
Getting Started with AWS
Web Application Hosting for Linux

Amazon Web Services

Getting Started with AWS Web Application Hosting for
Linux

Getting Started with AWS: Web Application Hosting for Linux
Amazon Web Services
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Getting Started with AWS Web Application Hosting for
Linux

Overview ... 1
Getting Started ... 6
Step 1: Sign Up for the Service .. 6
Step 2: Install the Command Line Tools .. 7
Step 3: Create an Elastic Load Balancer .. 8
Step 4: Create and Configure Your Amazon EC2 Security Group .. 13
Step 5: Create a Key Pair ... 14
Step 6: Launch Amazon EC2 Instances Using Auto Scaling .. 15
Step 7: Create a CloudWatch Alarm ... 17
Step 8: Add Amazon RDS .. 21

Create a DB Security Group ... 22
Authorize Access ... 22
Launch an Instance ... 23

Step 9: Deploy Your Application .. 27
Connecting to your Amazon EC2 Instance from Your Web Browser Using the MindTerm SSH
Client ... 28
Connect to Your Amazon EC2 Instance from Windows Using PuTTY .. 29
Connecting to Your Amazon EC2 Instance from a Linux/UNIX Machine Using a Standalone
SSH Client ... 33
Configure the Amazon EC2 Instance .. 34

Step 10: Create a Custom AMI ... 41
Step 11: Launch New Environments Using AWS CloudFormation ... 42

Create an AWS CloudFormation Template .. 42
Modify a CloudFormation Template ... 46
Create an AWS CloudFormation Stack ... 47

Step 12: Clean Up .. 51
Terminate Your Amazon EC2 Instances in Your Auto Scaling Group ... 52
Terminate Your DB Instance .. 53
Delete Your CloudWatch Alarm ... 54
Delete Your Elastic Load Balancer .. 55
Delete a Key Pair ... 55
Delete an Amazon EC2 Security Group .. 56
Delete Your Custom AMI ... 56

Amazon Route 53 ... 57
Amazon CloudFront .. 58
Pricing ... 59
Amazon EC2 Cost Breakdown ... 59
Amazon RDS Cost Breakdown ... 61
Summing It All Up ... 63
Related Resources ... 65
Document History ... 67

4

Getting Started with AWS Web Application Hosting for
Linux

Overview

If you purchase hardware to run your website, you might find that highly available and scalable web
hosting can be a complex and expensive proposition.Your website would likely experience dense peak
traffic periods and significant fluctuations in traffic patterns. This would result in low utilization rates of
your expensive hardware, and you could incur high operating costs to maintain mostly idle hardware.
Amazon Web Services (AWS) provides the reliable, scalable, secure, and high performance infrastructure
required for the most demanding web applications. AWS enables an elastic, scale-out and scale-in
infrastructure model that matches IT costs with real-time shifts in customer traffic patterns.

This guide will help you use AWS to create scalable, robust web applications that handle sophisticated
demands and workloads. We’ll review an example architecture of a web application hosted on AWS, and
we’ll walk through the process of deploying a sample Drupal application using several key AWS services
and following best practices. (Drupal is an open source content management system.) You can adapt
this sample to your specific needs if you want. By the end of this walkthrough, you should be able to do
the following:

• Sign up for AWS.

• Launch, connect, secure, and deploy Drupal to a computer in the cloud.

• Create a custom template of a computer containing the hardware, software, and configuration you
need.

• Set up a load balancer to distribute traffic across multiple computers in the cloud.

• Scale your fleet of computers in the cloud.

• Monitor the health of your application and computers.

• Create a database instance and use it with Drupal.

• Create a template for the AWS resources you created.

• Clean up your AWS resources.

For a deeper understanding of AWS best practices and the various options that AWS provides, we
recommend that you read Web Application Hosting: Best Practices at AWS Cloud Computing Whitepapers.

If you are looking for a quicker and easier way to deploy your web applications, you can use an application
management service. AWS application management services help you leverage other AWS services
without having to manage each of them separately and manually:

• AWS Elastic Beanstalk lets you focus on the code while the service manages the rest.

• AWS OpsWorks gives you the flexibility to define your own software stack and deploy, operate, and
automate a variety of applications and architectures.

1

Getting Started with AWS Web Application Hosting for
Linux

http://aws.amazon.com/whitepapers/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/opsworks/

For additional information about deployment and resource management on AWS, go to Deployment and
Management on AWS.

If this guide is not exactly what you are looking for, you may want to check out the following documents:

• Getting Started with AWS — Provides information about Amazon Web Services, with helpful links for
learning more.

• Getting Started with AWS Free Usage Tier — Provides information about how to get started with the
free usage tier.

• Hosting Websites on Amazon S3 in the Amazon Simple Storage Service Developer Guide — Provides
a walkthrough in just a few steps of a static website deployment that does not require running an
application.

• Getting Started with AWS CloudFormation in the AWS CloudFormation User Guide — Helps you quickly
get started using an AWS CloudFormation WordPress blog sample template without needing to figure
out the order in which AWS services need to be provisioned or worry about the subtleties of how to
make those dependencies work.

• Amazon Elastic Compute Cloud Getting Started Guide - Walks you through launching and connecting
to an Amazon EC2 Linux instance. For information about configuring software to run on instances (e.g.,
MySQL, Tomcat, Python), go to Amazon Machine Images (AMI) in the Amazon Elastic Compute Cloud
User Guide.

• Getting Started with AWS Computing Basics for Linux - Introduces you to several key AWS services
and components—what these services are, why they are important, and how to use them. The guide
also provides a simple example architecture on a Linux platform and walks you through a deployment
that uses this architecture.You will also learn how to install MySQL server and configure a database
on an EC2 instance.

How Does AWS Help?
If you are responsible for running a web application then there are a variety of infrastructure and architecture
issues that you face for which AWS can give you easy, seamless, and cost-effective solutions. This
section provides a list of Amazon Web Services and components, and it explains the value they add in
meeting the challenges you'll face in this example solution.

BenefitsAmazon Web ServicesChallenges

• Amazon EC2 runs the web server and
application servers.

• Elastic Load Balancing supports
health checks on hosts, distribution of
traffic to Amazon EC2 instances
across multiple Availability Zones, and
the dynamic addition and removal of
Amazon EC2 hosts from the
load-balancing rotation.

• Auto Scaling creates capacity groups
of servers that can grow or shrink on
demand.

• Amazon CloudWatch reports metrics
data for Amazon EC2 instances, and
the metrics it gathers are used by Auto
Scaling.

• Amazon Elastic Compute Cloud (EC2)

• Amazon Elastic Load Balancing

• Auto Scaling

• Amazon CloudWatch

Servers need to be
provisioned to
handle peak
capacity and the
unused cycles are
wasted at other
times.

2

Getting Started with AWS Web Application Hosting for
Linux

How Does AWS Help?

https://aws.amazon.com/application-management/
https://aws.amazon.com/application-management/
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-intro/intro.html?r=8747
http://docs.aws.amazon.com/gettingstarted/latest/awsgsg-freetier/
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/GettingStarted.Walkthrough.html
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
http://docs.aws.amazon.com/gettingstarted/latest/computebasics-linux/

BenefitsAmazon Web ServicesChallenges

• Amazon CloudFront speeds up the
loading of streaming or downloaded
static content by caching the content
via a local edge cache at a location
with the lowest latency.

• Amazon S3 stores data backups from
the relational database, web, and
application servers, and for Amazon
CloudFront distribution.

• Amazon CloudFront

• Amazon Simple Storage Service
(Amazon S3)

Need a content
delivery network
(CDN) to provide
low-latency, high
data transfer
speeds so end
users don't
experience
unnecessary
delays.

Amazon EBS provides a persistent file
system for web and application servers.

Amazon Elastic Block Store (Amazon
EBS)

Applications may
require a database,
file system, or
access to raw
block-level storage.

Amazon RDS provides cost-efficient and
resizable capacity while managing
time-consuming database administration
tasks.

Amazon Relational Database Service
(Amazon RDS)

Maintaining a
database can be
expensive and
time-consuming.

Amazon Route 53 is a highly available
and scalable Domain Name System
(DNS) web service. It is designed to give
developers and businesses an extremely
reliable and cost effective way to route
end users to Internet applications by
translating human readable names like
www.example.com into the numeric IP
addresses like 192.0.2.1 that computers
use to connect to each other.

Amazon Route 53Developers and
businesses need a
reliable and
cost-effective way
to route end users
to Internet
applications.

AWS CloudFormation gives developers
and systems administrators an easy way
to create a collection of related AWS
resources and provision them in an
orderly and predictable fashion.

AWS CloudFormationNeed to plan the
order in which
Amazon Web
Services will be
provisioned,
keeping in mind
dependencies
among the
services.

BenefitsAWS ComponentsChallenges

An Amazon Security Group lets you
specify the protocols, ports, and source
IP address ranges that are allowed to
reach your Amazon EC2 instances.

Amazon Security GroupNeed to provide
security to protect
application servers
from outside
malicious users.

3

Getting Started with AWS Web Application Hosting for
Linux

How Does AWS Help?

BenefitsAWS ComponentsChallenges

Availability Zones are distinct locations
engineered to be insulated from failures
in other Availability Zones. Each
Availability Zone provides inexpensive,
low latency network connectivity to other
Availability Zones in the same region.

Availability ZonesNeed to design
with failover in
mind.

Web Application Hosting Architecture
The following diagram shows an example architecture of a web application using the AWS resources
mentioned in the previous section.

In this diagram, Amazon EC2 instances run the application and web server and belong to an Amazon
EC2 Security Group. The Amazon EC2 Security Group acts as an exterior firewall for the Amazon EC2
instances. An Auto Scaling group is used to maintain a fleet of Amazon EC2 instances that can handle
the presented load. This Auto Scaling group spans over multiple Availability Zones to protect against
potential failures if an Availabilty Zone becomes unavailable. To ensure that traffic is distributed evenly
among the Amazon EC2 instances, an Elastic Load Balancer is associated with the Auto Scaling group.
If the Auto Scaling group launches or terminates instances based on load, then the Elastic Load Balancer
will automatically adjust accordingly. The database tier consists of Amazon RDS database instances,
including master and local slave, located in multiple Availability Zones for failover protection. Amazon
RDS provides automated backups to Amazon S3. Amazon S3 stores backups and static content. Since
the consumers of this application may be globally distributed or a large number may visit the site at one
time, high volume static content is edge cached using Amazon CloudFront for better performance. Amazon
Route 53 can be used to provide secure and reliable routing to your infrastructure that uses Amazon Web
Services.

For a step-by-step walkthrough of how to build out this architecture, see Getting Started (p. 6). This
walkthrough will teach you how to do the following:

4

Getting Started with AWS Web Application Hosting for
Linux

Web Application Hosting Architecture

• Sign up for AWS.

• Launch, connect, secure, and deploy Drupal to an Amazon EC2 instance.

• Create a Custom AMI.

• Set up an Elastic Load Balancer to distribute traffic across your Amazon EC2 instances.

• Scale your fleet of instances automatically using Auto Scaling.

• Monitor your AWS resources using Amazon CloudWatch.

• Create a database instance and use it with Drupal.

• Create an AWS CloudFormation template based on the resources you created.

• Clean up your AWS resources.

For more information on how to use Amazon CloudFront in this architecture, see Amazon
CloudFront (p. 58). For more information on how to use Amazon Route 53 in this architecture, see Amazon
Route 53 (p. 57).

