
Getting Started with AWS
Deploying a Web Application

Getting Started with AWS: Deploying a Web Application
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Getting Started with AWS Deploying a Web Application

Table of Contents
Welcome ... 1
Overview of the Project .. 2

AWS Elastic Beanstalk ... 2
The Node.js Application .. 2
Amazon DynamoDB .. 3
Amazon Simple Notification Service ... 3

Deploying the App ... 4
Creating a DynamoDB Table ... 4
Creating an SNS Topic ... 5
Deploying with Elastic Beanstalk .. 6
Changing an Environment Variable ... 8
Troubleshooting with Logs ... 9

Additional Resources ... 11
Document History .. 12

iii

Getting Started with AWS Deploying a Web Application

Welcome

Welcome to Getting Started with AWS: Deploying a Web Application.

This guide provides a tutorial on deploying a web application with Amazon Web Services (AWS). Using
AWS, you can develop applications quickly and then deploy them to a cloud environment that scales on
demand. And with several AWS deployment services to choose from, you can create a deployment
solution that gives you the right mix of automation and control.

For this tutorial, we’ll use AWS Elastic Beanstalk to deploy our application. Many of the concepts covered
in this guide apply to the other AWS deployment services too. If you’re currently running a web application
on an on-premises server and you’re thinking about migrating to the cloud, this guide is a great place to
start. By deploying a simple but fully functional web app, you'll learn the basics of working with an AWS
deployment service.

Our example app is built with Node.js, though you don't need any experience with Node to complete this
tutorial. Our app stores user information in an Amazon DynamoDB table and sends notifications with
Amazon Simple Notification Service, so you'll learn a little bit about DynamoDB and SNS.You'll also get
a brief introduction to managing permissions with AWS Identity and Access Management.

To complete this tutorial, you just need an Amazon Web Services account and an hour or so of free time.
If you haven't signed up for AWS, you can do that now. Go to the AWS home page and click the Sign
Up button.

Okay, let's get started!

1

Getting Started with AWS Deploying a Web Application

http://aws.amazon.com/

Overview of the Project

Let's say that you're a startup with a Really Big Idea for a new web application. And let's say that you're
working hard on your web app, but it isn't ready for production yet. What do you do in the meantime to
generate interest in your project? One option is to deploy a small placeholder app that collects contact
info from interested site visitors. That's exactly the sort of application we'll deploy in this tutorial. Our
signup app will help us get in touch with potential users—people who might become early adopters or
take part in a private beta test. For this tutorial, our app only collects contact info. But we could add
functionality that sends invitations or interacts with users in some other programmatic way.

Let's take a quick tour of AWS Elastic Beanstalk and the other technologies we'll be using. If you want
to dive right into the hands-on part of the tutorial, feel free to skip ahead to the next section.

AWS Elastic Beanstalk
AWS Elastic Beanstalk is a high-level deployment tool that helps you get an application from your desktop
to the web in a matter of minutes. Elastic Beanstalk automatically handles the details of your hosting en-
vironment—capacity provisioning, load balancing, scaling, and application health monitoring—so you
don't have to.

Elastic Beanstalk supports applications developed in Java, PHP, .NET, Node.js, Python, and Ruby, as
well as different container types for each language. A container defines the infrastructure and software
stack to be used for a given environment. When you deploy your app, Elastic Beanstalk provisions one
or more Amazon EC2 instances, among other resources.The software stack running on EC2 is dependent
on the container type. For example, Elastic Beanstalk supports two container types for Node.js: a 32-bit
Amazon Linux image and a 64-bit Amazon Linux image, each running a software stack tailored to hosting
a Node.js application.

You can interact with Elastic Beanstalk by using the AWS Management Console, the AWS Command
Line Interface (CLI) or eb, a high-level CLI designed specifically for Elastic Beanstalk. For this tutorial,
we'll use the management console.

The Node.js Application
In this tutorial, we're going to deploy an application that a startup might use as a placeholder for their
project. The example app lets customers submit contact information and express interest in a preview.

