires the session
identifier.

GETThe session with the
specified identifier.

session:by-id (p. 185)

No.GETAn array of links to the
current page of Session
resources.

item (p. 187)

Properties
The sessions resource has no properties.

Session
A resource representing an individual client session of an application hosted on Amazon AppStream.

Links

TemplatedMethodsDescriptionRelation

No.GETA session of the specified
application

self

No.GETThe status of the current
session.

session:status (p. 186)

No.PUTTerminate the current
session.

session:terminate (p. 186)

No.GETThe list of all client
sessions for the specified
application.

collection (p. 187)

Properties

DescriptionName

Unique identifier for the session.id

The URL clients use to redeem an entitlement for this session
and connect to the application.

entitlementUrl

179

Amazon AppStream Developer Guide
Sessions

rest-api-session.html

DescriptionName

Data to pass to the application. This data is not used by the
client, entitlement service, or Amazon AppStream, it is used
by the application. An example of opaqueData would be a
user identifier, which the application would then use to load
previous state information (such as high score or current map
level) for that user from a database.

opaqueData

The number of errors associated with this session.errorCount

The time at which the session began, in ISO 8601 format.startDate

The time at which the session ended, in ISO 8601 format. If
this is null, the session is active and the client is currently
connected.

endDate

Session Status
Returns the status of the current session.

Links

TemplatedMethodsDescriptionRelation

No.GETThe status of the current
session.

self

No.GETThe session to which this
state applies.

up (p. 187)

Properties

DescriptionName

Current state of the session. This can be one of the following
values:

• Unknown—the session state cannot be determined.

• Entitled—the session has been entitled, but the client
has not yet redeemed the entitlement.

• Reserved—the server side of the session is ready to
receive the client, but the client has not yet connected.

• Active—the session is actively streaming the application
to a client.

• Completed—the session ended by either client or server
action.

• Terminating—the session was terminated by the
developer and is in the process of ending.

• Terminated—the session was terminated by the
developer.

state

180

Amazon AppStream Developer Guide
Session Status

Link Relations
The Amazon AppStream API provides the following link relations that you can use to access and modify
Amazon AppStream resources.

Topics

• appstream:applications (p. 181)

• application:by-id (p. 181)

• application:create (p. 181)

• application:update (p. 183)

• application:archive (p. 184)

• application:reactivate (p. 184)

• application:delete (p. 185)

• application:status (p. 185)

• application:errors (p. 185)

• application:sessions (p. 185)

• session:by-id (p. 185)

• session:entitle (p. 185)

• session:status (p. 186)

• session:terminate (p. 186)

• Common Link Relations (p. 187)

appstream:applications
You can get the Applications resource for all your applications by performing a GET on the href of this
link.

Output
Returns the Applications resource that represents the collection of your Application resources.

application:by-id
You can use a Get request and this API to retrieve the application associated with the specified identifier.

Output
Returns the Application associated with the specified identifier.

application:create
You can use a POST request on the href of this link to add an application to Amazon AppStream.You
must have previously uploaded your application's installation package to Amazon S3 and generated a
pre-signed URL for the package's location in Amazon S3. For more information about generating pre-signed
URLs, see Share an Object with Others in the Amazon Simple Storage Service Developer Guide.

181

Amazon AppStream Developer Guide
Link Relations

rest-api-applications.html
rest-api-applications.html
rest-api-application.html
rest-api-application.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html

Input
In order to add an application to Amazon AppStream, you must pass in the following fields during your
POST request.

DescriptionInput Field

The name of the application.name

(Optional) The description of the application.This description
is used to describe the application in Amazon AppStream, it
is not displayed to end users.

description

A pre-signed URL that points to the location in Amazon S3
that contains the installation package for the application. For
more information on creating a pre-signed URL, see Share
an Object with Others in the Amazon Simple Storage Service
Developer Guide.

installerUrl

The command to run to install the application on an Amazon
AppStream host managed by Amazon AppStream.This should
include all necessary command-line parameters.

installerParameters

The command to run in order to launch the application after
it is hosted on Amazon AppStream. This should include all
necessary command-line parameters.

launchCommand

The name of the Amazon S3 bucket where the .zip files
contains the logs are uploaded.The bucket must already exist
and allow Amazon AppStream to use the PutObject method.

logBucket

A string array whose elements contain the log filenames or
directory path where logs are stored.The filenames and paths
must meet the following requirements:

• Log files must be located in the C:\ directory.