5

Getting Started with AWS Web Application Hosting for
Linux

Web Application Hosting Architecture

Getting Started

Topics

• Step 1: Sign Up for the Service (p. 6)

• Step 2: Install the Command Line Tools (p. 7)

• Step 3: Create an Elastic Load Balancer (p. 8)

• Step 4: Create and Configure Your Amazon EC2 Security Group (p. 13)

• Step 5: Create a Key Pair (p. 14)

• Step 6: Launch Amazon EC2 Instances Using Auto Scaling (p. 15)

• Step 7: Create a CloudWatch Alarm (p. 17)

• Step 8: Add Amazon RDS (p. 21)

• Step 9: Deploy Your Application (p. 27)

• Step 10: Create a Custom AMI (p. 41)

• Step 11: Launch New Environments Using AWS CloudFormation (p. 42)

• Step 12: Clean Up (p. 51)

Let's suppose you want to build a content management system (CMS) application.You want to leverage
the reliable, scalable, secure and high performance infrastructure that AWS offers. It's easy to get started,
and for most of the tasks we can use the AWS Management Console. In this topic, we'll walk through a
series of steps to deploy your web application to AWS. There are many different ways you can go about
deploying your web application, but this walkthrough shows you one example that follows best practices
and uses many of the AWS services so you can see how the services work together. Let's begin!

Note
In this example, we are going through the steps in a specific order to minimize the time for billable
services. However, when you deploy your application you will likely start by launching your
Amazon EC2 instance, configuring your application and database, creating a custom AMI, and
then scaling your application.

Step 1: Sign Up for the Service
If you don't already have an AWS account, you’ll need to get one.Your AWS account gives you access
to all services, but you will be charged only for the resources that you use. For this example walkthrough,
the charges will be minimal.

6

Getting Started with AWS Web Application Hosting for
Linux

Step 1: Sign Up for the Service

http://aws.amazon.com/console

To sign up for AWS

1. Go to http://aws.amazon.com and click Sign Up.

2. Follow the on-screen instructions.

AWS notifies you by email when your account is active and available for you to use.

You use your AWS account to deploy and manage resources within AWS. If you give other people access
to your resources, you will probably want to control who has access and what they can do. AWS Identity
and Access Management (IAM) is a web service that controls access to your resources by other people.
In IAM, you create users, which other people can use to obtain access and permissions that you define.
For more information about IAM, go to Using IAM.

Step 2: Install the Command Line Tools
We'll need to install some command line tools for Auto Scaling. Do this first to minimize your usage of
billable services.

To install the Auto Scaling command line tools to your local computer, go to Using the Command Line
Tools in the Auto Scaling Developer Guide. After you have installed the command line tools, try a couple
of commands to make sure they work. For example, try typing the as-cmd command at the prompt.

PROMPT>as-cmd

This command returns a list of all the Auto Scaling commands and their descriptions.You should see
something similar to the following illustration.

7

Getting Started with AWS Web Application Hosting for
Linux

Step 2: Install the Command Line Tools

http://aws.amazon.com
http://docs.aws.amazon.com/IAM/latest/UserGuide/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/index.html?astools.html#UsingTheCommandLineTools
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/index.html?astools.html#UsingTheCommandLineTools

After you have installed the command line tools, you can start creating your AWS resources.You are
ready to start thinking about launching your Amazon EC2 instances. Even though for the purposes of this
tutorial, you only have one Amazon EC2 instance up and running, you'll want to have multiple Amazon
EC2 instances running across multiple Availability Zones eventually. This way if one Availability Zone
goes down, the traffic will be rerouted to another Availability Zone. To prepare for the eventuality of
maintaining multiple Amazon EC2 instances, we'll go ahead and create our Elastic Load Balancer resource.
In the AWS CloudFormation step, we can scale out to make use of our Elastic Load Balancer. Let's move
on to the next step to create our Elastic Load Balancer.

Step 3: Create an Elastic Load Balancer
Elastic Load Balancing is a cost-effective and easy-to-use web service to help you improve the availability
and scalability of your application. It makes it easy for you to distribute application loads between two or
more Amazon EC2 instances. Elastic Load Balancing enables availability through redundancy and supports
traffic growth of your application.

Elastic Load Balancing lets you automatically distribute and balance the incoming application traffic among
all the instances you are running. The service also makes it easy to add new instances when you need
to increase the capacity of your application.You can dynamically register or deregister instances from
the load balancer as the capacity requirements of your application change with time.

As soon as your load balancer becomes available, you’re billed for each hour or partial hour that you
keep the load balancer running. For more information about Elastic Load Balancing, see the Elastic Load
Balancing details page.

In this step, we will create a load balancer for an HTTP service.We'll specify that the load balancer listens
on port 80 and distributes traffic to port 80 on the instances.

Note
We'll go ahead and create our Elastic Load Balancer resource so that in the future when you
have multiple instances running, your traffic will be load balanced between your instances. Elastic
Load Balancing is a small cost relative to instance hours. In Step 11: Launch New Environments
Using AWS CloudFormation (p. 42) we'll use AWS CloudFormation to create a template for our
resources and add instances to our Auto Scaling Group.

For more information about elastic load balancers, go to the Elastic Load Balancing Documentation.

To create a load balancer

1. Define a load balancer.

a. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

b. In the top navigation bar, select US East (N. Virginia) from the region selector.

c. In the left navigation pane, click Load Balancers.

d. Click Create Load Balancer.

e. In the Create a New Load Balancer wizard, on the Define Load Balancer page, enter a name
for your load balancer. For this example, type MyLB.

8

Getting Started with AWS Web Application Hosting for
Linux

Step 3: Create an Elastic Load Balancer

http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/elasticloadbalancing/
http://aws.amazon.com/documentation/elasticloadbalancing/
https://console.aws.amazon.com/ec2/

f. Leave Create LB Inside set to EC2-Classic.

g. Leave the Listener Configuration set to the default values.

h. Click Continue.

2. Configure the health check for your load balancer. Elastic Load Balancing routinely checks the health
of each load-balanced Amazon EC2 instance. If Elastic Load Balancing finds an unhealthy instance,
it stops sending traffic to the instance and reroutes traffic to healthy instances

a. For this example, leave Ping Protocol set to its default value of HTTP. When you deploy your
application in the future, you can specify HTTPS. For information on using HTTPS with Elastic
Load Balancing, see Elastic Load Balancing Security Features in Elastic Load Balancing
Developer Guide.

b. For this example, leave Ping Port set to its default value of 80.

Elastic Load Balancing uses the Ping Port to send health check queries to your Amazon EC2
instances.

Note
If you specify a port value, your Amazon EC2 instances must accept incoming traffic
on the port that you specified for the health check.You can set a different port value
other than 80, and you can come back and set this value at a later time. However, for
this example, set it to 80.

c. In the Ping Path field, replace the default value with a single forward slash ("/").

Elastic Load Balancing sends health check queries to the path you specify in Ping Path. This
example uses a single forward slash so that Elastic Load Balancing sends the query to your
HTTP server's default home page, whether that default page is named index.html,
default.html, or a different name. When you deploy your application, consider creating a
special lightweight file that only responds to the health check. This helps differentiate between
traffic that is hitting your site and responses to the load balancer.

9

Getting Started with AWS Web Application Hosting for
Linux

Step 3: Create an Elastic Load Balancer

http://docs.aws.amazon.com/ElasticLoadBalancing/latest/DeveloperGuide/

d. Set the Healthy Threshold to 2. Leave the rest of the Advanced Details set to their default
values.

e. Click Continue.

3. On the Add Instances to Load Balancer page, click Continue.

4. Review your settings.You can make changes to the settings by clicking the Edit link for a specific
step in the process.

10

Getting Started with AWS Web Application Hosting for
Linux

Step 3: Create an Elastic Load Balancer

5. Click Create. On the Create Load Balancer confirmation page, click Close.

Your new load balancer now appears in the list.

As a best practice, you should have sufficient instances across Availability Zones to survive the loss
of any one Availability Zone. In the next step, you'll ensure that your load balancer points to multiple
Availability Zones.

6. Add an Availability Zone.

a. In the Load Balancers list, click MyLB.

b. Click the Instances tab.

c. Click Edit Availability Zones.

11

Getting Started with AWS Web Application Hosting for
Linux

Step 3: Create an Elastic Load Balancer

d. In the Add and Remove Availability Zones dialog box, do the following:

• Click us-east-1b: 0 instances.

• Click us-east-1c: 0 instances.

• Click Save.

The Availability Zones column for the load balancer now shows the Availability Zones you
selected.

Where You're At
Here's where you are at in building your architecture.

12

Getting Started with AWS Web Application Hosting for
Linux

Where You're At

Let's move on to the next topic to create your Amazon EC2 security group.You will need to create an
Amazon EC2 security group in order to open up ports on your instance.Your security group is essentially
acting as a firewall.

Step 4: Create and Configure Your Amazon EC2
Security Group

An Amazon EC2 security group acts as a firewall that controls the traffic allowed into a group of instances.
When you launch an Amazon EC2 instance, you can assign it to one or more security groups. For each
security group, you add rules that govern the allowed inbound traffic to instances in the group. All other
inbound traffic is discarded.You can modify rules for a security group at any time. The new rules are
automatically enforced for all existing and future instances in the group.

In this step, we will do the following:

• Create an Amazon EC2 security group

• Configure an Amazon EC2 security group

To create and configure your security group

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

Note
For this purposes of this walkthrough, we will always use the US East (N. Virginia) region.
However when you deploy your application, select the region that is closest to you.

3. In the left navigation pane, click Load Balancers.

4. Select the load balancer that you created earlier, and click the Security tab. In the Source Security
Group field, copy or write down the name of the security group that's associated with the load
balancer.You will need the name to configure your instance's security group rules.

5. In the navigation pane, click Security Groups, then click Create Security Group.

6. In the Create Security Group dialog box, type webappsecuritygroup in the Security group
name box, and a description of your choice in the Description box.

7. On the Inbound tab, click Add Rule, and select HTTP from the Type list.

8. Select Custom IP from the Source list, and enter the name of the security group that's associated
with your load balancer, for example, amazon-elb/amazon-elb-sg. When you select this source,
this means that only traffic that comes through the Elastic Load Balancer can connect to your Amazon
EC2 instance.

9. Click Add Rule.

10. Select SSH from the Type list to connect to your Amazon EC2 instances. Select Anywhere from
the Source list.

13

Getting Started with AWS Web Application Hosting for
Linux

Step 4: Create and Configure Your Amazon EC2 Security
Group

https://console.aws.amazon.com/ec2/

Important
The security group settings are configured to allow access from everywhere: 0.0.0.0/0.This
is not good practice, and it is only for the purposes of this exercise that we are setting it up
this way. Best practice should be to set rules that restrict access to only those computers
or networks that require access to this service. The number after the "/" indicates a range
of addresses.

11. Click Create.

Your Amazon EC2 security group is not yet enforced. We will enforce this when we create our Auto
Scaling group. However, you can also apply an Amazon EC2 security group to an Amazon EC2
instance. For more information, see Using Security Groups in the Amazon Elastic Compute Cloud
User Guide.

Now that we have created our Amazon EC2 security group, we will need a way to access our Amazon
EC2 instance to deploy our application. Public AMI instances use a public/private key pair to login rather
than a password. Let's move on to the next section to create our key pair.

Step 5: Create a Key Pair
You can create your key pair so that you can connect to your Amazon EC2 instances. Public AMI instances
use a public/private key pair to log in rather than a password. The public key half of this pair is embedded
in your instance, allowing you to use the private key to log in securely without a password. After you
create your own AMIs, you can choose other mechanisms to securely log in to your new instances. In
this step we will use AWS Management Console to create a key pair.

