
Amazon Kinesis
Developer Guide

API Version 2013-12-02

Amazon Kinesis: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

Amazon Kinesis Developer Guide

Table of Contents
What Is Amazon Kinesis? ... 1

What Can I Do with Amazon Kinesis? ... 1
Benefits of Using Amazon Kinesis .. 2
Key Concepts ... 2

High-level Architecture ... 3
Terminology .. 3
Sizes and Limits .. 5

Getting Started ... 6
Before You Begin ... 6

Libraries and Tools ... 6
Requirements ... 7
Overview of Using Amazon Kinesis .. 7
How Do I Size an Amazon Kinesis Stream? ... 8

Step 1: Create an Amazon Kinesis Stream ... 8
Step 2: Configure the Producers that Submit Data to the Amazon Kinesis Stream 10
Step 3: Build a Amazon Kinesis Application .. 10
Step 4: Operate the Amazon Kinesis Application ... 11
Where Do I Go From Here? ... 11

Visualizing Web Traffic with the Amazon Kinesis Sample Application ... 12
Amazon Kinesis Data Visualization Sample Application .. 12
Before You Begin ... 13
Running the Sample Application ... 13
Viewing the Results of the Sample Application .. 14
Deleting Sample Application Resources ... 16

Using the Amazon Kinesis Service API .. 17
Create the Amazon Kinesis Client ... 17
Create the Stream ... 18
List All Streams in an AWS Account .. 19
Add Data to a Stream ... 20

Sequence Number ... 20
Partition Key ... 20

Retrieve the Shards from a Stream ... 21
Get Data from the Shards in a Stream ... 22

Using Shard Iterators ... 22
Using GetRecords() ... 23
Adapting to a Reshard .. 25

Resharding a Stream ... 26
Split a Shard ... 26
Merge Two Shards ... 27
Wait after Resharding for Stream to Become Active ... 28
Data Routing, Data Persistence, and Shard State after a Reshard .. 29
Strategies for Resharding .. 30

Delete the Stream .. 30
Related Resources .. 31

Developing Record Consumer Applications with the Amazon Kinesis Client Library 32
Overview .. 32

Amazon Kinesis Client Library (KCL) ... 32
Kinesis Applications ... 33

Building a Kinesis Application .. 33
Role of the Amazon Kinesis Client Library .. 33
Amazon Kinesis Application Components .. 33

Advanced Topics and Techniques ... 37
Kinesis Application State and Amazon DynamoDB .. 38
Resharding, Scaling, and Parallel Processing ... 38
Failover and Recovery ... 39

API Version 2013-12-02
iii

Amazon Kinesis Developer Guide

Startup, Shutdown, and Throttling ... 40
Access Control with IAM ... 42

Amazon Kinesis Actions .. 42
Amazon Resource Names (ARNs) for Amazon Kinesis ... 43
Example Policies for Amazon Kinesis .. 43

Logging Amazon Kinesis API Calls Using AWS CloudTrail .. 47
Amazon Kinesis Information in CloudTrail ... 47
Understanding Amazon Kinesis Log File Entries ... 48

History ... 51

API Version 2013-12-02
iv

Amazon Kinesis Developer Guide

What Is Amazon Kinesis?

Amazon Kinesis is a managed service that scales elastically for real-time processing of streaming big
data. This section introduces the Amazon Kinesis service.

Topics

• What Can I Do with Amazon Kinesis? (p. 1)

• Benefits of Using Amazon Kinesis (p. 2)

• Key Concepts (p. 2)

Amazon Kinesis takes in large streams of data records that can then be consumed in real time by multiple
data-processing applications that can be run on Amazon Elastic Compute Cloud (Amazon EC2) instances.
The data-processing applications use the Amazon Kinesis Client Library and are called "Amazon Kinesis
applications." For more information about Amazon EC2, see the Amazon Elastic Compute Cloud Getting
Started Guide.

Amazon Kinesis applications read data from the Amazon Kinesis stream and process the read data in
real time. The processed records can be emitted to dashboards, used to generate alerts, dynamically
change pricing and advertising strategies, or emit data to a variety of other Amazon big data services
such as Amazon Simple Storage Service (Amazon S3), Amazon Elastic MapReduce (Amazon EMR), or
Amazon Redshift. Amazon Kinesis applications can also emit data into another Amazon Kinesis stream,
enabling more complex data processing. For information about Amazon Kinesis service highlights and
pricing, go to Amazon Kinesis.

What Can I Do with Amazon Kinesis?
Amazon Kinesis takes in large streams of data for processing in real time. The most common Amazon
Kinesis use case scenario is rapid and continuous data intake and aggregation. The type of data used
in an Amazon Kinesis use case includes IT infrastructure log data, application logs, social media, market
data feeds, web clickstream data, and more. Because the response time for the data intake and processing
is in real time, the processing is typically lightweight.

Amazon Kinesis enables sophisticated streaming data processing, because one Amazon Kinesis application
may emit Amazon Kinesis stream data into another Amazon Kinesis stream. Near-real-time aggregation
of data enables processing logic that can extract complex key performance indicators and metrics from
that data. For example, complex data-processing graphs can be generated by emitting data from multiple
Amazon Kinesis applications to another Amazon Kinesis stream for downstream processing by a different
Amazon Kinesis application.

API Version 2013-12-02
1

Amazon Kinesis Developer Guide
What Can I Do with Amazon Kinesis?

https://github.com/awslabs/amazon-kinesis-client
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide
http://docs.aws.amazon.com/AWSEC2/latest/GettingStartedGuide
http://aws.amazon.com/kinesis/

The following are typical scenarios for using Amazon Kinesis.

• Accelerated log and data feed intake and processing: Using Amazon Kinesis you can have producers
push data directly into an Amazon Kinesis stream. For example, system and application logs can be
submitted to Amazon Kinesis and be available for processing in seconds. This prevents the log data
from being lost if the front end or application server fails. Amazon Kinesis provides accelerated data
feed intake because you are not batching up the data on the servers before you submit them for intake.

• Real-time metrics and reporting:You can use data ingested into Amazon Kinesis for simple data analysis
and reporting in real time. For example, metrics and reporting for system and application logs ingested
into the Amazon Kinesis stream are available in real time. This enables data-processing application
logic to work on data as it is streaming in, rather than wait for data batches to be sent to the
data-processing applications.

• Real-time data analytics: Amazon Kinesis enables real-time analytics of streaming big data, combining
the power of parallel processing with the value of real-time data. For example, website clickstreams
can be ingested in real time, and then site usability engagement can be analyzed by many different
Amazon Kinesis client applications running in parallel.

• Complex stream processing: Lastly, Amazon Kinesis enables you to create Directed Acyclic Graphs
(DAGs) of Amazon Kinesis applications and data streams. This scenario typically involves emitting
data from multiple Amazon Kinesis applications to another Amazon Kinesis stream for downstream
processing by a different Amazon Kinesis application.

Benefits of Using Amazon Kinesis
While Amazon Kinesis can be used to solve a variety of streaming data problems, a common use is the
real-time aggregation of data followed by loading the aggregate data into a data warehouse or map-reduce
cluster.

Data can be taken into Amazon Kinesis streams, which will ensure durability and elasticity. The delay
between the time a record is added to the stream and the time it can be retrieved (put-to-get delay) is
less than 10 seconds — in other words, Amazon Kinesis applications can start consuming the data from
the stream less than 10 seconds after the data is added.The managed service aspect of Amazon Kinesis
relieves customers of the operational burden of creating and running a data intake pipeline. Customers
can create streaming map-reduce type applications, and the elasticity of the Amazon Kinesis service
enables customers to scale the stream up or down, ensuring they never lose data records prior to their
expiration.

Multiple Amazon Kinesis applications can consume data from an Amazon Kinesis stream, so that multiple
actions, like archiving and processing, can take place concurrently and independently. For example, two
Amazon Kinesis applications can read data from the same Amazon Kinesis stream. The first Amazon
Kinesis application calculates running aggregates and updates an Amazon DynamoDB table, and the
second Amazon Kinesis application compresses and archives data to a data store like Amazon S3. The
Amazon DynamoDB table with running aggregates is then read by a dashboard for up-to-the-minute
reports.