• Log paths must be fully qualified paths. Do not use relative
paths.You can use wildcards.

• Log paths must be less than the path length limits. See
Naming Files, Paths, and Namespaces.

• Log file names cannot contain Windows reserved
characters. See Naming Conventions.

• Your application must have read access to the paths.

Note
The total size of logs in the .zip file is subject to the
Amazon S3 key size limits.

logPaths

Output
The newly created Application.

182

Amazon AppStream Developer Guide
application:create

http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURL.html
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#naming_conventions
rest-api-application.html

Example Request

POST /applications HTTP/1.1
Host: appstream.us-east-1.amazonaws.com
Accept: application/hal+json
Version=4
X-Amz-Algorithm=AWS4-HMAC-SHA256
X-Amz-Credential=...%2Fus-east-1%2Fappstream%2Faws4_request
X-Amz-Date=2013-11-06T19%3A18%3A42.323Z
X-Amz-SignedHeaders=content-type%3Bhost%3Bx-amz-date
X-Amz-Signature=...
{
 "name": "SampleApp",
 "description": "A sample application hosted on Amazon AppStream.",
 "installParams": " ",
 "installS3Bucket": "https://s3-us-west-2.amazonaws.com/stx-server-client-
bundles/WhitewaterServer-04-20-13.EXE",
 "launchCommand": "c:\\app\\SampleApp\\sampleapp.exe"
 "logBucket": "MyS3Bucket",
 "logPaths": [""C:\MyLog1.log","C:\MyLog2.log",C:\myapp\logs*logs]
}

Example Response

HTTP/1.1 200 OK
Content-Type: application/hal+json
{

}

application:update
You can use a POST request on the href of this link to update the metadata fields associated with an
application hosted on Amazon AppStream. Updating the state affects the active applications. Updating
the state does not affect the active sessions.

Input
In order to update the state of an application, you must pass in the following field during your POST
request.

DescriptionInput Field

The new name of the application.name

The new description of the application.This is used internally
by Amazon AppStream and not displayed to end users.

description

The new command to launch the application. This command
is run on the streaming server after it finishes allocating. The
command starts the application on the server.

launchCommand

183

Amazon AppStream Developer Guide
application:update

DescriptionInput Field

The name of the Amazon S3 bucket where the .zip files
contains the logs are uploaded.The bucket must already exist
and allow Amazon AppStream to use the PutObject method.

logBucket

A string array whose elements contain the log filenames or
directory path where logs are stored.The filenames and paths
must meet the following requirements:

• Log files must be located in the C:\ directory.

• Log paths must be fully qualified paths. Do not use relative
paths.You can use wildcards.

• Log paths must be less than the path length limits. See
Naming Files, Paths, and Namespaces.

• Log file names cannot contain Windows reserved
characters. See Naming Conventions.

• Your application must have read access to the paths.

Note
The total size of logs in the .zip file is subject to the
Amazon S3 key size limits.

logPaths

Output
The updated Application.

application:archive
You can use a PUT request and this API to archive an application and release the AWS resources
allocated to host it. Any sessions that are currently active on the application will continue, but the application
does not accept new sessions. When all the currently active sessions have concluded, the application
reaches the Archived state.

An application that is archived can later be restarted with application:reactivate.

Output
The updated Application Status. This resource will initially have a state of Archiving, but the state will
eventually be Archived.You can periodically poll this resource to see its progress.

application:reactivate
You can use a PUT request and this API to restore a previously archived application and make it ready
to accept client sessions.

Output
The updated Application Status. This resource will initially have a state of Building, but the state will
eventually be Active.You can periodically poll this resource to see its progress.

184

Amazon AppStream Developer Guide
application:archive

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx#naming_conventions
rest-api-application.html
rest-api-application-reactivate.html
rest-api-applicationstatus.html
rest-api-applicationstatus.html

application:delete
To delete an Application that is in the Error state, call the href in the link using the DELETE method.

Output
Returns the Applications resource.

application:status
You can use a GET request on the href of this link to retrieve the Application Status associated with the
current Application.

Output
The Application Status for this Application.

application:errors
You can use a GET request on the href of this link to retrieve the Application Errors associated with the
current Application.

Output
The Application Errors for this Application.

application:sessions
You can GET the href of this link to retrieve the Sessions resource for associated with the current
application.