To generate a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the top navigation bar, in the region selector, click US East (N. Virginia).

3. In the left navigation pane, under Network and Security, click Key Pairs.

4. Click Create Key Pair.

14

Getting Started with AWS Web Application Hosting for
Linux

Step 5: Create a Key Pair

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://console.aws.amazon.com/ec2/

5. Type mykeypair in the new Key pair name box, and then click Yes.

6. Download the private key file, which is named mykeypair.pem, and keep it in a safe place.You will
need it to access any instances that you launch with this key pair.

Important
If you lose the key pair, you cannot connect to your Amazon EC2 instances.

For more information about key pairs, see Amazon EC2 Key Pairs in the Amazon Elastic Compute
Cloud User Guide.

Since your traffic may vary, you want AWS to scale the number instances appropriately. To do this you'll
want to use Auto Scaling to create an Auto Scaling group. Let's move on to the next step to create our
Auto Scaling group and associate our Auto Scaling group with our Elastic Load Balancer.

Step 6: Launch Amazon EC2 Instances Using
Auto Scaling

Auto Scaling is designed to launch or terminate Amazon EC2 instances automatically based on user-defined
policies, schedules, and alarms.You can use Auto Scaling to maintain a fleet of Amazon EC2 instances
that can handle any presented load. As its name implies, Auto Scaling responds automatically to changing
conditions. All you need to do is specify how it should respond to those changes. For example, you can
instruct Auto Scaling to launch an additional instance whenever CPU usage exceeds 60 percent for ten
minutes, or you could tell Auto Scaling to terminate half of your website’s instances over the weekend
when you expect traffic to be low.You can also use Auto Scaling to ensure that the instances in your
fleet are performing optimally, so that your applications continue to run efficiently. Auto Scaling groups
can even work across multiple Availability Zones—distinct physical locations for the hosted Amazon EC2
instances—so that if an Availability Zone becomes unavailable, Auto Scaling will automatically redistribute
applications to a different Availability Zone. With Auto Scaling, you can ensure that you always have at
least one healthy instance running. For more information, see Auto Scaling.

In this example, we will set up the basic infrastructure that must be in place to get Auto Scaling started
for most applications. We'll set up an Amazon EC2 application to be load-balanced and auto-scaled with
a minimum number of one instance and maximum number of one instance so you are only charged for
one instance. However, when you create your actual website you should follow the best practice of having
sufficient instances across Availability Zones to survive the loss of any one Availability Zone. Additionally,
increase your maximum number of instances to be greater than your minimum to make use of the Auto
Scaling feature.You can also specify the maximum number of instances to control your fleet size. Auto
Scaling in this example is configured to scale out by one when there is a change in capacity. We define
the policy in this topic and then create a CloudWatch alarm in the next section to take action on the policy
when the average CPU usage exceeds a threshold of 60 percent for 10 minutes. Auto Scaling and Amazon
CloudWatch work together to launch or terminate instances based on the policies you create. To save
time, we will create just one policy, however, you can create more policies, such as a scale-in policy.

If you haven't already installed the Auto Scaling command line tools, you need to do that now at Using
the Command Line Tools in the Auto Scaling DeveloperGuide. We will use the command line tools to set
up Auto Scaling.

To set up an auto-scaled, load-balanced Amazon EC2 application

1. Open a command prompt window. In Microsoft Windows, start the Command Prompt application
(from the Start menu, click Programs, click Accessories, and then click Command Prompt).

2. Use the Auto Scaling as-create-launch-config command. In this example, we use a publicly
available Linux AMI running a content management system (CMS).We use a t1.micro instance type,
and use the security group and the key pair we created in the previous steps. In this example, the

15

Getting Started with AWS Web Application Hosting for
Linux

Step 6: Launch Amazon EC2 Instances Using Auto
Scaling

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://aws.amazon.com/autoscaling
http://aws.amazon.com/autoscaling/
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/index.html?astools.html#UsingTheCommandLineTools
http://docs.aws.amazon.com/AutoScaling/latest/DeveloperGuide/index.html?astools.html#UsingTheCommandLineTools

key pair file is located in the directory in which we are creating our Auto Scaling group. We will not
specify a region because we want to use the default region.

Note
You will be charged for launching one Amazon EC2 instance. The charges in this example
are minimal. For more information about Amazon EC2 pricing, see the Amazon Elastic
Compute Cloud (Amazon EC2) details page.

PROMPT>as-create-launch-config MyLC --image-id ami-7813e011 --instance-type
 t1.micro --group webappsecuritygroup --key mykeypair

Auto Scaling returns output similar to the following example output:

OK-Created launch config

Note
You can copy and paste the commands from the document into the command line window.
To paste the contents in the command line window, use right-click. If you have trouble getting
the commands to work, make sure the command was pasted correctly.

3. Use the Auto Scaling as-create-auto-scaling-group command. In this example, we use two
Availability Zones. This is a good practice for building fault-tolerant applications. If one Availability
Zone experiences an outage, traffic will be routed to another Availability Zone.The number of instances
that are launched in the Auto Scaling group will be evenly distributed across the Availability Zones.

PROMPT>as-create-auto-scaling-group MyAutoScalingGroup --launch-configuration
 MyLC --availability-zones us-east-1b, us-east-1c --min-size 1 --max-size
 1 --load-balancers MyLB

Auto Scaling returns the following:

OK-Created AutoScalingGroup

4. Use the Auto Scaling as-put-scaling-policy command to create a policy to enlarge your fleet
of instances.

PROMPT>as-put-scaling-policy MyScaleUpPolicy --auto-scaling-group MyAutoScal
ingGroup --adjustment=1 --type ChangeInCapacity --cooldown 300

Auto Scaling returns output similar to the following example output:

POLICY-ARN arn:aws:autoscaling:us-east-1:012345678901:scalingPolicy:cbe7da4e-
5d00-4882-900a-2f8113431e30:autoScalingGroupName/MyAutoScalingGroup:policy
Name/MyScaleUpPolicy

Note
To save time, we only created a scale-out policy. However, you typically would want to
create a scale-in policy as well. Auto Scaling decreases the number of instances when your
application doesn't need the resources, saving you money. To create a scale-in policy,
change the policy name and change the adjustment from 1 to -1.

5. Verify that your Auto Scaling group exists by using the as-describe-auto-scaling-groups
command.

16

Getting Started with AWS Web Application Hosting for
Linux

Step 6: Launch Amazon EC2 Instances Using Auto
Scaling

http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

PROMPT>as-describe-auto-scaling-groups MyAutoScalingGroup --headers

Auto Scaling returns the following:

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES
 MIN-SIZE MAX-SIZE DESIRED-CAPACITY
AUTO-SCALING-GROUP MyAutoScalingGroup MyLC us-east-1b,us-east-
1c 1 1 1
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG
INSTANCE i-xxxxxxxx us-east-1c InService Healthy MyLC

Your Amazon EC2 application has been launched as an auto-scaled and load-balanced application. For
more information about Auto Scaling, see the Auto Scaling Documentation.You will continue to incur
costs as long as your Amazon EC2 instances are running. If at any time you want to terminate these
instances, see Terminate Your Amazon EC2 Instances in Your Auto Scaling Group (p. 52).

Where You're At
Here's where you are at in building your architecture.

Now that you have created your Auto Scaling group and your Amazon EC2 instance is up and running,
you'll want a way to monitor the health of your instance. In the next step, we'll create an Amazon
CloudWatch alarm so we can track the Auto Scaling policy you just created.

Step 7: Create a CloudWatch Alarm
Amazon CloudWatch is a web service that enables you to monitor, manage, and publish various metrics,
as well as configure alarm actions based on data from metrics.

With Amazon CloudWatch you can collect, analyze, and view system and application metrics so that you
can make operational and business decisions quickly and confidently. Amazon CloudWatch automatically
collects metrics about your AWS resources—such as the performance of your Amazon EC2 instances.
You can also publish your own metrics directly to Amazon CloudWatch.

Amazon CloudWatch alarms help you implement decisions more easily by enabling you to send notifications
or automatically make changes to the resources you are monitoring, based on rules that you define. For

17

Getting Started with AWS Web Application Hosting for
Linux

Where You're At

http://aws.amazon.com/documentation/autoscaling/

example, you can create alarms that initiate Auto Scaling and Amazon Simple Notification Service (Amazon
SNS) actions on your behalf.

A common use for Amazon CloudWatch is to keep your applications and services healthy and running
efficiently. For example, you can use it to discover that your website runs best when network traffic remains
below a certain threshold level on your Amazon EC2 instances.You can then create an automated
procedure to ensure that you always have the right number of instances to match the amount of traffic
you have.You can also use Amazon CloudWatch to diagnose problems by looking at system performance
before and after a problem occurs. Amazon CloudWatch helps you identify the cause and verify your fix
by tracking performance in real time. For example, you can set up Amazon CloudWatch to email you
right away when your application slows down, to go back and discover that a particular database was
being overloaded, and later to watch response times come back up to speed. For more information about
creating CloudWatch alarms, go to Creating CloudWatch Alarms in the Amazon CloudWatch Developer
Guide.

In the previous task, we created an Auto Scaling policy to scale out the number of instances. In this task,
you need to associate that Auto Scaling policy with an alarm action to make changes to your resources.
This topic walks you through how to create a CloudWatch alarm to alert the application when this threshold
is breached. To save time during this walkthrough, we'll just create one alarm; however, you can apply
the same procedure create other alarms. For example, you could create another alarm to scale in your
instances. For more information about Amazon CloudWatch, see the Amazon CloudWatch details page.

To create an Amazon CloudWatch alarm

1. Select a metric for your alarm.

a. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

b. In the top navigation bar, make sure US East (N. Virginia) is selected in the region selector.

c. In the navigation pane, select Alarm under Alarms.

d. Click Create Alarm.

e. On the Select Metric page of the Create Alarm Wizard, select EC2: Aggregated by Auto
Scaling Group from the Viewing drop-down menu.

18

Getting Started with AWS Web Application Hosting for
Linux

Step 7: Create a CloudWatch Alarm

http://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
http://aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

f. Click the MyAutoScalingGroup/CPU Utilization row.

g. Click Continue.

2. Define the alarm.

a. On the Define Alarm page of the Create Alarm wizard, type MyHighCPUAlarm in the Name
box.

b. Type a description in the Description box.

c. In the Define Alarm Threshold section, select > and type 60 in the first box and 10 in the
minutes box for this example. For your application, you can do some load testing to see what
value makes the most sense for your application.

d. Click Continue.

3. Define your actions.

a. On the Configure Actions page of the Create Alarm wizard, select Alarm from the When
Alarm state is drop-down menu.

b. Select Auto Scaling Policy from the Take Action drop-down menu.

c. Select MyAutoScalingGroup from the from the Auto Scaling Group drop-down menu.

d. Select MyScaleUpPolicy (Add 1 instance) from the from the Policy drop-down menu.

e. Click Add Action.

f. Select Alarm from the When Alarm state is drop-down menu.

g. Select Send Notification from the Take Action drop-down menu.

h. For topic, select Create New Email Topic. Then type a topic name in the Topic box.

19

Getting Started with AWS Web Application Hosting for
Linux

Step 7: Create a CloudWatch Alarm

i. Type an email address in the Email(s) box.

j. Click Add Action.

k. Click Continue.

4. In the Review page, click Create Alarm.

5. Click Close.

20

Getting Started with AWS Web Application Hosting for
Linux

Step 7: Create a CloudWatch Alarm

Your new alarm now appears in the list. When you create your MyScaleDownPolicy, you can create
another alarm using the same steps.