The Amazon Kinesis Client Library enables fault-tolerant consumption of data from the Amazon Kinesis
stream and provides scaling support for Amazon Kinesis applications.

Key Concepts
This section describes the concepts and terminology you need to understand to use Amazon Kinesis
effectively in the following topics.

Topics

API Version 2013-12-02
2

Amazon Kinesis Developer Guide
Benefits of Using Amazon Kinesis

• High-level Architecture (p. 3)

• Terminology (p. 3)

• Sizes and Limits (p. 5)

Amazon Kinesis High-level Architecture
The following diagram illustrates the high-level architecture of Amazon Kinesis.

Amazon Kinesis Terminology
The following terms describe concepts you need to understand in order to use Amazon Kinesis effectively.

Data Record
Data records are the units of data that are stored in an Amazon Kinesis stream. Data records are composed
of a sequence number, a partition key, and a data blob, which is an un-interpreted, immutable sequence
of bytes. The Amazon Kinesis service does not inspect, interpret, or change the data in the blob in any
way. The maximum size of a data blob (the data payload after Base64-decoding) is 50 kilobytes (KB).

Stream
A stream is an ordered sequence of data records. Each record in the stream has a sequence
number (p. 4) that is assigned by the service. The data records in the stream are distributed into
shards (p. 3).

Shard
A shard is a uniquely identified group of data records in an Amazon Kinesis stream. A stream is composed
of multiple shards, each of which provides a fixed unit of capacity. Each open shard can support up to 5
read transactions per second, up to a maximum total of 2 MB of data read per second. Each shard can
support up to 1000 write transactions per second, up to a maximum total of 1 MB data written per second.
The data capacity of your stream is a function of the number of shards that you specify for the stream.
The total capacity of the stream is the sum of the capacities of its shards.

If your data rate increases, then you just add more shards to increase the size of your stream. Similarly,
you can remove shards if the data rate decreases.

API Version 2013-12-02
3

Amazon Kinesis Developer Guide
High-level Architecture

Partition Key
The partition key is used to group data by shard within the stream. Amazon Kinesis segregates the data
records belonging to a data stream into multiple shards, using the partition key associated with each data
record to determine which shard a given data record belongs to. Partition keys are Unicode strings with
a maximum length limit of 256 bytes. An MD5 hash function is used to map partition keys to 128-bit integer
values and to map associated data records to shards. A partition key is specified by the applications
putting the data into a stream.

Sequence Number
Each data record has a unique sequence number. Amazon Kinesis assigns the sequence number when
a producer calls client.putRecord() to add a data record to the stream. Sequence numbers for the
same partition key generally increase over time; the longer the time period between PutRecord requests,
the larger the sequence numbers become. For more details on sequence numbers and partition keys,
see Sequence Number (p. 20) in Using the Amazon Kinesis Service API (p. 17).

Amazon Kinesis Application
An Amazon Kinesis application is a consumer of an Amazon Kinesis stream that commonly runs on a
fleet of Amazon Elastic Compute Cloud (Amazon EC2) instances. The Amazon Kinesis Client Library
instantiates a record processor for each shard of the stream that it is processing. A Amazon Kinesis
application uses the Amazon Kinesis Client Library to read from the Amazon Kinesis stream.

Alternatively, a Amazon Kinesis application could read from the Amazon Kinesis stream directly using
the GetRecords operation for the Amazon Kinesis Service. A GetRecords operation request can retrieve
up to 10 MB of data. For more information about GetRecords, see the Amazon Kinesis API Reference.

Output of a Amazon Kinesis application may be input for another Amazon Kinesis stream, allowing creation
of complex topologies that process data in real time. A Amazon Kinesis application may also emit data
to a variety of other data services such as Amazon Simple Storage Service (Amazon S3), Amazon Elastic
MapReduce (Amazon EMR), or Amazon Redshift. There can be multiple Amazon Kinesis applications
for one Amazon Kinesis stream, and each application can consume data from the Amazon Kinesis stream
independently and concurrently.

Amazon Kinesis Client Library
The Amazon Kinesis Client Library is compiled into your application to enable fault-tolerant consumption
of data from the Amazon Kinesis stream.The Amazon Kinesis Client Library ensures that for every shard
there is a record processor running and processing that shard. The library also simplifies reading data
from the Amazon Kinesis stream. The Amazon Kinesis Client Library uses an Amazon DynamoDB table
to store control data. It creates one table per application that is processing data.

Application Name
The name for a Amazon Kinesis application that identifies the application. Each of your Amazon Kinesis
applications must have a unique name that is scoped to the AWS account and region used by the
application.This name is used as a name for the control table in Amazon DynamoDB and the namespace
for Amazon CloudWatch metrics.

Producers
Producers are the entities that submit records to the Amazon Kinesis stream. For example, a web server
sending log data to an Amazon Kinesis stream would be a producer. Producers add data to the stream,
and consumers, Amazon Kinesis applications, process data from the stream.

API Version 2013-12-02
4

Amazon Kinesis Developer Guide
Terminology

https://github.com/awslabs/amazon-kinesis-client
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/
https://github.com/awslabs/amazon-kinesis-client

Amazon Kinesis Sizes and Limits
Make sure you're aware of the following Amazon Kinesis sizes and limits. Many of the limits are directly
related to API operations. For more information about these operations, see the Amazon Kinesis API
Reference.

• The default shard limit is 10 (10 shards per account per region). For information about requesting an
increase, see AWS Service Limits in the AWS General Reference.

• Data records are accessible for only 24 hours from the time they are added to an Amazon Kinesis
stream.

• The maximum size of a data blob (the data payload after Base64-decoding) is 50 kilobytes (KB).

• ListStreams operation — 5 transactions per second per account.

• CreateStream, DeleteStream, MergeShards, SplitShard operations — 5 transactions per second per
account.

• DescribeStream — 10 transactions per second per account.

• GetShardIterator — 5 transactions per second per account per open shard.

• A GetRecords operation request can retrieve up to 10 MB of data.

• Each open shard can support up to 5 read transactions per second, up to a maximum total of 2 MB of
data read per second.

• Each shard can support up to 1000 write transactions per second, up to a maximum total of 1 MB data
written per second.

• A shard iterator returned by the getShardIterator() method will time out after 5 minutes if you do
not use it.

Read limits are based on the number of open shards. For more information about shard states, see Data
Routing, Data Persistence, and Shard State after a Reshard (p. 29).

Related Resources
• Amazon Kinesis API Reference

API Version 2013-12-02
5

Amazon Kinesis Developer Guide
Sizes and Limits

http://docs.aws.amazon.com/kinesis/latest/APIReference/
http://docs.aws.amazon.com/kinesis/latest/APIReference/
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_ListStreams.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_CreateStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DeleteStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_MergeShards.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_SplitShard.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_DescribeStream.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetRecords.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/

Getting Started

This section describes how to get started using the Amazon Kinesis service.

Topics

• Before You Begin (p. 6)

• Step 1: Create an Amazon Kinesis Stream (p. 8)

• Step 2: Configure the Producers that Submit Data to the Amazon Kinesis Stream (p. 10)

• Step 3: Build a Amazon Kinesis Application (p. 10)

• Step 4: Operate the Amazon Kinesis Application (p. 11)

• Where Do I Go From Here? (p. 11)

Before You Begin
Before you can use Amazon Kinesis, you must sign up for an AWS account (if you don't already have
one).

If you already have an AWS account, skip to the next section. Otherwise, follow these steps.

To sign up for an AWS account

1. Go to http://aws.amazon.com, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

For information about using AWS Identity and Access Management (IAM) with Amazon Kinesis, see
Controlling Access to Amazon Kinesis Resources with IAM (p. 42).

Libraries and Tools
The following libraries and tools will help you work with Amazon Kinesis:

• The Amazon Kinesis Service API is the basic set of operations that the Amazon Kinesis service supports.
Using the Amazon Kinesis Service API shows you how to perform basic operations using Java code.