2

Getting Started with AWS Deploying a Web Application
AWS Elastic Beanstalk

The app is built on Node.js, a relatively new platform that uses server-side JavaScript to build network
applications. At its core, Node.js consists of a library and a runtime, the latter provided by the V8 JavaScript
Engine. Node.js is designed around a nonblocking, event-driven I/O model, making it particularly useful
for creating highly scalable web servers. Our app employs two external Node modules: Express, a web
application framework, and Jade, a Node.js template engine that can be used to create HTML documents.

AWS provides a Node.js SDK, which helps take the complexity out of coding by providing JavaScript
objects for AWS services. We've used the Node.js SDK to build our sample application. To learn more
about the Node.js SDK, see AWS SDK for JavaScript in Node.js.

To make our app pretty, we're using Bootstrap, a mobile-first front-end framework that started as a Twitter
project.

Amazon DynamoDB
Our application needs to store the contact information that users submit. To do so, we'll use Amazon
DynamoDB, a NoSQL database service. DynamoDB is a schemaless database, so you need to specify
only a primary key attribute. For our app, we'll use an email field as a key.

Amazon Simple Notification Service
We want to be notified when customers submit a form, so we'll use Amazon Simple Notification Service.
Amazon SNS is a push messaging service that can deliver notifications over various protocols. For our
app, we'll push notifications to an email address.

3

Getting Started with AWS Deploying a Web Application
Amazon DynamoDB

http://nodejs.org/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://expressjs.com/
http://jade-lang.com/
http://aws.amazon.com/sdkfornodejs/
http://getbootstrap.com/

Deploying the App

First, we need to get the code for our application. We can do that at the AWS Labs GitHub repository.
Go to the eb-node-express-signup repo and click Download ZIP. Or download the archive directly.

We're going to make a few changes to the code, so go ahead and unzip the archive. In the top-level dir-
ectory you'll see a file called app_config.json. Open this file in a text editor. As you can see, the file contains
a JSON object with three name-value pairs. The value strings are currently empty.

{
 "AWS_REGION": "",
 "STARTUP_SIGNUP_TABLE": "",
 "NEW_SIGNUP_TOPIC": ""
}

We're going to use this JSON to tell our application which region to connect to and which DynamoDB
table and SNS topic to use. In order to do that, we first need to create the table and the topic.

Creating a DynamoDB Table
Let's create a DynamoDB table for our application.

1. Sign in to the AWS Management Console and open the Amazon DynamoDB console at https://con-
sole.aws.amazon.com/dynamodb/.

2. In the menu bar, in the region selector, click the region where you want to deploy your application. For
this tutorial, let's use US West (Oregon).

3. Click Create Table.

4. In the Create Table wizard, in the Table Name box, type my-startup-signup-table.

5. For the Primary Key Type, click Hash.

6. Under Hash Attribute Name, click String. In the corresponding box, type email. Click Continue.

7. We're not going to add any additional indexes, so on the Add Indexes page, click Continue.

8. For our sample app, we can use the minimum provisioned throughput capacity for our table. Both the
read and write capacity units should be set to "1" by default, and the Help me calculate how much
throughput capacity I need to provision check box should be cleared. Click Continue.

4

Getting Started with AWS Deploying a Web Application
Creating a DynamoDB Table

https://github.com/awslabs/eb-node-express-signup
https://github.com/awslabs/eb-node-express-signup/archive/master.zip
https://console.aws.amazon.com/dynamodb/
https://console.aws.amazon.com/dynamodb/

9. Our app won't need any Throughput Alarms, so clear the Use Basic Alarms check box and then click
Continue.

10. On the Review page, take a look at the table specifications. The values should look something like
this:

If everything looks correct, click Create. DynamoDB will start the table creation process. When the
process is complete, the table status will be listed as ACTIVE.

11. Now that we have a database table, we can add the table name to the configuration file for the app. If
you haven't done so already, open the application folder and open app_config.json in a text editor.
The value for "STARTUP_SIGNUP_TABLE" is an empty string. Let's insert the name of the new
database. The name-value pair should look like this:

"STARTUP_SIGNUP_TABLE": "my-startup-signup-table",

You can leave the file open, but be sure to save your edits.

You've created the DynamoDB table. Now let's create the SNS topic.

Creating an SNS Topic
Our app is designed to notify the site owner of each new signup. When the data from the signup form is
successfully written to the DynamoDB table, the app sends an SNS notification. To make this work, we
need to create an SNS topic.