Output
The associated Sessions resource.

session:by-id
You can use a GET request with this API to retrieve the Session associated with the specified identifier.

Output
The Session associated with the specified identifier.

session:entitle
You can use a POST request and this API to entitle a new session for the current application. Amazon
AppStream returns the identifier of the newly created session.The new session contains the entitlementUrl
property which your entitlement service should pass back to the client. The client will then use this URL
to redeem its entitlement from Amazon AppStream and get the IP address it will use to connect to the
application.

185

Amazon AppStream Developer Guide
application:delete

rest-api-application.html
rest-api-applications.html
rest-api-applicationstatus.html
rest-api-application.html
rest-api-applicationstatus.html
rest-api-application.html
rest-api-application-errors.html
rest-api-application.html
rest-api-application-errors.html
rest-api-application.html
rest-api-sessions.html
rest-api-sessions.html
rest-api-session.html
rest-api-session.html

Links

TemplatedMethodsDescriptionRelation

No.GETThe session:entitle link
relation.

self

Input
When you entitle a new session, you can pass in the following field during your POST request.

DescriptionInput Field

(Optional) Data to pass to the application. This data is not
used by the client, entitlement service, or Amazon AppStream,
it is used by the application. An example of opaqueData would
be a user identifier, which the application would then use to
load previous state information (such as high score or current
map level) for that user from a database.

opaqueData

Output
The newly entitled Session (p. 179).

session:status
You can use a GET request on the href of this link to retrieve the Session Status associated with the
current Session.

Output
The Session Status for this Session.

session:terminate
You can use a PUT request and this API to terminate a session entitlement and return the session to the
pool of available sessions. Any client connected to the session will be disconnected.

Links

TemplatedMethodsDescriptionRelation

Yes. Requires the session
identifier.

GETThe session:terminate link
relation.

self

Output
The updated session:status (p. 186). This should be set to Terminating or Terminated.

186

Amazon AppStream Developer Guide
session:status

rest-api-sessionstatus.html
rest-api-session.html
rest-api-sessionstatus.html
rest-api-session.html

Common Link Relations
The following link relations may be applied to Applications or Sessions depending on the context of the
Amazon AppStream request. For more information about common link relations, see
http://www.iana.org/assignments/link-relations/link-relations.xhtml.

Topics

• collection (p. 187)

• first (p. 187)

• item (p. 187)

• next (p. 187)

• up (p. 187)

collection
The collection link relation identifies a target resource that represents a collection of which the context
resource is a member. For example, an application resource may have a collection link relation that points
to the collection of all applications associated with your AWS account.

first
The first page of items in a collection. This can be a page of applications, sessions, or errors, depending
on the context of the request.

item
An item in a collection. This can be an application, session, or error, depending on the context of the
request. For example, the Applications resource has an item relation that is an array of individual Application
resources.

next
The next page of items in a collection. This can be a page of applications or sessions, depending on the
context of the request.

up
The parent of the current context. For example, the up link relation of the Application Status resource is
the Application to which the status applies.

187

Amazon AppStream Developer Guide
Common Link Relations

rest-api-applications.html
rest-api-sessions.html
http://www.iana.org/assignments/link-relations/link-relations.xhtml
rest-api-applications.html
rest-api-application.html
rest-api-applicationstatus.html
rest-api-application.html

Product Updates

Topics

• Release for June 20, 2014 (Latest) (p. 188)

• Release for May 30, 2014 (p. 189)

• Release for May 9, 2014 (p. 189)

• Release for April 22, 2014 (p. 190)

• Release for March 28, 2014 (p. 191)

• Release for March 7, 2014 (p. 191)

• Release for February 14, 2014 (p. 192)

• Release for January 24, 2014 (p. 192)

Release for June 20, 2014 (Latest)
This release includes the following changes:

Up to 20% performance improvement on 64-bit iOS
devices
We added support for ARM64 which improves the performance on 64-bit iOS devices by up to 20%. If
you are updating an existing iOS client application, you should use the new libXStxClient.a file and
update the <SDK_dir>/3rdparty folder to the version in the SDK and set Architectures in your project
Build Settings to $(ARCHS_STANDARD) to include ARM64 support.