API Version 2013-12-02
6

Amazon Kinesis Developer Guide
Before You Begin

http://aws.amazon.com
http://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-api-java.html

• The AWS SDKs for Java, JavaScript, .NET, Node.js, PHP, Python, and Ruby include Amazon Kinesis
support and samples.

Note
If your version of the AWS SDK for Java does not include Kinesis samples, you can also
download them from GitHub.

• The Amazon Kinesis Client Library (KCL) provides an easy-to-use programming model for processing
data. The Amazon Kinesis Client Library is used throughout this guide and will help you get started
quickly with Amazon Kinesis. The KCL can be used in conjunction with the Amazon Kinesis Connector
Library to reliably move data from Amazon Kinesis to Amazon DynamoDB, Amazon Redshift, and
Amazon S3.

• The AWS Command Line Interface supports Amazon Kinesis. The AWS CLI allows you to control
multiple AWS services from the command line and automate them through scripts.

• (Optional) The Amazon Kinesis Connector Library helps you integrate Amazon Kinesis with other AWS
services.

Requirements
In order to use the Amazon Kinesis Client Library, you'll need to ensure that your Java development
environment meets the following requirements:

• Java 1.7 (Java SE 7 JDK) or later.You can download the latest Java software from
http://developers.sun.com/downloads.

• Apache Commons package (Code, HTTP Client, and Logging)

• Jackson JSON processor

Note
The AWS SDK for Java includes Apache Commons and Jackson in the third-party folder. Note,
however, that the SDK for Java will work with Java 1.6, while the Amazon Kinesis Client Library
requires Java 1.7.

Overview of Using Amazon Kinesis
Before creating an Amazon Kinesis stream, you must determine the size of your stream. For more
information, see How Do I Size an Amazon Kinesis Stream? (p. 8)

The following steps provide an overview of using the Amazon Kinesis service.

To get started using the Amazon Kinesis service

1. Create the Amazon Kinesis stream with an appropriate number of shards.

2. Configure the data sources to continually push data into the Amazon Kinesis stream.

3. Build a Amazon Kinesis application to consume data from the Amazon Kinesis stream and connect
the application to the Amazon Kinesis stream.

4. Operate the Amazon Kinesis application. The Amazon Kinesis Client Library will help with scale-out
and fault-tolerant processing.

These steps are described in detail in the getting started exercise, which begins with Step 1: Create an
Amazon Kinesis Stream (p. 8).

API Version 2013-12-02
7

Amazon Kinesis Developer Guide
Requirements

https://aws.amazon.com/developers/getting-started/java/
http://aws.amazon.com/sdkforbrowser/
https://aws.amazon.com/developers/getting-started/net/
https://aws.amazon.com/developers/getting-started/nodejs/
https://aws.amazon.com/developers/getting-started/php/
https://github.com/boto/boto
https://aws.amazon.com/developers/getting-started/ruby/
https://github.com/aws/aws-sdk-java/tree/master/src/samples
https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-connectors
https://github.com/awslabs/amazon-kinesis-connectors
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/
http://docs.aws.amazon.com/redshift/latest/dg/
http://docs.aws.amazon.com/AmazonS3/latest/UG/
http://docs.aws.amazon.com/cli/latest/userguide/
https://github.com/awslabs/amazon-kinesis-connectors
https://github.com/awslabs/amazon-kinesis-client
http://developers.sun.com/downloads
https://aws.amazon.com/sdkforjava/
https://github.com/awslabs/amazon-kinesis-client

How Do I Size an Amazon Kinesis Stream?
Data is stored in an Amazon Kinesis stream and a stream is composed of multiple shards.You must
determine the size of the stream you need before you create the Amazon Kinesis stream. To determine
the size of an Amazon Kinesis stream, you must determine how many shards you will need for the stream.

Determining How Many Shards You Need
An Amazon Kinesis stream is composed of multiple shards. Each open shard can support up to 5 read
transactions per second, up to a maximum total of 2 MB of data read per second. Each shard can support
up to 1000 write transactions per second, up to a maximum total of 1 MB data written per second. Multiple
different Amazon Kinesis applications can read from a shard.

Before you create an Amazon Kinesis stream, you need to determine the initial size of the stream.You
can dynamically resize your Amazon Kinesis stream or add and remove shards after the stream has been
created and while it has a Amazon Kinesis application running that is consuming data from the stream.

To determine the initial size of an Amazon Kinesis stream, you need the following input
values.

1. The average size of the data record written to the stream in kilobytes (KB), rounded up to the nearest
1 KB, the data size (average_data_size_in_KB).

2. The number of data records written to and read from the stream per second, that is, transactions per
second (number_of_transactions_per_second).

3. The number of Amazon Kinesis applications that consume data concurrently and independently from
the Amazon Kinesis stream, that is, the consumers (number_of_consumers).

4. The incoming write bandwidth in KB (incoming_write_bandwidth_in_KB),

which is equal to the average_data_size_in_KB multiplied by the
number_of_transactions_per_seconds.

5. The outgoing read bandwidth in KB (outgoing_read_bandwidth_in_KB),

which is equal to the incoming_write_bandwidth_in_KB multiplied by the number_of_consumers.

You can calculate the initial number of shards (number_of_shards) that your Amazon Kinesis stream
will need by using the input values you determine in the following formula:

number_of_shards = max(incoming_write_bandwidth_in_KB/1000,
outgoing_read_bandwidth_in_KB/2000)

Step 1: Create an Amazon Kinesis Stream
This getting started exercise shows you how to create and configure an Amazon Kinesis stream and how
to build a Amazon Kinesis application to interact with the stream.

Before you create an Amazon Kinesis stream, you must determine the size that you need the stream to
be. For information about determining stream size, see How Do I Size an Amazon Kinesis Stream? (p. 8).

To create a stream

1. Sign in to the AWS Management Console and go to the Amazon Kinesis console at
https://console.aws.amazon.com/kinesis/.

API Version 2013-12-02
8

Amazon Kinesis Developer Guide
How Do I Size an Amazon Kinesis Stream?

https://console.aws.amazon.com/kinesis/

If you haven't yet signed up for the Amazon Kinesis service, you'll be prompted to sign up when you
go to the console.

2. In the navigation bar, expand the region selector and select a region.

3. Click Create Stream.

4. On the Create Stream page, enter a name for your stream and the number of shards you need, and
then click Create.

On the Stream List page, your stream's Status is CREATING while the stream is being created.
When the stream is ready to use, the Status changes to ACTIVE.

5. Click the name of your stream. The Stream Details page displays a summary of your stream
configuration, along with monitoring information.

API Version 2013-12-02
9

Amazon Kinesis Developer Guide
Step 1: Create an Amazon Kinesis Stream

For information on how to create an Amazon Kinesis stream programmatically, see Using the Amazon
Kinesis Service API (p. 17).

For information about using AWS Identity and Access Management (IAM) with Amazon Kinesis, see
Controlling Access to Amazon Kinesis Resources with IAM (p. 42).

Step 2: Configure the Producers to Continually
Push Data into the Amazon Kinesis Stream

Producers submit data records to the Amazon Kinesis stream. After you create the Amazon Kinesis
stream, configure the producers to put data into the stream.

To put data into the stream, call the PutRecord operation for the Amazon Kinesis service on your Amazon
Kinesis stream. Each of the PutRecord calls will need the name of the Amazon Kinesis stream, a partition
key, and the data blob to be added to the Amazon Kinesis stream. The partition key is used to determine
which shard in the stream the data record will be added to. For more information about PutRecord, see
the Amazon Kinesis API Reference.

All the data in the shard is sent to the same Amazon Kinesis worker that is processing the shard. Which
partition key you will use depends on your application logic. For example, if the application is calculating
a bill for a customer using data on the customer’s usage, a suitable partition key would be customer
ID.

The samples in the Using the Amazon Kinesis Service API (p. 17) section show you how to add data to
an Amazon Kinesis stream.