1. Sign in to the AWS Management Console and open the Amazon SNS console at https://con-
sole.aws.amazon.com/sns/.

2. We'll use the same region for SNS as we did for DynamoDB. Ensure that US West (Oregon) is still
selected in the region selector, and then click Create New Topic.

3. In the Create New Topic dialog box, enter my-sns-topic. We can leave the Display Name blank.
Click Create Topic.

5

Getting Started with AWS Deploying a Web Application
Creating an SNS Topic

https://console.aws.amazon.com/sns/
https://console.aws.amazon.com/sns/

4. Now we need to create a subscription that tells SNS how and where to send the notification. Click
Create Subscription.

5. In the Create Subscription dialog box, select Email as the protocol. In the Endpoint box, type the email
address that will receive the notification. (For this tutorial, you'll probably want to send the notification
to your own email account, as you'll need to respond to a confirmation message.) Click Subscribe. In
the confirmation message that appears, click Close.

6. The email address you provided should receive a message titled "AWS Notification — Subscription
Confirmation." It may take a moment for the email to appear. Open the message and click Confirm
subscription.

7. Now that we've created an SNS topic, we can plug the Topic ARN into our config file, so that the ap-
plication knows where to send notifications. An ARN, or Amazon Resource Name, is a unique identifier
for an AWS resource. We can get the Topic ARN from the SNS Management Console.

Copy the Topic ARN and paste it into app_config.json, in the empty value corresponding to
"NEW_SIGNUP_TOPIC".The name-value pair should look like this (but with your particular topic ARN):

"NEW_SIGNUP_TOPIC": "arn:aws:sns:us-west-2:123456789012:my-sns-topic"

While you're at it, set the region to "us-west-2". The final app_config file should look like this, but with
your specific value for the signup topic ARN:

{
 "AWS_REGION": "us-west-2",
 "STARTUP_SIGNUP_TABLE": "my-startup-signup-table",
 "NEW_SIGNUP_TOPIC": "arn:aws:sns:us-west-2:123456789012:my-sns-topic"
}

When you're finished updating the config file, save and close it. That's it for the SNS topic. Now let's use
Elastic Beanstalk to roll out the app.

Deploying with Elastic Beanstalk
We've downloaded the source code and set the configuration values. Now, let's deploy the app with
Elastic Beanstalk.

Elastic Beanstalk requires that your application be bundled as a .zip or .war file. But — and this is key
—you have to compress the application files directly, rather than compressing the directory that contains
them.

We already extracted the files from the sample app archive, so we'll need to compress them again. To
do so, open the app folder (eb-node-express-signup-master), select all the items in the folder, and compress
them.

6

Getting Started with AWS Deploying a Web Application
Deploying with Elastic Beanstalk

For more detailed, platform-specific instructions on compressing the files, see Creating an Application
Source Bundle.

1. Sign in to the AWS Management Console and open the AWS Elastic Beanstalk console at https://
console.aws.amazon.com/elasticbeanstalk/.

2. Ensure that US West (Oregon) is still selected in the region selector, and click Create New Applic-
ation.

3. Under Application Information, type a name for the application, and, if you'd like, a description. For
this tutorial, let's call the application my-startup-app. When you're finished, click Next.

4. On the Environment Type page, In the Predefined configuration box, click Node.js.You shouldn't
need to change any other settings.Your environment settings should look like this:

Click Next.

5. On the Application Version page, select Upload your own, click Browse, and then select the com-
pressed application file that you created. Click Next.

6. On the Environment Information page, type a unique environment name and environment URL. Click
Check Availability to ensure your desired URL is available. Then, click Next.

7. On the Additional Resources page, ensure that both check boxes are cleared, and then click Continue.

8. The Configuration Details page presents a number of options, but for this tutorial we need to be
aware of only one. In the Instance profile box, click Create Default Profile, and then click Next.