Simplified sample streaming application code
The code for the sample streaming application has been simplified to under 600 lines, down from more
than 2,000 lines. The SDK also contains a Visual Studio solution file so you just need Visual Studio 2010
or later to compile the code. In the previous SDK version, you needed both CMake for Windows and
Visual Studio to compile the code.

Learn more about the simplified sample streaming application by completing Option 3: Deploy a Streaming
Application on Amazon AppStream (p. 27).

188

Amazon AppStream Developer Guide
Release for June 20, 2014 (Latest)

Remote debugging in standalone mode
You can debug your streaming application running in Amazon AppStream standalone mode by using
Remote Tools for Visual Studio on your Amazon EC2 instance. Learn more about remote debugging in
standalone mode at Debug Your Streaming Application in Amazon AppStream Standalone Mode (p. 72).

Other Updates
• We fixed an issue where an invalid path specified in the log page prevents the next step in the console

even if logging was not specified.

Release for May 30, 2014
This release includes the following changes:

Utilization Log is in Coordinated Universal Time
(UTC)
Amazon AppStream now uses UTC time instead of epoch time in the utilization log.The UTC time allows
better coordination and consistency between other AWS services and Amazon AppStream.

Utilization Log Contains GPU Metrics
You can now see GPU metrics in the utilization log when you select logging for your streaming application.
The utilization log contains GPU metrics, such as memory information, power utilization, and temperature
to help you monitor and diagnose your streaming application.

Learn more about the GPU metrics at Enable Logging on a Streaming Application (p. 147).

Simplified the Application Resource Properties
The applicationManifest property is no longer in the Application (p. 174) resource. The properties within
applicationManifest property are now in the Application (p. 174) properties.

This change simplifies the Application (p. 174) resource structure.

Other Updates
• The latency rate is now equal or better than the previous SDK release. Some customers experienced

increased latency rates after using the previous SDK release.

• The example Android client application no longer hangs on exit.

• Bandwidth adaptation is improved when the frame rate varies.

Release for May 9, 2014
This release includes the following changes:

189

Amazon AppStream Developer Guide
Remote debugging in standalone mode

Logging for Utilization Metrics
You can now see utilization metrics in the logs when you select logging for your streaming application.
This comma-separated value file contains operational metrics, such as CPU utilization, memory information,
and disk read and write speeds.

Learn more about the utilization metrics at Enable Logging on a Streaming Application (p. 147).

YUV444 Color Subsampling Support
Amazon AppStream now supports streaming video to client applications and devices at the YUV444 color
subsampling rate. If your streaming application, client application, and devices support YUV444, you can
specify this higher rate in your streaming application.

Learn more about YUV444 at Stream Video to a Client (p. 60).

Other Updates
• Amazon AppStream now has less server overhead, giving more CPU resources to streaming applications

and improving performance.

• The Amazon AppStream console Summary page now has a link to the Amazon S3 bucket that stores
your log file.

• Amazon AppStream now creates a log file when the streaming application unexpectedly stops. In the
previous version, a log file was not created after the streaming application stops.

• The Amazon AppStream console features improved text.

Release for April 22, 2014
This release includes the following changes:

Standard and User-defined Logging
You can configure your streaming application to save standard and user-defined logs to an Amazon S3
bucket. When the streaming application terminates, Amazon AppStream collects the logs into a .zip file
and then uploads this file to your own bucket or to a bucket that Amazon AppStream creates.

Learn more about the logging feature at Enable Logging on a Streaming Application (p. 147).

Updated OpenSSL Version
We updated the OpenSSL cryptography library in Amazon AppStream to a version that fixes the Heartbleed
security bug.

Other Updates
• We now report an error if the application installer fails in the middle of the process. Previously, we did

not report an error when this condition occurs.

190

Amazon AppStream Developer Guide
Logging for Utilization Metrics

Release for March 28, 2014
This release includes the following changes:

New Billing Practice
Your bill now includes session time up to the point when your streaming application unexpectedly
terminates. Previously, your bill did not include any session in which your streaming application
unexpectedly terminated.

SDK Version Detected from the Files instead of
the Registry
The version of the Amazon AppStream SDK that you use is based on the files rather than a registry
setting. This change ensures that Amazon AppStream implements the correct version for your streaming
application.

Other Updates
• The Cancel button on the console now takes you to the Welcome page.

Release for March 7, 2014
This release includes the following changes:

Amazon AppStream Is Available to Anyone with
an AWS Account
During Limited Preview, only a limited number of users had access to Amazon AppStream. Now allow
anyone with an AWS account can try Amazon AppStream.