Important
Data records are accessible for only 24 hours from the time they are added to an Amazon Kinesis
stream.

Step 3: Build a Amazon Kinesis Application to
Consume Data from the Amazon Kinesis Stream
and Connect It to the Amazon Kinesis Stream

A Amazon Kinesis application can use the Amazon Kinesis Client Library to simplify parallel processing
of the stream by a fleet of Amazon Kinesis workers running on a fleet of Amazon Elastic Compute Cloud
(Amazon EC2) instances. The client library simplifies writing code to read from the shards in the stream
and ensures that there is a worker allocated to every shard in the stream. The Amazon Kinesis Client
Library also provides help with fault tolerance by providing checkpointing capabilities. The best way to
get started is to work from the samples in the Developing Record Consumer Applications with the Amazon
Kinesis Client Library (p. 32).

To create a Amazon Kinesis application, you implement the Amazon Kinesis Client Library's
IRecordProcessor Java class.This class implements the business logic for processing the data retrieved
from the Amazon Kinesis stream.You also need to specify the configuration for the Amazon Kinesis
application.This configuration information includes the name of the Amazon Kinesis stream that the data
will be retrieved from and a unique name for the Amazon Kinesis application.

Each of your Amazon Kinesis applications must have a unique name that is scoped to the AWS account
and region used by the application. This name is used as a name for the control table in Amazon
DynamoDB and the namespace for Amazon CloudWatch metrics.When your Amazon Kinesis application

API Version 2013-12-02
10

Amazon Kinesis Developer Guide
Step 2: Configure the Producers that Submit Data to the

Amazon Kinesis Stream

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://docs.aws.amazon.com/kinesis/latest/APIReference/
https://github.com/awslabs/amazon-kinesis-client

starts up, it creates an Amazon DynamoDB table to store the application state, connects to the specified
Amazon Kinesis stream, and then starts consuming data from the stream.You can view the Amazon
Kinesis application metrics in the AWS CloudWatch console.

The Developing Record Consumer Applications with the Amazon Kinesis Client Library (p. 32) section
walks you through writing a Amazon Kinesis application.

Step 4: Operate the Amazon Kinesis Application
You can follow your own best practices for deploying code to an Amazon EC2 instance when you deploy
a Amazon Kinesis application. For example, you can add your Amazon Kinesis application to one of your
Amazon EC2 AMIs.

You can elastically scale the entire Amazon Kinesis application by running it on multiple Amazon EC2
instances under an Auto Scaling group. Using an Auto Scaling group can help automatically start new
instances in the event of an Amazon EC2 instance failure and can also elastically scale the number of
instances as the load on the Amazon Kinesis application changes over time. Auto Scaling groups ensure
that a certain number of Amazon EC2 instances are always running for the Amazon Kinesis application.

To trigger scaling events in the Auto Scaling group, you can specify metrics such as CPU and memory
utilization to scale up or down the number of Amazon EC2 instances processing data from the Amazon
Kinesis stream. For more information on Auto Scaling, see the Auto Scaling Getting Started Guide.

Where Do I Go From Here?
Now that you have read through the getting started section, you should read the following sections to
learn more about Amazon Kinesis.

• Using the Amazon Kinesis Service API (p. 17) — This section walks through some short Java code
samples that show how to perform basic operations with the Amazon Kinesis service.

• Developing Record Consumer Applications with the Amazon Kinesis Client Library (p. 32) — This
section shows you how to develop an Amazon Kinesis application using the Amazon Kinesis Client
Library.

• Analyze Amazon Kinesis Data in the Amazon Elastic MapReduce Developer Guide — Two examples
of how to use Amazon EMR clusters to read and process Amazon Kinesis streams directly.

API Version 2013-12-02
11

Amazon Kinesis Developer Guide
Step 4: Operate the Amazon Kinesis Application

http://docs.aws.amazon.com/AutoScaling/latest/GettingStartedGuide/
https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-client
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-kinesis.html

Visualizing Web Traffic with the
Amazon Kinesis Sample
Application

This section helps you to get started using the Amazon Kinesis service by walking you through a sample
application that demonstrates how to use Amazon Kinesis to process and analyze streaming data in real
time.You can set up and run the application, then see the analysis results displayed in real time.

This section covers the following tasks:

• Amazon Kinesis Data Visualization Sample Application (p. 12)

• Before You Begin (p. 13)

• Running the Sample Application (p. 13)

• Viewing the Results of the Sample Application (p. 14)

• Deleting Sample Application Resources (p. 16)

Amazon Kinesis Data Visualization Sample
Application

The Amazon Kinesis data visualization sample application demonstrates how to use Kinesis for real-time
data ingestion and analysis. The sample application generates simulated visitor counts from various
URLs. It sends the counts to Kinesis, then calculates how many visitors originated from a particular URL.

A typical Kinesis application takes data from data generators called producers and puts it in the form of
data records into the Amazon Kinesis stream. For example, the sample application's stream writer
component puts data into the Kinesis stream. The records are randomly generated data that are meant
to represent visitor counts (HTTPS requests) on various websites.

When an application creates the data stream, it specifies the number of shards the stream contains.
Amazon Kinesis uses a value called a partition key to determine to which shard a particular record belongs.
The sample application creates a data stream containing 2 shards, which together have a write capacity
of 2 MB/sec and a read capacity of 4 MB/sec.

API Version 2013-12-02
12

Amazon Kinesis Developer Guide
Amazon Kinesis Data Visualization Sample Application

You use the Amazon Kinesis Client Library (KCL) to create a Kinesis client application, also called a
consumer application. A consumer application retrieves data from the shards in the stream and processes
them; the KCL ensures that there is a record processor to process data from each shard. The KCL uses
an Amazon DynamoDB table to track the progress of data retrieval from the shards.

In the sample application's consumer component, the record processor counts visitor requests as they
are read from the shards. It calculates the count of visitor requests over a sliding window, and persists
the counts to an Amazon DynamoDB database for subsequent display. The sample application employs
Top-N analysis over a sliding window. These are common processing patterns that are demonstrative of
real-world data analyses that are implemented using Amazon Kinesis.

Before You Begin
This documentation helps you set up, run, and view the results of the Kinesis data visualization sample
application. To get started with the sample application, you first need to do the following:

• Set up a computer with a working Internet connection.

• Sign up for an AWS account.

Running the Sample Application
This procedure creates a sample application using an AWS CloudFormation template. The application
has a stream writer that randomly generates records and sends them to a Kinesis stream, a counter that
counts the number of HTTPS requests to a resource, and a web server that displays the outputs of the
stream processing data as a continuously updated graph.

Note
When you create this application, it will immediately deploy and start running, so there will be a
nominal cost for AWS service usage. AWS has made efforts to keep the sample application
resources in the free tier, except for the Kinesis service usage. Make sure to delete your AWS
CloudFormation stack and Amazon DynamoDB instances as described in Deleting Sample
Application Resources (p. 16).

Note
The Amazon Kinesis data visualization sample application is configured to work only with AWS
resources in the US East (Northern Virginia) Region (us-east-1).

Note
You might experience a page load issue with Internet Explorer 11. For information on how to fix
this, see "Troubleshooting" in Getting Started with the AWS Management Console.

To set up and run the sample application

1. Download the sample application template (kinesis-data-vis-sample-app.template) from GitHub.
Save the template file to your computer's local drive.

2. Log in to the AWS CloudFormation console at https://console.aws.amazon.com/cloudformation/home.

3. The console displays a list of AWS CloudFormation stacks (if any currently exist). Click Create New
Stack and provide the following settings:

a. Name: Give the stack an identifiable name, such as 'KinesisDataVisSampleApp'.

b. Template: In Source, select Upload a template to Amazon S3.

c. Click Choose File, and in the Open dialog box, browse and select the template file. Click Open.

d. Click Next.