7

Getting Started with AWS Deploying a Web Application
Deploying with Elastic Beanstalk

http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deployment.source.html
https://console.aws.amazon.com/elasticbeanstalk/
https://console.aws.amazon.com/elasticbeanstalk/

This will create the default instance profile for the application, which is aws-elasticbeanstalk-ec2-
role. An instance profile is a container for an IAM role.You can use IAM to attach a policy to this in-
stance profile. IAM policies grant permission to perform certain actions. In this case, we want an IAM
policy that lets our app publish Amazon SNS notifications and put items to DynamoDB. Let's create
that policy.

a. Leave the Configuration Details page as-is for now. We'll be back to it shortly. In the Services
menu, find IAM and open it in a new browser window. In the IAM console, under Dashboard in
the navigation pane, click Roles.

b. In the Role Name column, click the role aws-elasticbeanstalk-ec2-role.

c. Under Permissions, click Attach Role Policy.

d. On the Set Permissions page in the Manage Role Permissions wizard, click Custom Policy,
and then click Select.

e. Click Policy Name, and then type my-startup-policy.

f. In the eb-node-express-signup-master directory (the downloaded, uncompressed archive), open
iam_policy.json and copy its contents. Paste the contents into the Policy Document box.

Click Apply Policy.

9. Close the IAM console and go back to the Elastic Beanstalk console. On the Configuration Details
page, click Next.

10. On the Environment Tags page, click Next.

11. On the Review page, verify that all the settings are as you want them, and then click Launch. On
the AWS Elastic Beanstalk dashboard, you can watch in real time as Elastic Beanstalk creates an
environment and deploys the app. The process will take a few minutes. When the deployment is
finished and the environment health is listed as "Green", click the URL of the app.

You should see the deployed sample application.You can test it by filling out the signup form and
verifying that you receive a notification.

Changing an Environment Variable
Now that our application is deployed, let's try setting an environment variable.You can access Node.js
environment variables using process.env.ENVVAR, where ENVVAR is an environment variable used by
the app.You can set the value of ENVVAR in the Elastic Beanstalk console. Let's see how it works.

Our application's server.js file contains the following line of code:

 app.locals.theme = process.env.THEME;

This makes the THEME environment variable available to the application. We use this variable in one of
our views, layout.jade.

 - var setTheme = theme
 if setTheme
 link(href="../static/bootstrap/css/theme/" + setTheme + "/bootstrap.css",

8

Getting Started with AWS Deploying a Web Application
Changing an Environment Variable

rel="stylesheet")
 else
 link(href="../static/bootstrap/css/theme/flatly/bootstrap.css",
rel="stylesheet")

The theme variable changes the CSS that's applied to our app. By default, the flatly theme is used.
But we can pass in other themes:amelia, default, slate, and united.To see how this works, explore
public/static/bootstrap/css/ in the archive.

Okay, let's try changing a variable on our deployed app.

1. In the Elastic Beanstalk console, in the navigation pane for your environment, click Configuration.

2. Open Software Configuration and scroll down to the table of Environment Properties. At the bottom
of the table, add the name THEME and the value slate.

Click Save.

3. When the environment is done updating, click the URL for the app. We have a brand new look!

Troubleshooting with Logs
What if there's a problem? Say you followed all of the steps above, and you clicked the URL, and ... no
app. With our sample app, which runs on an nginx server, a deployment problem is likely to result in a
"502 Bad Gateway" message.The "502" message is not very informational.To troubleshoot a deployment
issue, you may need to use the logs that are provided by AWS Elastic Beanstalk.

For example, let's say that, in the process of updating app_config.json, you accidentally leave off a quo-
tation mark. Then, when you finish the deployment, you see the 502 error. How do you determine what
happened, and how do you fix the problem? Let's check the logs.

1. In the Elastic Beanstalk console, in the navigation pane for your environment, click Logs.

2. At the Logs page, click Snapshot Logs. Wait for your environment to update, and then click View log
file. In the log file, you can see just what happened on the server side during deployment and runtime.
There's a lot of material to sort through, and we're not going to cover the different sections of the log
in this tutorial. But if you did indeed leave out a quotation mark in the config file and you scrolled through
the log to /var/log/nodejs/nodejs.log, you'd find an error similar to this:

SyntaxError: Unexpected token u
 at Object.parse (native)

9

Getting Started with AWS Deploying a Web Application
Troubleshooting with Logs

 at Object.<anonymous> (/var/app/current/server.js:23:15)
 at Module._compile (module.js:449:26)
 at Object.Module._extensions..js (module.js:467:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:312:12)
 at Module.runMain (module.js:492:10)
 at process.startup.processNextTick.process._tickCallback (node.js:245:9)

undefined:2
 "AWS_REGION": us-west-2",
 ^

In this case, the "Unexpected token u" message appears because the parser expected a quotation
mark instead of a "u" in the string us-west-2". Now that we've found the problem, we can fix it.