Where You're At
Here's where you are at in building your architecture.

Next, let's add a database to the web application. Amazon provides a couple of database options, but for
this example, we'll use Amazon Relational Database Service (Amazon RDS) because it's easy to operate
and relieves us from the database administrative overhead.

Step 8: Add Amazon RDS
Topics

• Create a DB Security Group (p. 22)

• Authorize Access (p. 22)

• Launch an Instance (p. 23)

Now we are ready to add Amazon Relational Database (Amazon RDS) to our architecture. In this step
we will launch a Multi-AZ RDS instance.When you create or modify your DB Instance to run as a Multi-AZ
deployment, Amazon RDS automatically provisions and maintains a synchronous standby replica in a
different Availability Zone. Updates to your DB Instance are synchronously replicated across Availability
Zones to the standby in order to keep both in sync and protect your latest database updates against DB
Instance failure. During certain types of planned maintenance, or in the unlikely event of DB Instance
failure or Availability Zone failure, Amazon RDS will automatically fail over to the standby so that you can
resume database writes and reads as soon as the standby is promoted. Since the name record for your
DB Instance remains the same, your application can resume database operation without the need for
manual administrative intervention. With Multi-AZ deployments, replication is transparent: you do not
interact directly with the standby, and it cannot be used to serve read traffic.

21

Getting Started with AWS Web Application Hosting for
Linux

Where You're At

http://aws.amazon.com/rds

Important
The DB Instance you're about to launch will be live (and not running in a sandbox).You will incur
the standard Amazon RDS usage fees for the instance until you terminate it. The total charges
will be minimal (typically less than a dollar) if you complete the exercise described here in one
sitting and terminate your DB Instance when you are finished. For more information about Amazon
RDS usage rates, go to the Amazon RDS product page.

Note
This is an optional step, so if you would like to skip this step, you can continue on to Step 9:
Deploy Your Application (p. 27).

To set up your Amazon RDS database you need to do the following:

• Create a DB security group

• Authorize your DB instance

• Launch a DB instance

Create a DB Security Group
To create a DB Security Group, you need to provide a name and a description.

To create a DB Security Group

1. Sign in to the AWS Management Console and open the Amazon RDS console at
https://console.aws.amazon.com/rds/.

2. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

3. In the left navigation pane, click Security Groups.

4. Click the Create DB Security Group button.

5. Type the name of the new DB security group. For this example, type mydbsecuritygroup.

6. Type a description for the new DB Security Group in the Description text box.

7. Click Yes, Create.

Now you're ready to authorize access to the Amazon EC2 security group.

Authorize Access
Now you will need to grant your Amazon EC2 security group access to your DB Security Group.

To authorize your Amazon EC2 security group for access to your DB Security Group

1. Sign in to the AWS Management Console and open the Amazon RDS console at
https://console.aws.amazon.com/rds/.

2. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

3. In the left navigation pane, click Security Groups.

4. Select mydbsecuritygroup.

5. In the lower pane, select EC2 Security Group for the Connection Type.

6. Your AWS Account ID appears in the right half of the lower pane. If you want to authorize a different
AWS ID to use this DB Security Group, select Another account, and then type your ID in the AWS
Account ID box.

Note
Make sure to remove the hyphens when you type your account ID.

7. For the EC2 Security Group Name, select webappsecuritygroup.

22

Getting Started with AWS Web Application Hosting for
Linux

Create a DB Security Group

http://aws.amazon.com/rds
https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

8. Click Authorize.

The authorization will take a few moments. After the security group has been authorized, the Status
column in the top pane will say authorized. Move on to the next step to launch your first Amazon RDS
database.

Launch an Instance
To launch an instance

1. Start the launch wizard:

a. Sign in to the AWS Management Console and open the Amazon RDS console at
https://console.aws.amazon.com/rds/.

b. Make sure US East (N. Virginia) is selected in the region selector in the navigation bar.

c. In the left navigation pane, click DB instances.

d. In the Amazon RDS Console Dashboard, click Launch a DB Instance.

2. Click Select next to the MySQL Community Edition.

3. On the DB Instance Details page, specify your DB instance details as shown in the following table.
Then click Continue.

Do thisFor this parameter...

Keep the default: general-public-license.License Model

Keep the default: 5.5.27 (default).DB Engine Version

Select db.m1.small.

The DB Instance class defines the CPU and memory
capacity of your DB instance.

DB Instance Class

Choose Yes. Although the Multi-AZ deployment is more
expensive, it is a best practice.

Multi-AZ Deployment

23

Getting Started with AWS Web Application Hosting for
Linux

Launch an Instance

https://console.aws.amazon.com/rds/

Do thisFor this parameter...

Keep the default setting of Yes for this example.

The Auto Minor Version Upgrade option enables your
DB Instance to receive minor engine version upgrades
automatically when they become available.

Auto Minor Version Upgrade

You can specify how much storage in gigabytes you want
initially allocated for your DB Instance. For this example,
type 5.

Allocated Storage

Leave the check box unselected. This option turns on
Provisioned IOPS (I/O operations per second), a
high-performance storage option in RDS that is optimized
for I/O-intensive, transactional (OLTP) database workloads.
For more information about high performance storage, see
Provisioned IOPS.

Use Provisioned IOPS

The DB Instance is a name for your DB Instance that is
unique for your account in a Region.Type mydbinstance
in the DB Instance Identifier text box.

DB Instance Identifier

Type a name for your master user in the Master Username
text box.

You use the master user name to log on to your DB
Instance with all database privileges.

Master Username

Type a password for your master user in the Master User
Password text box.

Master Password

Important
You must specify a password containing from 4 to 16 alphanumeric characters only.

4. Provide additional configuration information for your DB Instance:

a. Type mydb into the Database Name text box.

24

Getting Started with AWS Web Application Hosting for
Linux

Launch an Instance

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.ProvisionedIOPS.html

You provide a database name so that Amazon RDS will create a default database on your new
DB Instance. If you skip this step, Amazon RDS will not create a database on your DB Instance.

b. Select mydbsecuritygroup in the DB Security Groups box.

c. Accept the default values for the rest of the parameters available on this page, and then click
Continue.

5. Use the Management Options page to specify backup and maintenance options for your DB Instance.
For this example, accept the default values, and then click Continue.

6. Review the options for your DB Instance. If you need to correct any options, click Back to return to
previous pages and make corrections. When you're ready, click Launch DB Instance to launch your
new DB Instance.

25

Getting Started with AWS Web Application Hosting for
Linux

Launch an Instance

7. Launching can take a few minutes to complete. When you see the notice that your instance is being
created, click Close.

Your DB instance appears in the list on this page with the status of creating until your DB Instance is
created and ready for use.

26

Getting Started with AWS Web Application Hosting for
Linux

Launch an Instance

After your DB instance changes to the available state, you’re billed for each hour or partial hour that you
keep the DB Instance running (even if the DB Instance is idle).

Where You're At
Here's where you are at in building your architecture.

Now that you have launched your Amazon RDS database, you're ready deploy your sample web
application.

Step 9: Deploy Your Application
Topics

• Connecting to your Amazon EC2 Instance from Your Web Browser Using the MindTerm SSH
Client (p. 28)

• Connect to Your Amazon EC2 Instance from Windows Using PuTTY (p. 29)

• Connecting to Your Amazon EC2 Instance from a Linux/UNIX Machine Using a Standalone SSH
Client (p. 33)

• Configure the Amazon EC2 Instance (p. 34)

Now that we've created all of our AWS resources, it's time to deploy our application to our Amazon EC2
instance. In this step, we'll first connect to the Amazon EC2 instance, and then we'll configure the instance
by using a sample application that is already available on the Linux AMI.

27

Getting Started with AWS Web Application Hosting for
Linux

Step 9: Deploy Your Application

Connecting to your Amazon EC2 Instance from
Your Web Browser Using the MindTerm SSH Client
The steps to connect to a Linux/UNIX instance using your browser are as follows:

1. Install and Enable Java on Your Browser (p. 28)

2. Connect Using the Java SSH Client (p. 28)

Install and Enable Java on Your Browser
To connect to your instance from the Amazon Elastic Compute Cloud (Amazon EC2) console, you must
have Java installed and enabled in your browser. To install and enable Java, follow the steps Oracle
provides below or contact your IT administrator to install and enable Java on your web browser.

Note
On a Windows or Mac client, you must run your Web browser with administrator credentials. For
Linux, additional steps may be required if you are not logged in as root.

1. Install Java (see http://java.com/en/download/help/index_installing.xml).

2. Enable Java in your web browser (see http://java.com/en/download/help/enable_browser.xml).

Connect Using the Java SSH Client

To connect to your instance through a web browser

1. Sign in to the AWS Management Console and open the Amazon EC2 console at
https://console.aws.amazon.com/ec2/.

2. In the navigation pane, click Instances.

3. Select your instance, and then click Connect.

4. Click A Java SSH client directly from my browser (Java required). AWS automatically detects
the public DNS address of your instance and the key pair name you launched the instance with.

5. In User name, enter the user name to log in to your instance. For this example, enter ec2-user.

Note
For an Amazon Linux instance, the default user name is ec2-user. For Ubuntu, the default
user name is ubuntu. Some AMIs allow you to log in as root.

6. The Key name field is automatically populated for you.

7. In Private key path, enter the fully qualified path to your .pem private key file.

8. For Save key location, click Stored in browser cache to store the key location in your browser
cache so the key location is detected in subsequent browser sessions, until you clear your browser’s
cache.

9. Click Launch SSH Client.

10. If necessary, click Yes to trust the certificate.

11. Click Run to run the MindTerm client.

12. If you accept the license agreement, click Accept.

13. If this is your first time running MindTerm, a series of dialog boxes will ask you to confirm setup for
your home directory and other settings.

14. Confirm settings for MindTerm setup.

15. A screen similar to the following opens and you are connected to your instance.

28

Getting Started with AWS Web Application Hosting for
Linux

Connecting to your Amazon EC2 Instance from Your
Web Browser Using the MindTerm SSH Client

http://java.com/en/download/help/index_installing.xml
http://java.com/en/download/help/enable_browser.xml
https://console.aws.amazon.com/ec2/

If you have trouble connecting using MindTerm, check the following:

• Make sure you installed Java and enabled it in your browser.

• Make sure you are using the correct user name.

• Make sure you have typed the correct key pair and path to your private key pair.

• Make sure you have configured your security group to allow you to connect to your instance. .

• If you still continue to experience issues, check the AWS Forums for a possible solution.

16. Use the sudo service httpd start command to start the web server.

sudo service httpd start

Connect to Your Amazon EC2 Instance from
Windows Using PuTTY
If you are running Windows from your local machine, you will need to install PuTTy and PuTTyGen since
SSH is not built in. To connect to a Linux instance, you must retrieve the initial administrator password
first, and then use it with Microsoft Remote Desktop.You'll need the contents of the private key file that
you created (e.g., mykeypair.pem) in Step 5: Create a Key Pair (p. 14).

To connect to your Amazon EC2 instance from a Windows machine

1. Install PuTTy and PuTTyGen.

• Download and install PuTTy. A search on "download Putty" on Google returns a list of download
sites. Be certain that you install both PuTTy and PuTTyGen, because you will need both of them.

2. Convert the key pair using PuTTyGen. (For information on key pairs see Step 5: Create a Key
Pair (p. 14)).

a. Launch PuTTyGen and select Import Key from the Conversions menu.

b. Browse for mykeypair.pem, and import the key.