API Version 2013-12-02
13

Amazon Kinesis Developer Guide
Before You Begin

https://github.com/awslabs/amazon-kinesis-client
http://aws.amazon.com/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html#troubleshooting
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/blob/master/src/main/static-content/cloudformation/kinesis-data-vis-sample-app.template
https://console.aws.amazon.com/cloudformation/home

4. In Specify Parameters, the following parameter values will be provided in the fields:

a. ApplicationArchive:
 https://github.com/awslabs/amazon-kinesis-data-visualization-sample/releases/download/v1.0.0/amazon-kinesis-data-visualization-sample-1.0.0-assembly.zip

This is the URL of the sample application archive file. It allows you to package and store modifications
 you make to the application. To create an archive, run mvn package, upload the target .zip file, and store
 it in S3 with global public read permissions. Use the link to that archive as the ApplicationArchive property
 for the template.

InstanceType: t1.micro

b. KeyName: KeyName is optional; leave it blank. This is the name of the key pair you use to
connect to the EC2 instance in which the application runs. For more information, see Amazon
EC2 Key Pairs.

c. SSHLocation: 0.0.0.0/0

d. Click Next.

5. In Options:

a. Tags
 None. Tags are optional.

b. Advanced
Rollback on failure:Yes
This cleans up any resources in case of failure so that you are not inadvertently billed. However,

 if you want to debug the cause of the stack failure, you need to set this option to No.

6. In Review, you see a summary of all the settings you configured for the stack. Under Capabilities,
the page will notify you that IAM resources will be created.These policies grant access to an account's
resources. The sample application grants read/write access for the EC2 instance to the resources
that it creates.

a. Check the option I acknowledge that this template might cause AWS CloudFormation to
create IAM resources.

b. Click Create.

c. The AWS CloudFormation service requires several minutes to create the stack.When the status
changes to CREATE_COMPLETE, the application is deployed and running.

Note The sample application failed to complete its initiation if you see that the stack has a status of
ROLLBACK_IN_PROGRESS in the AWS CloudFormation console.You can retry the sample
application by going through the above steps again.

The AWS CloudFormation template creates a Kinesis stream with two shards, an EC2 instance, and two
Amazon DynamoDB tables. The template also creates some auxiliary resources, such as an IAM Policy
and EC2 security groups, which can be viewed on the Resources tab in the AWS CloudFormation console.

Viewing the Results of the Sample Application
When you set up and run the sample application according to the previous procedure, AWS CloudFormation
creates an application stack for the Kinesis application.You can now use the AWS Management Console
at https://console.aws.amazon.com/console/home to view the generated data analysis graph and the
stream details.

API Version 2013-12-02
14

Amazon Kinesis Developer Guide
Viewing the Results of the Sample Application

https://github.com/awslabs/amazon-kinesis-data-visualization-sample/releases/download/v1.0.0/amazon-kinesis-data-visualization-sample-1.0.0-assembly.zip
https://github.com/awslabs/amazon-kinesis-data-visualization-sample/releases/download/v1.0.0/amazon-kinesis-data-visualization-sample-1.0.0-assembly.zip
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://console.aws.amazon.com/console/home

The Kinesis application contains a stream with two shards for data processing.You can view the stream
details by navigating to the Amazon Kinesis console at https://console.aws.amazon.com/kinesis/home,
which displays all the streams that you have created.

To view the real-time data analysis graph

1. When the stack has been created, open (or refresh if necessary) the AWS CloudFormation console.
Click the KinesisDataVisSample stack to select it. This causes stack details to appear in the lower
portion of the console window.

2. Select the Outputs tab, then click the link in URL. The form of the URL should be similar to
"http://ec2-xx-xx-xx-xx.compute-1.amazonaws.com."

3. The real-time data analysis graph appears on a separate page, titled Amazon Kinesis Data
Visualization Sample. It displays the number of requests sent by the referring URL over a 10 second
span, and the chart is updated every 1 second. The span of the graph is the last 2 minutes.

To view the stream details

1. In the AWS Management Console, open the Services menu and click Kinesis to navigate to the
Amazon Kinesis console.

2. In the Amazon Kinesis console, on the Stream List page, you should see a stream with 2 shards
and a status of ACTIVE. The stream name begins with 'KinesisDataVisSampleApp-KinesisStream',
appended with a randomly generated unique identifier.

3. Click on the link to the stream to open the Stream Details page.

4. The Stream Details page displays statistics on the stream in the following graphs:

a. Write Capacity and Read Capacity (in bytes per second)

b. Put Latency and Get Latency (in milliseconds)

c. Put Requests and Get Requests (direct count)

The stream contains 2 open shards, which can receive data from producers and make data available to
consumers. Each shard has a write capacity of 2 MB/sec and a read capacity of 4 MB/sec. The Put and
Get Requests graphs display actual put and get activity as blue lines.The graphs display actual operation
data, because the sample application stack is already putting records into the stream, and the consumer
component is getting and processing data from the stream.

To view instance data in the EC2 Console

1. In the AWS Management Console, open the Services menu and click EC2 to navigate to the EC2
console at https://console.aws.amazon.com/ec2/v2/home.

2. In the EC2 console, in the menu at left, click Instances. All your instances are listed (active or
terminated), including one for the instance you recently created.

3. Click the instance for the Kinesis sample application; a number of tabs will appear below the list.
Select the Description tab.

4. Copy the Public DNS; it will have a form similar to "ec2-xx-xx-xxx-xxx.compute-1.amazonaws.com."

5. Paste the Public DNS value in your browser.You should see a continuously updated graph generated
by the sample application.

To view the Amazon DynamoDB tables

1. In the AWS Management Console, open the Services menu and click DynamoDB to navigate to
the Amazon DynamoDB console.

API Version 2013-12-02
15

Amazon Kinesis Developer Guide
Viewing the Results of the Sample Application

https://console.aws.amazon.com/kinesis/home
https://console.aws.amazon.com/ec2/v2/home

2. The Amazon DynamoDB console lists all the tables in your AWS account. The list includes the two
tables that the sample application creates. Each table name begins with the following names,
appended with a randomly generated unique identifier:

a. KinesisDataVisSampleApp-CountsDynamoDBTable

b. KinesisDataVisSampleApp-KCLDynamoDBTable

3. Click each table in the list to see details on it in the tabs below. The status should be ACTIVE and
each should have a read capacity of 10 units and a write capacity of 5 units. (These units are not
real and are only meant to represent units of capacity.)

Deleting Sample Application Resources
AWS has made efforts to keep the sample application resources in the free tier, except for the Kinesis
service usage. The application creates two shards and will generate charges for shard usage while it
runs. To ensure that your AWS account does not continue to be billed, make sure to delete your AWS
CloudFormation stack and Amazon DynamoDB instances.

To delete application resources

1. Open the AWS Management Console (https://console.aws.amazon.com/) and select the AWS
CloudFormation service; a list of your stacks appears.

2. Select the stack that you created and click Delete Stack. The status changes to
DELETE_IN_PROGRESS while AWS CloudFormation cleans up the resources associated with the
sample application. When AWS CloudFormation is finished removing all resources, the stack is
removed from the list.

API Version 2013-12-02
16

Amazon Kinesis Developer Guide
Deleting Sample Application Resources

https://console.aws.amazon.com/

Using the Amazon Kinesis Service
API

This section walks through some short Java code samples that show you how to perform basic operations
with Amazon Kinesis.The samples are intended to illustrate the semantics of the Amazon Kinesis service;
they do not represent production-ready code in that they do not check for all possible exceptions and do
not account for all possible security or performance considerations.

Note
Although the samples in this section are in Java, all AWS SDK platforms support Amazon Kinesis.

This section covers the following operations:

• Create the Amazon Kinesis Client (p. 17)

• Create the Stream (p. 18)

• List All Streams in an AWS Account (p. 19)

• Add Data to a Stream (p. 20)

• Retrieve the Shards from a Stream (p. 21)

• Get Data from the Shards in a Stream (p. 22)

• Resharding a Stream (p. 26)

• Delete the Stream (p. 30)

Although this section describes the Amazon Kinesis service operations for reading data from an Amazon
Kinesis stream, we recommend using the IRecordProcessor interface for applications that consume
data from Amazon Kinesis streams. For more information, see the IRecordProcessor sample and
Developing Record Consumer Applications with the Amazon Kinesis Client Library (p. 32).