Improved Deployment Error Messages
Error messages now display the reason why a deployment failed. The error messages are documented
in Error Codes (p. 160).

Example Client Application for Mac OS X
The Amazon AppStream SDK now includes a precompiled client application and the source code to build
your own client application for Mac OS X.

Learn more about creating a sample application client in Build a Client for OS X (p. 101).

Increase Your Service Limits
By default, you can have up to ten simultaneous sessions connect to your streaming application. When
you want your streaming application to accept more simultaneous sessions, you can request to increase
the service limit.

191

Amazon AppStream Developer Guide
Release for March 28, 2014

Learn more about increasing your service limits at Increase Your Amazon AppStream Service Limits (p.152).

Other Updates
• When you delete a streaming application from the Streaming Application page, it no longer appears

there. Previously, a deleted streaming application remained in the Streaming Application page with
a Deleted status.

• Amazon AppStream displays an improved error message it cannot access the pre-signed Amazon S3
URL to the application installer. Previously, Amazon AppStream displayed a generic error message
that did not define the problem.

• The Amazon AppStream console now correctly displays the launcher command.

• Amazon AppStream now displays an error if the streaming application stops after the client connects.
Previously, this condition did not trigger and error message.

Release for February 14, 2014
This release includes the following changes:

Improved Deployment Experience
The Amazon AppStream console now displays a review page that shows your settings prior to deployment.
On this page you can change the settings before deployment so that your streaming application will start
correctly.

Silent Installer Requirement
To install your streaming application, you need to create an installer that installs your streaming application
and dependency files without any user intervention.

Learn more about the silent installer requirement at Build an Application Installer (p. 73).

Other Updates
• Amazon AppStream displays an error message if the application installer you uploaded to the Amazon

S3 bucket does not comply with the requirements in Build an Application Installer (p. 73).

• A race condition no longer results from errors thrown by the GetEntitlement function.

Release for January 24, 2014
This release includes the following changes:

Single Download for the Amazon AppStream SDK
All of the different SDK packages are now available as a single downloadable package that contains the
libraries for your Windows streaming application and your Android, iOS, and Windows client applications.
Previously, you had to download a package for the Windows sample streaming application and client
application, a package for the Android client application, and another package for the iOS client application.

Learn more at Downloads (p. 10).

192

Amazon AppStream Developer Guide
Other Updates

Improved Console Load Time
The Amazon AppStream console now loads 45% faster than the previous version. The faster load time
means faster deployment for your streaming application.

Support for Android Hardware Decoding
Amazon AppStream now supports hardware decoding for 2013 or later Android devices that use the
Qualcomm processor, such as the Amazon Kindle and Google Nexus. The hardware decoder support
means more consistent streaming performance over using the software decoder.

Other Updates
• Amazon AppStream terminates the Amazon EC2 instances if the application installer did not completely

install the streaming application. Previously, the EC2 instance would start and run even if the application
installer could not complete the installation.

• Error messages now follow the style of error messages in other AWS services.

• You can now register a streaming application reactivated from an archived state.

• The Amazon AppStream console now features separate text boxes for the launch parameters and the
path to the launcher to prevent application installer error. Previously, you entered the launch parameters
and path to the launcher in the same text box.

• Amazon AppStream now allows an instance to run even if the instance is in pre-production mode.

193

Amazon AppStream Developer Guide
Improved Console Load Time

Document History

The following table describes the important changes to the documentation in this release of Amazon
AppStream.

Release DateDescriptionChange

November 13, 2013This is the first
release of the
Amazon
AppStream
Developer Guide.

Initial Release

194

Amazon AppStream Developer Guide

	Amazon AppStream
	Table of Contents
	What is Amazon AppStream?
	Advantages of Streaming Your Application
	What Can You Do with Amazon AppStream?
	How Does Amazon AppStream Work?
	Amazon AppStream Components
	Amazon AppStream Host
	Application
	Clients
	Entitlement Service

	Architectural Overview of Amazon AppStream
	How a Client Connects to the Application

	Amazon AppStream Application Lifecycle
	Building
	Active
	Archiving
	Archived
	Error

	Can My Application Run on Amazon AppStream?
	Supported Operating Systems
	Hardware Specifications
	Video Input Specifications
	Audio Specifications
	Bandwidth Requirements
	Persistent Data
	User Input
	Regions