3. If you were actually troubleshooting this issue, you'd go back to the application code in your local en-
vironment and fix the missing quotation mark. Then you'd need to create a new .zip archive to upload.

4. To redeploy the app, go to Dashboard, click Upload and Deploy, and choose your updated .zip file.

5. If necessary, change the version label to something new. For example, if your first deployment was
labeled "Archive", you can label this second deployment "Archive-2" or something like that.

6. Click Deploy. Elastic Beanstalk will update the environment.

7. When the environment is updated and listed as "Green", go to the app URL and test your app.

Of course, you'd normally try to catch a config error in development. But if an error does get through to
production or you just want to update your app, Elastic Beanstalk makes it fast and easy to redeploy.

10

Getting Started with AWS Deploying a Web Application
Troubleshooting with Logs

Additional Resources

This tutorial has focused on AWS Elastic Beanstalk, but that's only one of the deployment solutions
available with AWS.You can also use AWS OpsWorks to deploy and manage applications, and if you
want a do-it-yourself experience you can use Amazon Elastic Compute Cloud, AWS CloudFormation,
Amazon CloudWatch, and Auto Scaling to build your own deployment framework. To learn more about
choosing the right deployment solution, see Application Management for AWS.

To learn more about Elastic Beanstalk and other AWS deployment options, check out the resources below.

More on AWS Elastic Beanstalk

• For complete documentation on managing applications with AWS Elastic Beanstalk, see the AWS
Elastic Beanstalk Developer Guide.

• To learn about eb, the updated Elastic Beanstalk CLI, see Eb Command Line Interface.

• To learn how to deploy a Node.js app with eb, see Deploying AWS Elastic Beanstalk Applications in
Node.js Using Eb and Git.

• To learn more about the components and architecture of an Elastic Beanstalk app, see How Does
AWS Elastic Beanstalk Work?.

• By including a configuration file with your source bundle, you can customize your environment at the
same time that you deploy your application. To learn more, see Customizing and Configuring AWS
Elastic Beanstalk Environments.

Other AWS Deployment Solutions

• To learn more about AWS OpsWorks, see AWS OpsWorks User Guide.

• To learn more about the individual services you'd typically use for a do-it-yourself deployment, see
Amazon Elastic Compute Cloud Getting Started Guide, AWS CloudFormation User Guide, Amazon
CloudWatch Getting Started Guide, and Auto Scaling Getting Started Guide.

• The AWS Toolkit for Visual Studio includes a deployment tool. To learn more, see Standalone Deploy-
ment Tool.

• The AWS Toolkit for Eclipse also provides deployment options. To learn more, see Getting Started
with the AWS Toolkit for Eclipse.

11

Getting Started with AWS Deploying a Web Application

http://aws.amazon.com/application-management/
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/command-reference-eb.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
http://docs.aws.amazon.com/opsworks/latest/userguide/
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AmazonCloudWatch/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AutoScaling/latest/GettingStartedGuide/
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv-deployment-tool.html
http://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/tkv-deployment-tool.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/Welcome.html
http://docs.aws.amazon.com/AWSToolkitEclipse/latest/GettingStartedGuide/Welcome.html

Document History

The following table describes important changes to Getting Started with AWS: Deploying a Web Application.

• Latest documentation update: January 9, 2014

Date ChangedDescriptionChange

January 9,
2014

This is the first release of Getting Started with AWS: Deploying
a Web Application.

Initial release

12

Getting Started with AWS Deploying a Web Application

	Getting Started with AWS
	Table of Contents
	Welcome
	Overview of the Project
	AWS Elastic Beanstalk
	The Node.js Application
	Amazon DynamoDB
	Amazon Simple Notification Service

	Deploying the App
	Creating a DynamoDB Table
	Creating an SNS Topic
	Deploying with Elastic Beanstalk
	Changing an Environment Variable
	Troubleshooting with Logs

	Additional Resources
	Document History