29

Getting Started with AWS Web Application Hosting for
Linux

Connect to Your Amazon EC2 Instance from Windows
Using PuTTY

https://forums.aws.amazon.com/search.jspa?objID=f30&q=mindterm

c. Click Save private key. Ignore the dialog box that asks if you want to do this without a
passphrase. Save the key as mykeypair.ppk.

d. Close PuTTyGen.

3. Configure the SSH settings.

a. Launch PuTTy, expand the SSH node, and click Auth.

b. Enter the location for mykeypair.ppk.

4. Modify the keepalive.

a. In the PuTTy Configuration window, in the Category pane, click Connection.

b. Type 60 in the Seconds between keepalives (0 to turn off) box. If you don't change this value,
your session will time out.

30

Getting Started with AWS Web Application Hosting for
Linux

Connect to Your Amazon EC2 Instance from Windows
Using PuTTY

5. Save the session settings.

a. In the PuTTy Configuration window, in the Category pane, click Session.

b. Inside the Load, save, or delete a stored session box, click Default Settings, and click Save.

6. Type the DNS address of your Amazon EC2 instance.

a. Sign in to the AWS Management Console and open the Amazon EC2 console at
https://console.aws.amazon.com/ec2/.

b. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

c. In the navigation pane, click Instances.

d. Select your running instance and note the public DNS address in the bottom pane.

e. In the PuTTy Configuration window, click Sessions in the Category pane, and in the Host
Name (or IP address) box, type <ec2-user@DNS address of your Amazon EC2
instance>.

Note
We put ec2-user in front of the DNS name because the username for the AMI is
ec2-user.

31

Getting Started with AWS Web Application Hosting for
Linux

Connect to Your Amazon EC2 Instance from Windows
Using PuTTY

https://console.aws.amazon.com/ec2/

f. Click Open. When the PuTTY Security Alert dialog box appears, click Yes to confirm that the
fingerprint is OK. The SSH PuTTY window will launch.

Note
The SSH fingerprint will eventually show up in the system log.You can use the SSH
fingerprint as a comparison to protect against a man in the middle attack.

Your screen should look similar to the following screen.

g. Use the sudo service httpd start command to start the web server.

sudo service httpd start

Your screen should look similar to the following screen.

32

Getting Started with AWS Web Application Hosting for
Linux

Connect to Your Amazon EC2 Instance from Windows
Using PuTTY

Now that you have successfully logged into your AMI, you are ready to configure your AMI. For
instructions on how to configure your AMI, see Configure the Amazon EC2 Instance (p. 34).

Connecting to Your Amazon EC2 Instance from a
Linux/UNIX Machine Using a Standalone SSH
Client
Use the ssh command to connect to your Linux/UNIX instance from a Linux/UNIX machine.

Note
Most Linux and UNIX machines include an SSH client by default. If yours doesn't, the OpenSSH
project provides a free implementation of the full suite of SSH tools. For more information, go to
http://www.openssh.org .

To use SSH to connect

1. In a command line shell, change directories to the location of the private key file that you created in
Step 5: Create a Key Pair (p. 14).

2. Use the chmod command to make sure your private key file isn't publicly viewable. For example, for
mykeyapir.pem, you would enter:

chmod 400 mykeypair.pem

3. Sign in to the AWS Management Console and open the Amazon EC2 console at
https://console.aws.amazon.com/ec2/.

4. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

5. In the left navigation pane, click Instances.

6. Select your instance, and then click Connect.

7. Click A Java SSH client directly from my browser (Java required). AWS automatically detects
the public DNS address of your instance and the key pair name you launched the instance with.

8. Connect to your instance using the instance's public DNS name. For example, if the key file is
mykeypair.pem and the instance's DNS name is ec2-107-20-66-228.compute-1.amazonaws.com,
use the following command.

33

Getting Started with AWS Web Application Hosting for
Linux

Connecting to Your Amazon EC2 Instance from a
Linux/UNIX Machine Using a Standalone SSH Client

http://www.openssh.org/
https://console.aws.amazon.com/ec2/

ssh -i mykeypair.pem ec2-user@ec2-107-20-66-228.compute-1.amazonaws.com

Note
We use ec2-user as the username in this exercise for this AMI.

You'll see a response like the following.

The authenticity of host 'ec2-107-20-66-228.compute-1.amazonaws.com
(10.254.142.33)'
can't be established.
RSA key fingerprint is 00:00:00:00:00:00:00:00:00:00:00:00:00:00:00.
Are you sure you want to continue connecting (yes/no)? yes

9. Enter yes.

You'll see a response like the following.

Warning: Permanently added 'ec2-107-20-66-228.compute-1.amazonaws.com' (RSA)

 to the list of known hosts.

10. Use the sudo service httpd start command to start the web server.

sudo service httpd start

You'll see a response like the following.

Starting httpd [OK]

Now that you have successfully logged into your AMI, you are ready to configure your AMI. For
instructions on how to configure your AMI, see Configure the Amazon EC2 Instance (p. 34).

Configure the Amazon EC2 Instance
In this topic we will configure the running AMI. First, let's configure the health check for the load balancer
so that we can connect to the instance through our load balancer. We will temporarily change the health
check to point to the install.php script until our instance is configured. After the instance is configured we
will point the health check back to root.

To configure the health check to point to the install script

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Make sure US East (N. Virginia)is selected in the region selector of the navigation bar.

3. In the left navigation pane, click Load Balancers.

4. Click your load balancer and click the Health Check tab.

34

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

https://console.aws.amazon.com/ec2/

5. Click Edit Health Check.

6. In the Configure Health Check dialog box, type /install.php in the Ping Path box. Then click
Save.

Configure the application

1. With your load balancer still selected, click the Description tab. Make a note of the public DNS
Name.

2. Open your web browser, and type the public DNS address of your load balancer in the address bar.

3. On the Choose profile page, click Standard and Save and continue.

35

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

4. On the Choose language page, click English and Save and continue.

5. On the Set up database page enter the following information.

a. Click MySQL, MariaDB, or equivalent for database type.

b. In the Database name box, type the name of your database. In our example, we use mydb.

c. In the Database username box, type the username for your database. In our example, we use
awsuser.

d. In the Database password box, type the password for your database. In our example, we use
mypassword.

36

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

e. Click ADVANCED OPTIONS.

f. In the Database host box, type the Amazon RDS endpoint.

Note
You can find the Amazon RDS endpoint on the Amazon RDS console on the My DB
Instances page as shown in the following image.

37

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

Note
Make sure that your database instance is up and running before proceeding to the next
step. The status should say available as shown in the above diagram.

g. Click Save and continue. The Configure site page appears.

6. On the Configure site page, enter the following information.

a. In the Site name box, type the DNS address of the load balancer as you did at the beginning
of this procedure.

b. In the Site e-mail address box, type an email address.

c. In the Username box, type a username.

d. In the Password box, type a password.

e. In the Confirm password box, re-type the password.

f. Click Save and continue.

38

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

The installation is complete.

7. Click Visit your new site.Your new site appears.

8. Click Add new content to add one new article to your new site.

Now that our new site is created, we can backup your database.

To backup your database

1. At the prompt, type the following command to change to the home directory.

cd

2. At the prompt, type the following command to create a new folder called backups.

mkdir backups

3. At the prompt, type the following command to back up your existing database.

39

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

mysqldump -u awsuser -pmypassword mydb --host=your Amazon RDS endpoint >
backups/backup.sql

Make sure to replace the your Amazon RDS endpoint with your Amazon RDS endpoint you noted
in the previous step.

4. Verify the backup exists.

a. At the prompt, type the following command to change to the backups folder.

cd backups

b. At the prompt, type the following command to list the contents of the directory.

ls -al

To configure the health check to point to the root document

1. In the AWS Management Console, click the Amazon EC2 tab.

2. Click Instances in the Navigation pane.

3. In the Navigation pane select US East (N. Virginia) from the Region drop-down menu.

4. In the Load Balancers pane, click your load balancer and click the Health Check tab.

5. Click Edit Health Check.a.

b. In the Configure Health Check dialog box, type / in the Ping Path box.

40

Getting Started with AWS Web Application Hosting for
Linux

Configure the Amazon EC2 Instance

Congratulations! You just successfully deployed your web application using Amazon Web Services! Now,
in the future if we decide we want to launch more instances we don't want to have to customize each
one. Let's move on to the step to create a custom AMI with all our configuration changes.

Step 10: Create a Custom AMI
Now that we have customized our Amazon EC2 instance, we can save this Amazon Machine Image
(AMI) and launch future environments with this saved configuration using AWS CloudFormation. This is
an optional step. If you prefer to finish the tutorial now, you can skip ahead to clean up your AWS resources
in Step 12: Clean Up (p. 51).

To create an AMI from a running Amazon EBS-backed instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Make sure that US East (N. Virginia) is selected in the region selector of the navigation bar.

3. Click Instances in the navigation pane.

4. On the Instances page, right-click your running instance and select Create Image.

5. Fill in a unique image name and an optional description of the image (up to 255 characters), and
click Create Image.

Tip
If you're familiar with Amazon EC2 instance store-backed AMIs, the image name replaces
the manifest name (e.g., s3_bucket/something_of_your_choice.manifest.xml), which uniquely
identifies each Amazon Amazon EC2 instance store-backed AMI.

Amazon EC2 powers down the instance, takes images of any volumes that were attached, creates
and registers the AMI, and then reboots the instance.

6. Go to the AMIs page and view the AMI's status. While the new AMI is being created, its status is
pending.

It takes a few minutes for the whole process to finish.

7. Once your new AMI's status is available, go to the Snapshots page and view the new snapshot that
was created for the new AMI. Any instance you launch from the new AMI uses this snapshot for its
root device volume.You could update your Auto Scaling group with the new AMI, however we will
do this as part of the AWS CloudFormation step.

41

Getting Started with AWS Web Application Hosting for
Linux

Step 10: Create a Custom AMI

https://console.aws.amazon.com/ec2/

We've taken a lot of steps so far to create all of our AWS resources, deploy our application, and customize
our AMI. Wouldn't it be great if we could save all of this information and launch new environments without
having to manually configure everything again? We can! AWS CloudFormation is a way to launch
environments easily. That is, when you launch an AWS CloudFormation environment, you are able to
launch specific AMIs with particular key pairs, on pre-defined instance sizes, and behind load balancers.
And if any portion of your environment fails to launch, the environment rolls itself back, terminating all the
pieces along the way. Let's move on to the next topic to begin using AWS CloudFormation.

Step 11: Launch New Environments Using AWS
CloudFormation

Topics

• Create an AWS CloudFormation Template (p. 42)

• Modify a CloudFormation Template (p. 46)

• Create an AWS CloudFormation Stack (p. 47)

You can use AWS CloudFormation to create and provision AWS infrastructure deployments predictably
and repeatedly. Use AWS CloudFormation to build highly reliable, highly scalable, cost-effective applications
without worrying about creating and configuring the underlying AWS infrastructure. AWS CloudFormation
consists of template files you use to create and delete collections of resources as a single unit (an AWS
CloudFormation stack). Using AWS CloudFormation you can leverage other services such as such as
Amazon Elastic Compute Cloud (Amazon EC2), Amazon Elastic Block Store (Amazon EBS), Amazon
Simple Notification Service (Amazon SNS), Elastic Load Balancing, and Auto Scaling.

In this example, we'll use the CloudFormer tool to generate a template based on the AWS resources we
just created. CloudFormer is intended to create a starting point for your template. After you create the
template, you'll customize the template to launch a new enviroment with multiple instances spanning
multiple Availability Zones to enable a fault-tolerant architecture.