	Tools for Amazon AppStream
	Amazon AppStream SDK
	Amazon AppStream SDK for Java
	Amazon AppStream Console

	Downloads
	Amazon AppStream SDK
	Amazon AppStream SDK for Java
	Other Files to Download

	Get Started
	Service Requirements
	Sign Up for AWS
	Option 1: Preview the Sample Streaming Application on Amazon AppStream Standalone Mode
	Step 1: Create a key pair
	Step 2: Create the standalone mode
	Step 3: Stream the streaming application to your device

	Option 2: Preview Your Application on Amazon AppStream Standalone Mode
	Step 1: Integrate the Amazon AppStream SDK into Your Application
	Step 2: Create a Key Pair
	Step 3: Create the Amazon AppStream standalone mode
	Step 4: Copy Your Application to Your Amazon EC2 Instance
	Step 5: Stream Your Application to a Device

	Option 3: Deploy a Streaming Application on Amazon AppStream
	Step 1: Build the streaming application
	Step 2: Deploy the streaming application
	Store Your Installer Application on Amazon S3
	Generating a Pre-signed URL
	Creating a Key Pair
	Deploying the Sample Entitlement Service on AWS CloudFormation
	Deploying Your Streaming Application to Amazon AppStream

	Step 3: Stream the Streaming Application to a Device
	Optional: Clean Up Resources

	Where to Go Next

	Build an Amazon AppStream Application
	Build a Streaming Application
	Design Considerations for Your Streaming Application
	Add Streaming to Your Application
	Lifecycle of a Streaming Application
	Sample Streaming Application
	Initialize a Streaming Application
	Initialize a Client Session
	Stream Video to a Client
	Choose a Video Mode
	Choose a Color Subsampling Rate
	Send Frames to the Client

	Stream Audio to a Client
	Audio Timestamps

	Receive Content from a Client
	Accept Keyboard, Mouse, and Touch User Input
	Receive Raw User Input from a Client
	Receive Client Messages

	Store Persistent Data
	Terminate a Client Session
	Terminate a Streaming Application

	Test Your Streaming Application
	Stream Your Application Using Amazon AppStream Standalone Mode
	Use Amazon AppStream Standalone Mode
	Locate the IP Address of Your standalone Host

	Connect to Your Standalone Host
	Connect to Your Application with the Sample Windows Client
	Clean Up Resources

	Debug Your Streaming Application in Amazon AppStream Standalone Mode

	Build an Application Installer
	Build an Entitlement Service
	Design Considerations for Your Entitlement Service
	Build the Entitlement Web Service
	Sample Entitlement Service
	Authenticate the Client
	Check Client Authorization for the Application
	Request a New Session from Amazon AppStream
	Return an Entitlement URL to the Client

	Publish Your Entitlement Service
	Sample Entitlement Request and Response

	Build a Client
	Design Considerations for Your Clients
	Build a Client for Android
	Lifecycle of a Client for Android
	Build the Sample Client for Android
	Choose a Color Subsampling Rate
	Get Authorization to Connect to Your Application
	Send Your Client Inputs to Your Application

	Build a Client for iOS
	Lifecycle of a Client for iOS
	Build the Sample Client for iOS
	Create Your Client
	Choose a Color Subsampling Rate
	Send Your Client Inputs to the Application
	Terminate Your Client

	Build a Client for OS X
	Lifecycle of a Client for OS X
	Build the Sample Client for OS X
	Create Your Client
	Choose a Color Subsampling Rate
	Send Your Client Inputs to the Application
	Keyboard
	Mouse

	Terminate Your Client

	Build a Client for Windows
	Lifecycle of a Client for Windows
	Build the Sample Client for Windows
	Create Your Client
	Choose a Color Subsampling Rate
	Send Your Client Inputs to the Application
	Terminate Your Client

	Codec and Open Source Licensing
	What audio and video formats does Amazon AppStream use?
	How does my client decode video from Amazon AppStream?
	Does use of Amazon AppStream require proprietary licenses?
	Are there any open source considerations?