Create the Amazon Kinesis Client
The first step in using the Amazon Kinesis service API is to instantiate a client object for the service. The
following code creates the Amazon Kinesis service client and sets the endpoint information for the client.
This overload of setEndpoint() also includes the service name and region.

API Version 2013-12-02
17

Amazon Kinesis Developer Guide
Create the Amazon Kinesis Client

http://aws.amazon.com/developers/getting-started/

client = new AmazonKinesisClient();
client.setEndpoint(endpoint, serviceName, regionId);

Set serviceName to kinesis. For more information about Amazon Kinesis endpoints and regions, go
to Regions and Endpoints in the AWS General Reference.

Create the Stream
To create a stream, instantiate a CreateStreamRequest object and specify a name for the stream and
the number of shards that the stream will use.

CreateStreamRequest createStreamRequest = new CreateStreamRequest();
createStreamRequest.setStreamName(myStreamName);
createStreamRequest.setShardCount(myStreamSize);

The stream name identifies the stream.The name is scoped to the AWS account used by the application.
It is also scoped by region. That is, two streams in two different AWS accounts can have the same name,
and two streams in the same AWS account but in two different regions can have the same name.

The throughput of the stream is a function of the number of shards; more shards are required for greater
provisioned throughput. More shards also increase the cost that AWS charges for the stream. See How
Do I Size an Amazon Kinesis Stream? (p. 8) for information about how to calculate the appropriate
number of shards for your application.

After the createStreamRequest object is configured, create the stream by calling the createStream()
method on the Amazon Kinesis client. After calling createStream(), you need to wait for the stream
to reach an "ACTIVE" state before performing any further operations on the stream. To check the state
of the stream, you need to call the describeStream() method. However, describeStream() throws
an exception if the stream does not exist. Therefore, enclose the describeStream() call in a try/catch
block.

client.createStream(createStreamRequest);
DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);

long startTime = System.currentTimeMillis();
long endTime = startTime + (10 * 60 * 1000);
while (System.currentTimeMillis() < endTime) {
 try {
 Thread.sleep(20 * 1000);
 }
 catch (Exception e) {}

 try {
 DescribeStreamResult describeStreamResponse = client.describeStream(de
scribeStreamRequest);
 String streamStatus = describeStreamResponse.getStreamDescription().get
StreamStatus();
 if (streamStatus.equals("ACTIVE")) {
 break;
 }

API Version 2013-12-02
18

Amazon Kinesis Developer Guide
Create the Stream

http://docs.aws.amazon.com/general/latest/gr/rande.html
http://docs.aws.amazon.com/general/latest/gr/

 //
 // sleep for one second
 //
 try {
 Thread.sleep(1000);
 }
 catch (Exception e) {}
 }
 catch (ResourceNotFoundException e) {}
}
if (System.currentTimeMillis() >= endTime) {
 throw new RuntimeException("Stream " + myStreamName + " never went active"
);
}

List All Streams in an AWS Account
Streams are scoped to the AWS account associated with the AWS credentials used to instantiate the
Amazon Kinesis client and also to the region specified for the Amazon Kinesis client. A given AWS account
could have many streams active at one time. The following code shows how to list all the streams in the
AWS account.

The code first creates a new instance of ListStreamsRequest and calls its setLimit() method to
specify that a maximum of 20 streams should be returned for each call to listStreams(). Note that
the service might return fewer streams than specified by this limit even if there are more streams than
that in the account and region. If you do not specify a value for setLimit(), the service returns a number
of streams less than or equal to the number in the account. To ensure that you retrieve all the streams,
use the getHasMoreStreams() method described further below.

The code passes the listStreamsRequest to the listStreams() method of the Amazon Kinesis
service client. The return value of calling listStreams() is stored in a ListStreamsResult object.
The code calls the getStreamNames() method on this object and stores the returned stream names in
the streamNames list.

ListStreamsRequest listStreamsRequest = new ListStreamsRequest();
listStreamsRequest.setLimit(20);
ListStreamsResult listStreamsResult = client.listStreams(listStreamsRequest);
List<String> streamNames = listStreamsResult.getStreamNames();

The code then calls the getHasMoreStreams() method on listStreamsRequest to check if there
are additional streams available beyond the ones returned in the initial call to listStreams(). If so, the
code calls the setExclusiveStartStreamName() method with the name of the last stream that was
returned in the previous call to listStreams(). The setExclusiveStartStreamName() method
causes the next call to listStreams() to start after that stream. The group of stream names returned
by that call is then added to the streamNames list. This process continues until all the stream names
have been collected in the list.

 while (listStreamsResult.getHasMoreStreams()) {
 if (streamNames.size() > 0) {
 listStreamsRequest.setExclusiveStartStreamName(streamNames
 .get(streamNames.size() - 1));

API Version 2013-12-02
19

Amazon Kinesis Developer Guide
List All Streams in an AWS Account

 }
 listStreamsResult = client.listStreams(listStreamsRequest);
 streamNames.addAll(listStreamsResult.getStreamNames());
 }

Streams returned by listStreams() can be in any of the following states:

• CREATING

• ACTIVE

• UPDATING

• DELETING

You can check the state of a given stream using the describeStream() method shown in the section
on how to create a stream.

Add Data to a Stream
You add data to the stream in the form of records. A record is a data structure that contains the data to
be processed. After you store the data in the record, the Amazon Kinesis service does not inspect,
interpret, or change the data in any way. Also associated with each record is a sequence number and a
partition key.

Note that as your source application is adding data to the stream using the Amazon Kinesis service API,
consumer applications are, at the same time, processing data off the stream.

Important
Data records are accessible for only 24 hours from the time they are added to an Amazon Kinesis
stream.

Sequence Number
Each data record has a unique sequence number.The sequence number is assigned by Amazon Kinesis
after you call client.putRecord(), which adds the data record to the stream. Sequence numbers for
the same partition key generally increase over time; the longer the time period between PutRecord
requests, the larger the sequence numbers become.

When puts occur in quick succession, the returned sequence numbers are not guaranteed to increase
because the put operations appear essentially as simultaneous to the service. To guarantee strictly
increasing sequence numbers for the same partition key, use the SequenceNumberForOrdering
parameter, as shown in the Partition Key (p. 20) code sample below.

Whether or not you use SequenceNumberForOrdering, records that Amazon Kinesis receives through
a GetRecords call are strictly ordered by sequence number.

Note
Sequence numbers cannot be used as indexes to sets of data within the same stream. To
logically separate sets of data, use partition keys or create a separate stream for each data set.

Partition Key
You specify the partition key for the record. The partition key is used to group data within the stream. A
data record is assigned to a shard within the stream based on its partition key. Specifically, the service
uses the partition key as input to a hash function that maps the partition key (and associated data) to a
specific shard.

API Version 2013-12-02
20

Amazon Kinesis Developer Guide
Add Data to a Stream

As a result of this hashing mechanism, all data records with the same partition key map to the same shard
within the stream. However, if the number of partition keys exceeds the number of shards, some shards
necessarily contain records with different partition keys. From a design standpoint, to ensure that all your
shards are well utilized, the number of shards (specified by the setShardCount() method of
CreateStreamRequest) should be substantially less than the number of unique partition keys, and the
amount of data flowing to a single partition key should be substantially less than the capacity of a shard.

The following code creates ten data records, distributed across two partition keys, and puts them in a
stream called myStreamName.

for (int j = 0; j < 10; j++) {
 PutRecordRequest putRecordRequest = new PutRecordRequest();
 putRecordRequest.setStreamName(myStreamName);
 putRecordRequest.setData(ByteBuffer.wrap(String.format("testData-%d", j
).getBytes()));
 putRecordRequest.setPartitionKey(String.format("partitionKey-%d", j%5));

 putRecordRequest.setSequenceNumberForOrdering(sequenceNumberOfPreviousRecord
);
 PutRecordResult putRecordResult = client.putRecord(putRecordRequest);
 sequenceNumberOfPreviousRecord = putRecordResult.getSequenceNumber();
}

The preceding code sample uses setSequenceNumberForOrdering to guarantee strictly increasing
ordering within each partition key. To use this parameter effectively, set the
SequenceNumberForOrdering of the current record (record n) to the sequence number of the preceding
record (record n-1). To get the sequence number of a record that has been added to the stream, call
getSequenceNumber() on the result of putRecord().