This is an optional step. If you want to skip this step, you can move on to Step 12: Clean Up (p. 51) to
begin deleting your resources.

Create an AWS CloudFormation Template
First, you'll need to create a template based on the resources you just created.You'll use a tool called
CloudFormer that collects information about all your running resources and creates a template.
CloudFormer is a prototype that helps you get started.You'll then make some tweaks to the template
before you create your new stack. Visit the AWS Forums to learn more and to run the tool.

After generating the template and making a few tweaks, you may have something that looks like the
following.

42

Getting Started with AWS Web Application Hosting for
Linux

Step 11: Launch New Environments Using AWS
CloudFormation

http://aws.amazon.com/cloudformation
https://forums.aws.amazon.com/ann.jspa?annID=1048

{

 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "elbMyLB": {
 "Type": "AWS::ElasticLoadBalancing::LoadBalancer",
 "Properties": {
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c"
],
 "HealthCheck": {
 "HealthyThreshold": "2",
 "Interval": "30",
 "Target": "HTTP:80/",
 "Timeout": "5",
 "UnhealthyThreshold": "2"
 },

 "Listeners": [
 {
 "InstancePort": "80",
 "LoadBalancerPort": "80",
 "Protocol": "HTTP",
 "PolicyNames": [
]
 }
]
 }
 },

 "asgMyAutoScalingGroup": {
 "Type": "AWS::AutoScaling::AutoScalingGroup",
 "Properties": {
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c"
],
 "Cooldown": "300",
 "DesiredCapacity": "1",
 "MaxSize": "1",
 "MinSize": "1",
 "LaunchConfigurationName": {
 "Ref": "lcMyLC"
 },
 "LoadBalancerNames": [
 {
 "Ref": "elbMyLB"
 }
]
 }
 },

 "lcMyLC": {
 "Type": "AWS::AutoScaling::LaunchConfiguration",
 "Properties": {
 "ImageId": "ami-45b77f2c",

43

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Template

 "InstanceType": "t1.micro",
 "KeyName": "mykeypair",
 "SecurityGroups": [
 {
 "Ref": "sgwebappsecuritygroup"
 }
]
 }
 },

 "aspMyScaleUpPolicy" : {
 "Type" : "AWS::AutoScaling::ScalingPolicy",
 "Properties" : {
 "AdjustmentType" : "ChangeInCapacity",
 "AutoScalingGroupName" : { "Ref" : "asgMyAutoScalingGroup" },
 "Cooldown" : "300",
 "ScalingAdjustment" : "1"
 }
 },

 "cwCPUAlarmHigh": {
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "AlarmDescription": "Scale-up if CPU > 60% for 10 minutes",
 "MetricName": "CPUUtilization",
 "Namespace": "AWS/EC2",
 "Statistic": "Average",
 "Period": "300",
 "EvaluationPeriods": "2",
 "Threshold": "60",
 "AlarmActions": [{ "Ref": "aspMyScaleUpPolicy" }],
 "Dimensions": [
 {
 "Name": "AutoScalingGroupName",
 "Value": { "Ref": "asgMyAutoScalingGroup" }
 }
],
 "ComparisonOperator": "GreaterThanThreshold"
 }
 },

 "rdsmydbinstance": {
 "Type": "AWS::RDS::DBInstance",
 "Properties": {
 "AllocatedStorage": "5",
 "BackupRetentionPeriod": "1",
 "DBInstanceClass": "db.m1.small",
 "DBName": "MyDatabase",
 "DBParameterGroupName": "default.mysql5.1",
 "Engine": "mysql",
 "EngineVersion": "5.1.57",
 "MasterUsername": "awsuser",
 "MasterUserPassword": "awsuser",
 "Port": "3306",
 "PreferredBackupWindow": "10:00-10:30",
 "PreferredMaintenanceWindow": "sun:05:00-sun:05:30",
 "MultiAZ": "true",
 "DBSecurityGroups": [

44

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Template

 {
 "Ref": "dbsgmydbsecuritygroup"
 }
]
 }
 },

 "sgwebappsecuritygroup": {
 "Type": "AWS::EC2::SecurityGroup",
 "Properties": {
 "GroupDescription": "this is a security group for demo",
 "SecurityGroupIngress": [
 {
 "IpProtocol": "tcp",
 "FromPort": "80",
 "ToPort": "80",
 "SourceSecurityGroupName": "amazon-elb-sg",
 "SourceSecurityGroupOwnerId": "amazon-elb"
 },
 {
 "IpProtocol": "tcp",
 "FromPort": "22",
 "ToPort": "22",
 "CidrIp": "0.0.0.0/0"
 }
]
 }
 },

 "dbsgmydbsecuritygroup": {
 "Type": "AWS::RDS::DBSecurityGroup",
 "Properties": {
 "GroupDescription": "my database security group",
 "DBSecurityGroupIngress": [
 {
 "EC2SecurityGroupName": {
 "Ref": "sgwebappsecuritygroup"
 },
 "EC2SecurityGroupOwnerId": "123456789012"
 }
]
 }
 }
 },

 "Description": ""
}

You'll want to make a couple of changes to this template before you launch your new environment. In
this tutorial, you only launched one Amazon EC2 instance. However, it's a best practice to launch multiple
instances across multiple Availability Zones; you'll want to update your Auto Scaling group to launch more
instances.You'll also want to launch a new environment with your custom AMI. Finally, You'll update your
database information to include your database name and password.

45

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Template

Modify a CloudFormation Template
Now that the template has been created, let's modify it so that you can launch a new environment with
the custom AMI so that you will have multiple instances spanned across multiple Availability Zones.

To launch a new stack with a modified template

1. Open the template you created using CloudFormer.

2. Update the Min Size, Max Size, and Desired Capacity in the Auto Scaling group to 2.

"asgMyAutoScalingGroup": {
 "Type": "AWS::AutoScaling::AutoScalingGroup",
 "Properties": {
 "AvailabilityZones": [
 "us-east-1b",
 "us-east-1c"
],
 "Cooldown": "300",
 "DesiredCapacity": "2",
 "MaxSize": "2",
 "MinSize": "2",
 "LaunchConfigurationName": {
 "Ref": "lcMyLC"
 },
 "LoadBalancerNames": [
 {
 "Ref": "elbMyLB"
 }
]
 }
 },

3. Update the Image ID in the Launch Configuration group to the custom AMI that you created in
Step 10: Create a Custom AMI (p. 41).

Note
Your AMI ID will be different than the one you see below.

Add the UserData information as you see below so the web server will startup on bootup.

Note
Make sure to put the comma right after the] and just before UserData.

"lcMyLC": {
 "Type": "AWS::AutoScaling::LaunchConfiguration",
 "Properties": {
 "ImageId": "ami-91b270f8",
 "InstanceType": "t1.micro",
 "KeyName": "mykeypair",
 "SecurityGroups": [
 {
 "Ref": "sgwebappsecuritygroup"
 }
],

46

Getting Started with AWS Web Application Hosting for
Linux

Modify a CloudFormation Template

 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash -v\n",
 "sed -i 's/AllowOverride None/AllowOverride All/g' /etc/httpd/conf/ht
tpd.conf\n",
 "service httpd start\n"
]]}}
 }
 },

4. Update the following parameters in the Database group.

• Update DBName to awsuser.

• Update MasterUserPassword to mypassword.

"mydbinstance": {
 "Type": "AWS::RDS::DBInstance",
 "Properties": {
 "AllocatedStorage": "5",
 "BackupRetentionPeriod": "1",
 "DBInstanceClass": "db.m1.small",
 "DBName": "mydb",
 "DBParameterGroupName": "default.mysql5.1",
 "Engine": "mysql",
 "EngineVersion": "5.1.57",
 "MasterUsername": "awsuser",
 "MasterUserPassword": "mypassword",
 "Port": "3306",
 "PreferredBackupWindow": "08:30-09:00",
 "PreferredMaintenanceWindow": "fri:03:30-fri:04:00",
 "MultiAZ": "true",
 "DBSecurityGroups": [
 {
 "Ref": "dbsgmydbsecuritygroup"
 }
]
 }
 },

Now that you have modified the template, let's move on to the next step to launch your new environment
using your template.

Create an AWS CloudFormation Stack
Now that you have modified your AWS CloudFormation template, let's create a new stack to launch your
new environment. Before you launch your new stack, you can verify that it works by cleaning up all your
AWS resources except for your key pair and custom AMI. For instructions on how to clean up your
resources see Step 12: Clean Up (p. 51).

47

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Stack

Note
AWS CloudFormation is a free service. However, you are charged for the AWS resources you
include in your stacks at the current rates for each. For more information about AWS pricing, go
to the detail page for each product on http://aws.amazon.com/pricing.

To create an AWS CloudFormation stack

1. Launch the Create Stack wizard.

a. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

b. Make sure US East (N. Virginia) is selected in the region selector of the navigation bar.

c. Click Create Stack.

2. Select a template.

a. On the SELECT TEMPLATE page of the Create Stack wizard, type a stack name in the Stack
Name box.

b. Click Upload a Template URL and type in the location where you saved your modified template.

c. Click Show Advanced Options.

d. Select Create a new SNS topic from the Amazon SNS Topic drop-down menu.You will receive
email notifications when resources are created and when they are deleted.

e. Type CRM in the New topic name box.

f. Type your email address in the Email box and accept the rest of the default values.

g. Click Continue.

3. In the Add Tags page, click Continue.

4. Review your settings.You can make changes to the settings by clicking the edit link for a specific
step in the process.

48

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Stack

http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
https://console.aws.amazon.com/cloudformation/

5. Click Continue.

A confirmation window opens.

6. Click Close.

The confirmation window closes, returning you to the CloudFormation page.Your new AWS
CloudFormation template appears in the list with the status set to CREATE_IN_PROGRESS.

Note
Your stack will take a few minutes to create. Make sure to click Refresh in the Stacks page
to see when the template has successfully been created.

After your stack has been created, you can verify that it all works.

49

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Stack

To verify your AWS CloudFormation stack works

1. Connect to one of your newly created Amazon EC2 instances as you did in Connecting to Your
Amazon EC2 Instance from a Linux/UNIX Machine Using a Standalone SSH Client (p. 33) or Connect
to Your Amazon EC2 Instance from Windows Using PuTTY (p. 29).

2. Switch the database to the Amazon Relational Database Service (Amazon RDS) database

a. Navigate to the Amazon RDS console and get your new Amazon RDS endpoint that AWS
CloudFormation created. Follow the same process you used in Step 9: Deploy Your
Application (p. 27).

b. In the SSH window, at the prompt type the following command.

cd

c. At the prompt type the following command.

mysql -u awsuser -pmypassword --database=mydb --host=your Amazon RDS
endpoint < backups/backup.sql

Make sure to replace your Amazon RDS endpoint with your Amazon RDS endpoint. This is the
endpoint that you retrieved in the previous step.

d. At the prompt type the following command.

cd /var/www/html/sites/default

e. At the prompt, type the following command to list the contents of the directory.

ls

f. At the prompt, type the following command to open the settings.php file.

vi settings.php

g. Use the PgDn key to navigate to a section that looks similar to the following.

$databases = array (
'default' =>
 array (
 'default' =>
 array (
 'database' => 'mydb',
 'username' => 'awsuser',
 'password' => 'mypassword',
 'host' => 'mydbinstance.cgwxy4t1e0xb.us-east-1.rds.amazonaws.com',

 'port' => '',
 'driver' => 'mysql',
 'prefix' => '',
),

50

Getting Started with AWS Web Application Hosting for
Linux

Create an AWS CloudFormation Stack

),
);

h. Press the i key to enter Insert mode.

i. Replace mydbinstance.cgwxy4t1e0xb.us-east-1.rds.amazonaws.com with your new
Amazon RDS endpoint.