	Deploy Your Streaming Application to Amazon AppStream
	Prerequisites
	Upload the Application Installer to Amazon Simple Storage Service
	Create a Pre-signed URL
	Deploy Your Streaming Application

	Manage Your Application
	View All Applications
	View Application Summary
	Edit an Application
	Clone an Application
	Archive an Application
	Enable Logging on a Streaming Application
	AppStream Log Names
	Default Amazon AppStream Logs
	Custom Amazon AppStream Logs
	
	Enabling Amazon AppStream Logging Programatically

	Increase Your Amazon AppStream Service Limits

	Security Considerations
	Using IAM to Control Access to Amazon AppStream Resources
	Example IAM User Policies for Amazon AppStream
	Give users access to DynamoDB and a specific set of AppStream API calls
	Give IAM users broad access to Amazon AppStream
	Give users permission to modify applications and sessions
	Give users permission to modify applications
	Give users read-only access to Amazon AppStream

	Security Best Practices
	Versioning
	Multi-Factor Authentication
	Key Rotation
	Use A Strong Password For Remote Management
	Restrict Access to Your Streaming Application

	Troubleshooting Amazon AppStream
	Deployment Problems
	Is Your Installer Corrupted?
	Has Your Pre-Signed URL Expired?
	Does Your Pre-Signed URL Use HTTP Protocol?

	Streaming Problems
	Error Codes
	APPLICATION_DELETION_FAILED
	Cause
	Solution

	APPLICATION_INSTALLATION_FAILED
	Cause
	Solution

	APPLICATION_LAUNCH_FAILED
	Cause
	Solution

	APPLICATION_INSTALLATION_NOT_SILENT
	Cause
	Solution

	APPLICATION_INSTALLATION_TIMED_OUT
	Cause
	Solution

	APPLICATION_LAUNCH_TIMED_OUT
	Cause
	Solution

	APPLICATION_RUNTIME_FAILURE
	Cause
	Solution

	INTERNAL_FAILURE
	Cause
	Solution

	SDK_VERSION_DETECTION_FAILED
	Cause
	Solution

	S3_URL_INVALID
	Cause
	Solution

	Amazon AppStream REST API
	Hypertext Application Language
	Making HTTP Requests to Amazon AppStream
	Limits on Request Rates
	HTTP Header Contents
	HTTP Request Body
	HTTP Responses

	Signing Requests
	Handling Errors in Amazon AppStream
	API Error Codes (Client and Server Errors)
	Sample Error Response

	Catching Errors
	Error Retries and Exponential Backoff

	Resources
	AppStream
	Links
	Properties

	Applications
	Links
	Properties

	Application
	Links
	Properties

	Application Errors
	Links
	Properties

	Application Error
	Links
	Properties

	Application Status
	Links
	Properties

	Sessions
	Links
	Properties

	Session
	Links
	Properties

	Session Status
	Links
	Properties

	Link Relations
	appstream:applications
	Output

	application:by-id
	Output

	application:create
	Input
	Output

	application:update
	Input
	Output

	application:archive
	Output

	application:reactivate
	Output

	application:delete
	Output

	application:status
	Output

	application:errors
	Output

	application:sessions
	Output

	session:by-id
	Output

	session:entitle
	Links
	Input
	Output

	session:status
	Output

	session:terminate
	Links
	Output

	Common Link Relations
	collection
	first
	item
	next
	up

	Product Updates
	Release for June 20, 2014 (Latest)
	Up to 20% performance improvement on 64-bit iOS devices
	Simplified sample streaming application code
	Remote debugging in standalone mode
	Other Updates

	Release for May 30, 2014
	Utilization Log is in Coordinated Universal Time (UTC)
	Utilization Log Contains GPU Metrics
	Simplified the Application Resource Properties
	Other Updates

	Release for May 9, 2014
	Logging for Utilization Metrics
	YUV444 Color Subsampling Support
	Other Updates

	Release for April 22, 2014
	Standard and User-defined Logging
	Updated OpenSSL Version
	Other Updates

	Release for March 28, 2014
	New Billing Practice
	SDK Version Detected from the Files instead of the Registry
	Other Updates

	Release for March 7, 2014
	Amazon AppStream Is Available to Anyone with an AWS Account
	Improved Deployment Error Messages
	Example Client Application for Mac OS X
	Increase Your Service Limits
	Other Updates

	Release for February 14, 2014
	Improved Deployment Experience
	Silent Installer Requirement
	Other Updates

	Release for January 24, 2014
	Single Download for the Amazon AppStream SDK
	Improved Console Load Time
	Support for Android Hardware Decoding
	Other Updates

	Document History