The SequenceNumberForOrdering parameter ensures strictly increasing sequence numbers for the
same partition key, when the same client calls PutRecord. SequenceNumberForOrdering does not
provide ordering guarantees across records that are added from multiple concurrent applications, or
across multiple partition keys.

Retrieve the Shards from a Stream
The response object returned by the describeStream() method enables you to retrieve information
about the shards that comprise the stream. To retrieve the shards, call the getShards() method on this
object. This method might not return all the shards from the stream in a single call. In the following code,
we check the getHasMoreShards() method on getStreamDescription to see if there are additional
shards that were not returned. If so, that is, if this method returns true, we continue to call getShards()
in a loop, adding each new batch of returned shards to our list of shards. The loop exits when
getHasMoreShards() returns false, that is, all shards have been returned. Note that getShards()
does not return shards that are in the EXPIRED state. For more information about shard states, including
the EXPIRED state, see Data Routing, Data Persistence, and Shard State after a Reshard (p. 29).

DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);
List<Shard> shards = new ArrayList<>();
String exclusiveStartShardId = null;
do {
 describeStreamRequest.setExclusiveStartShardId(exclusiveStartShardId);

API Version 2013-12-02
21

Amazon Kinesis Developer Guide
Retrieve the Shards from a Stream

 DescribeStreamResult describeStreamResult = client.describeStream(describe
StreamRequest);
 shards.addAll(describeStreamResult.getStreamDescription().getShards());
 if (describeStreamResult.getStreamDescription().getHasMoreShards() &&
shards.size() > 0) {
 exclusiveStartShardId = shards.get(shards.size() - 1).getShardId();
 } else {
 exclusiveStartShardId = null;
 }
} while (exclusiveStartShardId != null);

Get Data from the Shards in a Stream
The Amazon Kinesis service API provides the getShardIterator() and getRecords() methods to
retrieve data from an Amazon Kinesis stream. These methods represent a "pull" model in which your
code draws data directly from specified shards in the stream.

In general, however, we recommend that you use the IRecordProcessor interface supported in the
Amazon Kinesis Client Library (KCL) to retrieve stream data.The IRecordProcessor interface represents
a "push" model in which all you need to do is implement the code that processes the data. The Amazon
Kinesis Client Library does the work of retrieving data records from the stream and delivering them to
your application code. In addition, the Amazon Kinesis Client Library provides failover, recovery, and load
balancing functionality.

However, in some cases you might prefer to use the Amazon Kinesis service API. For example, you might
use the API to implement custom tools for monitoring or debugging your Amazon Kinesis streams. This
section focuses on the Amazon Kinesis service API.

Important
Data records are accessible for only 24 hours from the time they are added to an Amazon Kinesis
stream.

Using Shard Iterators
When using the Amazon Kinesis service API, you retrieve records from the stream on a per-shard basis.
For each shard, and for each batch of records that you retrieve from that shard, you need to obtain a
shard iterator. The shard iterator is used in the getRecordsRequest object to specify the shard from
which records should be retrieved. The type associated with the shard iterator determines the point in
the shard from which the records should be retrieved (see below for more details).

The initial shard iterator is obtained using the getShardIterator() method. Shard iterators for additional
batches of records are obtained using the getNextShardIterator() method of the getRecordsResult
object returned by the getRecords() method.

Important
A shard iterator returned by the getShardIterator() method will time out after five minutes
if you do not use it.

To obtain the initial shard iterator, instantiate a GetShardIteratorRequest and pass it to the
getShardIterator() method. To configure the request, you need to specify the stream and the shard
ID. For information about how to obtain the streams in your AWS account, see List All Streams in an
AWS Account (p. 19). For information about how to obtain the shards in a stream, see Retrieve the Shards
from a Stream (p. 21).

API Version 2013-12-02
22

Amazon Kinesis Developer Guide
Get Data from the Shards in a Stream

https://github.com/awslabs/amazon-kinesis-client

 String shardIterator;
 GetShardIteratorRequest getShardIteratorRequest = new GetShardIteratorRe
quest();
 getShardIteratorRequest.setStreamName(myStreamName);
 getShardIteratorRequest.setShardId(shard.getShardId());
 getShardIteratorRequest.setShardIteratorType("TRIM_HORIZON");

 GetShardIteratorResult getShardIteratorResult = client.getShardIterator(get
ShardIteratorRequest);
 shardIterator = getShardIteratorResult.getShardIterator();

The sample code above specifies TRIM_HORIZON as the iterator type when obtaining the initial shard
iterator. This iterator type means that records should be returned beginning with the first record added
to the shard — rather than beginning with the most recently added record, also known as the tip. The
possible iterator types are:

• AT_SEQUENCE_NUMBER

• AFTER_SEQUENCE_NUMBER

• TRIM_HORIZON

• LATEST

For more details on iterator types, go to the Amazon Kinesis API Reference.

Some iterator types require that you specify a sequence number in addition to the type. For example:

getShardIteratorRequest.setShardIteratorType("AT_SEQUENCE_NUMBER");
getShardIteratorRequest.setStartingSequenceNumber(specialSequenceNumber);

After you've obtained a record via getRecords(), you can get the sequence number for the record by
calling the record's getSequenceNumber() method.

record.getSequenceNumber()

In addition, the code that adds records to the data stream can get the sequence number for an added
record by calling getSequenceNumber() on the result of putRecord().

lastSequenceNumber = putRecordResult.getSequenceNumber();

You can use sequence numbers to guarantee strictly increasing ordering of records. For more information,
see the code sample in the Partition Key (p. 20) section above.

Using GetRecords()
After you've obtained the shard iterator, instantiate a GetRecordsRequest object. Specify the iterator
for the request using the setShardIterator() method.

Optionally, you can also set the number of records to retrieve using the setLimit() method.The number
of records returned by GetRecords() is always equal to or less than this limit. If you do not specify this

API Version 2013-12-02
23

Amazon Kinesis Developer Guide
Using GetRecords()

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_GetShardIterator.html#Kinesis-GetShardIterator-request-ShardIteratorType

limit, GetRecords() returns up to 1 MB of retrieved records. The sample code below sets this limit to
1000.

If no records are returned, that means no data records are currently available from this shard at the
sequence number referenced by the shard iterator. When this situation occurs, your application should
wait for an appropriate amount of time given the nature of the data sources to the stream — in all cases,
at least one second — and then retry getting data from the shard using the shard iterator returned by the
preceding call to GetRecords. Note that there is about a three-second latency from the time that a record
is added to the stream to the time that it is available from GetRecords().

Pass the getRecordsRequest to the getRecords() method and capture the returned value as a
getRecordsResult object. To get the data records, call the getRecords() method on the
getRecordsResult object.

GetRecordsRequest getRecordsRequest = new GetRecordsRequest();
getRecordsRequest.setShardIterator(shardIterator);
getRecordsRequest.setLimit(1000);

GetRecordsResult getRecordsResult = client.getRecords(getRecordsRequest);
List<Record> records = getRecordsResult.getRecords();

To prepare for another call to getRecords(), obtain the next shard iterator from getRecordsResult.

shardIterator = getRecordsResult.getNextShardIterator();

For best results, sleep for at least one second (1000 milliseconds) between calls to getRecords() to
avoid exceeding the limit on getRecords() frequency.

try {
 Thread.sleep(1000);
}
catch (InterruptedException e) {}

Note
Typically, calls to GetRecords() should be made in a loop, even when you're retrieving a single
record in a test scenario. A single call to GetRecords() may return an empty record list, even
when the shard contains more records at later sequence numbers. When this occurs, the
NextShardIterator returned along with the empty record list references a later sequence
number in the shard, and successive GetRecords() calls will eventually return the records.
The sample below illustrates the use of a loop.