Note
Right-click to paste the contents if you prefer copy and paste.

$databases = array (
'default' =>
 array (
 'default' =>
 array (
 'database' => 'mydb',
 'username' => 'awsuser',
 'password' => 'mypassword',
 'host' => 'mycloudformationstack-rdsmydbinstance-1276gxy2eians.cg
wxy4t1e0xb.us-east-1.rds.amazonaws.com',
 'port' => '',
 'driver' => 'mysql',
 'prefix' => '',
),
),
);

j. Press Esc and then :wq to save the file and quit.

k. Repeat the same steps for the other Amazon EC2 instance.

l. Verify that it all works by navigating to the Amazon EC2 console and getting the DNS name for
the new load balancer your Amazon CloudFormation stack created, just as you did in Step 9:
Deploy Your Application (p. 27).

Where You're At
Congratulations! You have just launched your new environment using the AWS resources you created
in this tutorial.Your Elastic Load Balancer is now pointing to both of your Amazon EC2 instances across
multiple Availability Zones.

To delete an AWS CloudFormation stack

1. Open the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/.

2. Click the stack you want to delete, and click Delete Stack.

Step 12: Clean Up
Topics

• Terminate Your Amazon EC2 Instances in Your Auto Scaling Group (p. 52)

• Terminate Your DB Instance (p. 53)

51

Getting Started with AWS Web Application Hosting for
Linux

Step 12: Clean Up

https://console.aws.amazon.com/cloudformation/

• Delete Your CloudWatch Alarm (p. 54)

• Delete Your Elastic Load Balancer (p. 55)

• Delete a Key Pair (p. 55)

• Delete an Amazon EC2 Security Group (p. 56)

• Delete Your Custom AMI (p. 56)

Congratulations! You have just deployed your web application. Now, to prevent accruing any further
charges, let's terminate our environments and clean our resources.

Terminate Your Amazon EC2 Instances in Your
Auto Scaling Group
In this section you will first remove the Amazon EC2 instance, then delete the Auto Scaling group, and
finally delete the launch configuration.

You must terminate all Amazon EC2 instances in an Auto Scaling group before you can delete the group.
A simple way to terminate all instances in a group is to update the group so that both the minimum size
and maximum size are set to zero.

To remove the Amazon EC2 instance from the Auto Scaling group

1. Open a command prompt window: From a Windows computer, click Start. In the Search box, type
cmd, and then press Enter.

2. You'll use the as-update-auto-scaling-group command to update the Auto Scaling group that
we created earlier. At the command prompt, type the following, and then press Enter:

PROMPT>as-update-auto-scaling-group MyAutoScalingGroup --min-size 0 --max-
size 0

Auto Scaling returns the following:

OK-Updated AutoScalingGroup

3. Now you'll use the as-describe-auto-scaling-groups command to verify that Auto Scaling
has removed the instance from MyAutoScalingGroup.

It can take a few minutes for the instance to terminate, so you might have to check the status more
than once. At the command prompt, type the following, and then press Enter:

PROMPT>as-describe-auto-scaling-groups MyAutoScalingGroup --headers

If the instance termination is still in progress, Auto Scaling returns information similar to the following.
(Your value for INSTANCE-ID will differ):

AUTO-SCALING-GROUP GROUP-NAME LAUNCH-CONFIG AVAILABILITY-ZONES
 LOAD-BALANCERS MIN-SIZE MAX-SIZE DESIRED-CAPACITY
AUTO-SCALING-GROUP MyAutoScalingGroup MyLC us-east-1b,us-east-
1c MyLB 0 0 0
INSTANCE INSTANCE-ID AVAILABILITY-ZONE STATE STATUS LAUNCH-CONFIG

52

Getting Started with AWS Web Application Hosting for
Linux

Terminate Your Amazon EC2 Instances in Your Auto
Scaling Group

INSTANCE i-xxxxxxxx us-east-1c InService Healthy MyLC

Note
You can also click Instances in the Amazon EC2 console to view the status of your instances.

When no instances exist in MyAutoScalingGroup, you can delete the group.

To delete the Auto Scaling group

• At the command prompt, type the following, and then press Enter:

PROMPT>as-delete-auto-scaling-group MyAutoScalingGroup

To confirm the deletion, type Y, and then press Enter.

Are you sure you want to delete this MyAutoScalingGroup? [Ny]

Auto Scaling returns the following:

OK-Deleted MyAutoScalingGroup

All that remains now is to delete the launch configuration you created for this Auto Scaling group.

To delete the launch configuration

• At the command prompt, type the following, and then press Enter:

PROMPT>as-delete-launch-config MyLC

To confirm the deletion, type Y and then press Enter.

Are you sure you want to delete this launch configuration? [Ny]

Auto Scaling returns the following:

OK-Deleted launch configuration

Terminate Your DB Instance
To terminate your DB Instance

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Make sure US East (N. Virginia) is selected in the region selector in the navigation bar.

3. In the left navigation pane, click DB Instances.

4. Locate the DB Instance in your list of DB Instances.

53

Getting Started with AWS Web Application Hosting for
Linux

Terminate Your DB Instance

https://console.aws.amazon.com/rds/

5. Select the check box next to the DB Instance, and then choose Delete from the Instance Actions
drop-down list at the top of the page.

6. Select No in the Create final snapshot? drop-down list.

If this weren't an exercise, you might create a final snapshot before you deleted the DB Instance so
that you could restore the DB Instance later.

Note
Creating a final snapshot incurs additional storage fees.

7. Click Yes, Delete.

Amazon RDS begins terminating the instance. As soon as the DB Instance status changes to deleted,
you stop incurring charges for that DB Instance.

To delete your DB Security Group

1. Open the Amazon RDS console at https://console.aws.amazon.com/rds/.

2. Click DB Security Groups in the navigation pane on the left.

3. Select a DB Security Group and click Delete DB Security Group.

4. Click Yes, Delete.

Delete Your CloudWatch Alarm
After you've decided that you no longer need the alarm, you can delete it.

To delete your alarm

1. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. In the top navigation bar, click US East (N. Virginia) in the region selector.

3. In the left navigation pane, click Alarms.

4. Select the check box next to the alarm that you want to delete, and then click Delete.

54

Getting Started with AWS Web Application Hosting for
Linux

Delete Your CloudWatch Alarm

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/cloudwatch/

5. When a confirmation message appears, click Yes, Delete.

Delete Your Elastic Load Balancer
As soon as your load balancer becomes available, AWS bills you for each hour or partial hour that you
keep the load balancer running. After you've decided that you no longer need the load balancer, you can
delete it.

To delete your load balancer

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the top navigation bar, click US East (N. Virginia) in the region selector.

3. In the left navigation pane, click Load Balancers.

4. Select the check box next to the load balancer you want to delete and then click Delete.

5. When a confirmation message appears, click Yes, Delete.

Elastic Load Balancing deletes the load balancer. As soon as the load balancer is deleted, you stop
incurring charges for that load balancer.

Caution
Even after you delete a load balancer, the Amazon EC2 instances associated with the load
balancer continue to run.You will continue to incur charges on the Amazon EC2 instances
while they are running.

Delete a Key Pair
This is an optional step.You are not charged for keeping a key pair, and you may want to reuse the key
pair for later use.

55

Getting Started with AWS Web Application Hosting for
Linux

Delete Your Elastic Load Balancer

https://console.aws.amazon.com/ec2/

To delete a key pair

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the top navigation bar, click US East (N. Virginia) in the region selector.

3. In the left navigation pane, click Key Pairs.

4. Select the check box beside the key pair you want to delete, and then click Delete.

5. When a confirmation message appears, click Yes.

Delete an Amazon EC2 Security Group
To delete a security group

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. In the top navigation bar, click US East (N. Virginia) in the region selector.

3. In the left navigation pane, click Security Groups.

4. In the details pane, under Security Groups, select a security group you want to delete, and then
click Delete.

5. Click Yes, Delete.

Delete Your Custom AMI
To delete an AMI and a snapshot

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Make sure US East (N. Virginia) is selected in the region selector in the navigation bar.

3. In the left navigation pane, click AMIs.

4. Right-click your AMI, and select Deregister. When prompted, click Continue.

The image is deregistered, which means it is deleted and can no longer be launched.

5. Go to the Snapshots page, right-click the snapshot, and select Delete Snapshot. When prompted,
click Yes, Delete.

The snapshot is deleted.

56

Getting Started with AWS Web Application Hosting for
Linux

Delete an Amazon EC2 Security Group

https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/ec2/

Amazon Route 53

Amazon Route 53 is a scalable Domain Name System (DNS) web service. It provides secure and reliable
routing to your infrastructure that uses Amazon Web Services (AWS) products, such as Amazon Elastic
Compute Cloud (Amazon EC2), Elastic Load Balancing, or Amazon Simple Storage Service (Amazon
S3).You can also use Amazon Route 53 to route users to your infrastructure outside of AWS.

Amazon Route 53 automatically routes queries to the nearest DNS server in a global network of DNS
servers, resulting in low latency. It is an authoritative DNS service, meaning it translates friendly domains
names like www.example.com into IP addresses like 192.0.2.1.

You can manage your DNS records through the Amazon Route 53 API, or set account-level user and
access management through the Identity and Access Management (IAM) API. Like other AWS products,
there are no contracts or minimum commitments for using Amazon Route 53—you pay only for the
domains you configure and the number of queries that the service answers. For more information about
Amazon Route 53 pricing, see Amazon Route 53 Pricing.

The following procedure explains the high-level steps you need to take to use Route 53 for this example.
For instructions on how to do steps one through four, go to Amazon Route 53 Getting Started Guide. For
information on how to create an alias in the last step, go to How to Create an Alias Record Set in the
Amazon Route 53 Developer Guide.

To use Amazon Route 53

1. Create a hosted zone for example.com.

2. Create a new DNS record for your static content (e.g., static.example.com) that points to your
CloudFront distribution (e.g., d18k4jybr69gw2.cloudfront.net).

3. Create a new DNS record for your website (e.g., www.example.com) that points to your Elastic Load
Balancer CNAME.

4. Confirm your requests are complete.

5. Update the registrar's name server records.

6. Create an alias for your load balancer which responds to queries for example.com and
www.example.com.You use the hosted zone ID for the load balancer (e.g., Z3DZXE0Q79N41H).

57

Getting Started with AWS Web Application Hosting for
Linux

http://aws.amazon.com/pricing/route53
http://docs.aws.amazon.com/Route53/latest/GettingStartedGuide/
http://docs.aws.amazon.com/Route53/latest/DeveloperGuide/HowToAliasRRS.html

Amazon CloudFront

Amazon CloudFront is a content delivery service from Amazon Web Services that helps you improve the
performance, reliability, and availability of your web sites and applications. The content you deliver with
CloudFront will be stored on a server referred to as an origin server. Amazon CloudFront works by
distributing your web content (such as images, video, and so on) using a network of edge locations around
the world.Your content is served from your configured Amazon S3 bucket or custom origin, to the edge
location that is closest to the user who requests it. In this example, to make use of Amazon CloudFront,
we would store our static content (images, html, etc.) in an Amazon S3 bucket, and then create a
CloudFront distribution from our S3 bucket. Once our CloudFront distribution is created, we simply update
the code to point our static content to our CloudFront distribution. For more information on how to do this,
go to Start Using CloudFront with Amazon S3 in the Amazon CloudFront Getting Started Guide.

58

Getting Started with AWS Web Application Hosting for
Linux

http://aws.amazon.com/cloudfront
http://docs.aws.amazon.com/AmazonCloudFront/latest/GettingStartedGuide/

Pricing

Topics

• Amazon EC2 Cost Breakdown (p. 59)

• Amazon RDS Cost Breakdown (p. 61)

• Summing It All Up (p. 63)

The AWS Simple Monthly Calculator estimates your monthly bill. It provides per service cost breakdown
as well as an aggregate monthly estimate.You can also use the tool to see an estimation and breakdown
of costs for common solutions. This topic walks you through an example of how to use the AWS Simple
Monthly Calculator to estimate your monthly bill for the sample web application we just created.

Note
AWS pricing you see in this documentation is current as of the last update to this document.
You should go to AWS Service Pricing Overview for the latest pricing.

Amazon EC2 Cost Breakdown
The following table shows the characteristics for Amazon EC2 we have identified for this web application
hosting architecture.

DescriptionMetricCharacteristic

Assuming there is an average of
30.5 days in a month, the instance
runs 732 hours/month

24 hrs/dayUptime

613 MB of memory, up to 2 ECUs
(for short periodic bursts), EBS
storage only, 32-bit or 64-bit
platform

For a list of instance types, go to
http://aws.amazon.com/ec2/instance-types/.

ti.micro instanceMachine Characteristics

59

Getting Started with AWS Web Application Hosting for
Linux

Amazon EC2 Cost Breakdown

http://calculator.s3.amazonaws.com/calc5.html
http://media.amazonwebservices.com/AWS_Pricing_Overview.pdf
http://aws.amazon.com/ec2/instance-types/

DescriptionMetricCharacteristic

The AMI is EBS-backed, the
volume will have 10 GB
provisioned storage, and 100 I/O
requests made to the volume per
second.

1 EBS Volume

Storage: 10 GB/Month

100 IOPS

Additional Storage

There are approximately 1,000
hits per day and each response is
about 50 KB and each request is
about 5 KB.

Data In: 0.005 GB/day

Data Out: 0.05 GB/day

Data Transfer

On average in a given day, there
are 2 instances running.

2Instance Scale

ELB is used 24 hrs/day, 7
days/week

ELB processes a total of 0.055
GB/day (data in + data out)

Hourly usage: 732 hrs/month

Data processed: 1.525 GB/month

Elastic Load Balancing

We have setup detailed
monitoring for our Amazon EC2
instances.

$3.50 per instance per monthDetailed Monitoring

The following image shows the cost breakdown for Amazon EC2 in the AWS Simple Monthly Calculator.

The total monthly cost is the sum of the cost of the running instances, EBS volumes and I/O requests,
elastic load balancers, the data processed by the elastic load balancers, and Amazon CloudWatch metrics.

60

Getting Started with AWS Web Application Hosting for
Linux

Amazon EC2 Cost Breakdown

CalculationFormulaVariable

$0.02

2

x 732

$29.28

Instance cost per hour

Number of instances

x Uptime in hours

Instance Cost

$0.10 X 10

+ (100 x ~2.6M x $0.10)/1M

$27.35

Storage rate X Storage Amount
(GB)

+ (I/O requests rate x seconds
per month x Request rate(per 1M

requests))

--

Additional Storage

732 x $0.025

+ 1.6775 x $0.008

$18.31

Hours used x Hourly rate

+ (Data processed (GB) x
Process rate)

Elastic Load Balancing

2

x $3.50

$7.00

Number of instances

x Detailed Monitoring Rate

Amazon CloudWatch

We use the AWS Simple Monthly calculator to estimate this.With the calculator, the total cost for Amazon
EC2 is $81.94.

Amazon RDS Cost Breakdown
The following table shows the characteristics for Amazon RDS we have identified for this web application
hosting architecture.

DescriptionMetricCharacteristic

24 Assuming there is an average
of 30.5 days in a month, the
instance runs 732 hours/month

24 hrs/dayUptime

1.7 GB memory, 1 ECU (1 virtual
core with 1 ECU), 64-bit platform,
Moderate I/O Capacity

Small Amazon RDS instanceDatabase Characteristics

61

Getting Started with AWS Web Application Hosting for
Linux

Amazon RDS Cost Breakdown

DescriptionMetricCharacteristic

Amazon provides 5 GB to 1 TB of
associated storage capacity for
your primary data set.

5 GB/monthProvisioned Storage

We have 1,000 hits per day at a
rate of 5 IOP per hit on site.
Assume there are 30.5 days in a
month on average. This is a total
of 152,500 I/O requests per month
or 1M (rounded to the nearest
million), but since the write I/O
request will double since data is
also replicated to the standby
instance, we have a total of 2M.

2M IOP/monthRequests

We will run our database instance
across multiple Availability Zones.

Multi-AZDeployment Type

We’ll use up to the provisioned
amount which is 5 GB.

noneAdditional Backup Storage

There is no data transfer from
RDS to the Internet.

Data in: 0 GB

Data out: 0 GB

Data Transfer

We need one database instance.1Database Instance Scale

The following image shows the cost breakdown for Amazon RDS in the AWS Simple Monthly Calculator.

Because we do not have data transfer in or out or backup storage, the total monthly cost is the sum of
the cost of the running instances, provisioned storage, and I/O requests.

62

Getting Started with AWS Web Application Hosting for
Linux

Amazon RDS Cost Breakdown

CalculationFormulaVariable

$0.153

1

x 732

$112.00

Instance cost per hour

Number of instances

x Uptime in hours

Instance Cost

$0.20

x 5

$1.00

Storage rate

x Storage Amount (GB)

Provisioned Storage

$0.10

x ~2

$0.22

I/O rate

x Number of requests (millions)

I/O Requests

We use the AWS Simple Monthly calculator to estimate this.With the calculator, the total cost for Amazon
RDS is $113.52.

Summing It All Up
To calculate the total cost for this scenario, we add the cost for Amazon EC2, Amazon RDS, and the
AWS Data Transfer Out, and subtract any discount that falls into the AWS Free Usage Tier.

The total AWS Transfer Out is an aggregate Data Transfer Out usage across Amazon EC2, and Amazon
RDS. For Amazon EC2, we have 0.05 GB per day which is approximately 1.525 GB per month. For
Amazon RDS we did not have any AWS Transfered out. Since up to 1 GB per month of data transfered
out is free, we are left with a total of 0.525 GB per month.

CalculationFormulaVariable

0.1525 X $0.00

+ (0.525) X $0.12

$0.06

(Data in (GB) X Data In Rate)

+ (Data out (GB) X Data Out
Rate)

AWS Data Transfer

The following image shows an example of your monthly estimate.

63

Getting Started with AWS Web Application Hosting for
Linux

Summing It All Up

The total cost of this web application is estimated at $160.95 per month including the free tier discount.

64

Getting Started with AWS Web Application Hosting for
Linux

Summing It All Up

Related Resources

The following table lists related resources that you'll find useful as you work with AWS services.

DescriptionResource

A comprehensive list of products and services AWS offers.AWS Products and Services

Official documentation for each AWS product including service
introductions, service features, and API references, and other
useful information.

Documentation

Provides the necessary guidance and best practices to build
highly scalable and reliable applications in the AWS cloud.
These resources help you understand the AWS platform, its
services and features. They also provide architectural
guidance for design and implementation of systems that run
on the AWS infrastructure.

AWS Architecture Center

Provides access to information, tools, and resources to
compare the costs of Amazon Web Services with IT
infrastructure alternatives.

AWS Economics Center

Features a comprehensive list of technical AWS whitepapers
covering topics such as architecture, security, and economics.
These whitepapers have been authored either by the Amazon
team or by AWS customers or solution providers.

AWS Cloud Computing Whitepapers

Previously recorded webinars and videos about products,
architecture, security, and more.

Videos and Webinars

A community-based forum for developers to discuss technical
questions related to Amazon Web Services.

Discussion Forums

The home page for AWS Technical Support, including access
to our Developer Forums, Technical FAQs, Service Status
page, and AWS Premium Support. (subscription required).

AWS Support Center

The primary web page for information about AWS Premium
Support, a one-on-one, fast-response support channel to help
you build and run applications on AWS Infrastructure Services.

AWS Premium Support Information

65

Getting Started with AWS Web Application Hosting for
Linux

http://aws.amazon.com/products/
http://aws.amazon.com/documentation/
http://aws.amazon.com/architecture/
http://aws.amazon.com/economics/
http://aws.amazon.com/whitepapers/
http://aws.amazon.com/resources/webinars/
https://forums.aws.amazon.com//forum.jspa?forumID=86
http://aws.amazon.com/support/
http://aws.amazon.com/premiumsupport/

DescriptionResource

This form is only for account questions. For technical
questions, use the Discussion Forums.

Form for questions related to your AWS
account: Contact Us

Detailed information about the copyright and trademark usage
at Amazon.com and other topics.

Conditions of Use

66

Getting Started with AWS Web Application Hosting for
Linux

http://aws.amazon.com/contact-us/
http://www.amazon.com/gp/help/customer/display.html/104-5054883-7838319?ie=UTF8&Version=1&nodeId=508088&entries=0

Document History

This document history is associated with the 2011-09-30 release of Getting Started. This guide was last
updated on March 8, 2012.

Release DateDescriptionChange

30 September
2011

Created new documentNew content

24 October
2011

Added new section to talk about AWS Identity and Account
Management

Added new section

23 November
2011

Modified example to demonstrate how to set up Drupal on an
Amazon Linux AMI

Changed application
and Linux AMI

8 March 2012Added section for connecting to Amazon EC2 using the
MindTerm client

Added new section

67

Getting Started with AWS Web Application Hosting for
Linux

	Getting Started with AWS
	Overview
	How Does AWS Help?
	Web Application Hosting Architecture

	Getting Started
	Step 1: Sign Up for the Service
	Step 2: Install the Command Line Tools
	Step 3: Create an Elastic Load Balancer
	Where You're At

	Step 4: Create and Configure Your Amazon EC2 Security Group
	Step 5: Create a Key Pair
	Step 6: Launch Amazon EC2 Instances Using Auto Scaling
	Where You're At

	Step 7: Create a CloudWatch Alarm
	Where You're At

	Step 8: Add Amazon RDS
	Create a DB Security Group
	Authorize Access
	Launch an Instance
	Where You're At

	Step 9: Deploy Your Application
	Connecting to your Amazon EC2 Instance from Your Web Browser Using the MindTerm SSH Client
	Install and Enable Java on Your Browser
	Connect Using the Java SSH Client

	Connect to Your Amazon EC2 Instance from Windows Using PuTTY
	Connecting to Your Amazon EC2 Instance from a Linux/UNIX Machine Using a Standalone SSH Client
	Configure the Amazon EC2 Instance

	Step 10: Create a Custom AMI
	Step 11: Launch New Environments Using AWS CloudFormation
	Create an AWS CloudFormation Template
	Modify a CloudFormation Template
	Create an AWS CloudFormation Stack
	Where You're At

	Step 12: Clean Up
	Terminate Your Amazon EC2 Instances in Your Auto Scaling Group
	Terminate Your DB Instance
	Delete Your CloudWatch Alarm
	Delete Your Elastic Load Balancer
	Delete a Key Pair
	Delete an Amazon EC2 Security Group
	Delete Your Custom AMI

	Amazon Route 53
	Amazon CloudFront
	Pricing
	Amazon EC2 Cost Breakdown
	Amazon RDS Cost Breakdown
	Summing It All Up

	Related Resources
	Document History