GetRecords() Sample
The following code sample reflects the GetRecords() tips in this section, including making calls in a
loop.

//Continuously read data records from shard.

API Version 2013-12-02
24

Amazon Kinesis Developer Guide
Using GetRecords()

List<Record> records;

while (true) {

 //Create new GetRecordsRequest with existing shardIterator.
 //Set maximum records to return to 1000.
 GetRecordsRequest getRecordsRequest = new GetRecordsRequest();
 getRecordsRequest.setShardIterator(shardIterator);
 getRecordsRequest.setLimit(1000);

 GetRecordsResult result = client.getRecords(getRecordsRequest);

 //Put result into record list. Result may be empty.
 records = result.getRecords();

 try {
 Thread.sleep(1000);
 }
 catch (InterruptedException exception) {
 throw new RuntimeException(exception);
 }

 shardIterator = result.getNextShardIterator();
}

If you are using the Amazon Kinesis Client Library, you may notice that the KCL makes multiple calls
before returning data. This behavior is by design and does not indicate a problem with the KCL or your
data.

Adapting to a Reshard
If getRecordsResult.getNextShardIterator() returns null, it indicates the following: a shard split
or merge has occurred that involved this shard, this shard is now in a CLOSED state, and you have read
all available data records from this shard.

In this scenario, you should re-enumerate the shards in the stream to pick up the new shards that were
created by the split or merge.

In the case of a split, the two new shards both have parentShardId equal to the shard ID of the shard
that you were processing previously. The value of adjacentParentShardId for both of these shards
is null.

In the case of a merge, the single new shard created by the merge has parentShardId equal to shard
ID of one of the parent shards and adjacentParentShardId equal to the shard ID of the other parent
shard.Your application will have already read all the data from one of these shards; this is the shard for
which getRecordsResult.getNextShardIterator() returned null. If the order of the data is important
to your application, you should ensure that it reads all the data from the other parent shard as well, before
reading any new data from the child shard created by the merge.

If you are using multiple processors to retrieve data from the stream, say one processor per shard, and
a shard split or merge occurs, you should adjust the number of processors up or down to adapt to the
change in the number of shards.

For more information about resharding, including a discussion of shards states—such as CLOSED—see
Resharding a Stream (p. 26).

API Version 2013-12-02
25

Amazon Kinesis Developer Guide
Adapting to a Reshard

Resharding a Stream
The Amazon Kinesis service supports resharding, which enables you to adjust the number of shards in
your stream in order to adapt to changes in the rate of data flow through the stream. There are two types
of resharding operations: shard split and shard merge. In a shard split, you divide a single shard into two
shards. In a shard merge, you combine two shards into a single shard. Resharding is always "pairwise"
in the sense that you cannot split into more than two shards in a single operation, and you cannot merge
more than two shards in a single operation. The shard or pair of shards that the resharding operation
acts on are referred to as parent shards. The shard or pair of shards that result from the resharding
operation are referred to as child shards.

Splitting increases the number of shards in your stream and therefore increases the data capacity of the
stream. Because you are charged on a per-shard basis, splitting increases the cost of your stream.
Similarly, merging reduces the number of shards in your stream and therefore decreases the data
capacity—and cost—of the stream.

Resharding is typically performed by an administrative application which is distinct from the producer
applications, which add data to the stream, and the consumer applications, which get data from the
stream. Such an administrative application monitors the overall performance of the stream based on
metrics provided by CloudWatch or based on metrics collected from the producers and consumers. The
administrative application would also need a broader set of IAM permissions than the consumers or
producers; the consumers and producers usually should not need access to the APIs used for resharding.
For more information about IAM permissions for the Amazon Kinesis service, see Controlling Access to
Amazon Kinesis Resources with IAM (p. 42).

Split a Shard
In order to split a shard, you need to specify how hash key values from the parent shard should be
redistributed to the child shards. When you add a data record to a stream, it is assigned to a shard based
on a hash key value. The hash key value is the MD5 hash of the partition key that you specify for the
data record at the time that you add the data record to the stream; data records that have the same
partition key will also have the same hash key value.

The possible hash key values for a given shard constitute a set of ordered contiguous non-negative
integers. This range of possible hash key values is given by:

shard.getHashKeyRange().getStartingHashKey();
shard.getHashKeyRange().getEndingHashKey();

When you split the shard, you specify a value in this range. That hash key value and all higher hash key
values are distributed to one of the child shards. All the lower hash key values are distributed to the other
child shard.

The following code demonstrates a shard split operation that redistributes the hash keys evenly between
each of the child shards, essentially splitting the parent shard in half. This is just one possible way of
dividing the parent shard.You could, for example, split the shard so that the lower one-third of the keys
from the parent go to one child shard and the upper two-thirds of the keys go to other child shard. However,
for many applications, splitting shards in half is an effective approach.

The code assumes that myStreamName holds the name of your Amazon Kinesis stream and the object
variable shard holds the shard that you will split. Begin by instantiating a new splitShardRequest
object and setting the stream name and shard ID

API Version 2013-12-02
26

Amazon Kinesis Developer Guide
Resharding a Stream

http://en.wikipedia.org/wiki/MD5

SplitShardRequest splitShardRequest = new SplitShardRequest();
splitShardRequest.setStreamName(myStreamName);
splitShardRequest.setShardToSplit(shard.getShardId());

Determine the hash key value which is half-way between the lowest and highest values in the shard.This
is the starting hash key value for the child shard that will contain the upper half of the hash keys from the
parent shard. Specify this value in the setNewStartingHashKey() method.You need specify only this
value; the Amazon Kinesis service automatically distributes the hash keys below this value to the other
child shard that is created by the split. The last step is to call the splitShard() method on the Amazon
Kinesis service client.

BigInteger startingHashKey = new BigInteger(shard.getHashKeyRange().getStarting
HashKey());
BigInteger endingHashKey = new BigInteger(shard.getHashKeyRange().getEnding
HashKey());
String newStartingHashKey = startingHashKey.add(endingHashKey).divide(new Bi
gInteger("2")).toString();

splitShardRequest.setNewStartingHashKey(newStartingHashKey);
client.splitShard(splitShardRequest);

Merge Two Shards
A shard merge operation takes two specified shards and combines them into a single shard. After the
merge, the single child shard receives data for all hash key values covered by the two parent shards.

Shard Adjacency
In order to merge two shards, the shards must be adjacent. Two shards are considered adjacent if the
union of the hash key ranges for the two shards form a contiguous set with no gaps. For example, if you
have two shards, one with a hash key range of 276...381 and the other with a hash key range of 382...454,
then you could merge these two shards into a single shard that would have a hash key range of 276...454.

To take another example, if you have two shards, one with a hash key range of 276..381 and the other
with a hash key range of 455...560, then you could not merge these two shards because there would be
one or more shards between these two that cover the range 382..454.

The set of all OPEN shards in a stream—as a group—always spans the entire range of MD5 hash key
values. For more information about shard states—such as CLOSED—see Data Routing, Data Persistence,
and Shard State after a Reshard (p. 29).

To identify shards that are candidates for merging, you should filter out all shards that are in a CLOSED
state. Shards that are OPEN—that is, not CLOSED—have an ending sequence number of null.You can
test the ending sequence number for a shard using:

if(null == shard.getSequenceNumberRange().getEndingSequenceNumber()) {
 // Shard is OPEN, so it is a possible candidate to be merged.
}

After filtering out the closed shards, sort the remaining shards by the highest hash key value supported
by each shard.You can retrieve this value using:

API Version 2013-12-02
27

Amazon Kinesis Developer Guide
Merge Two Shards

shard.getHashKeyRange().getEndingHashKey();

If two shards are adjacent in this filtered, sorted list, they can be merged.

Code for the Merge Operation
The following code merges two shards. The code assumes that myStreamName holds the name of your
Amazon Kinesis stream and the object variables shard1 and shard2 hold the two adjacent shards that
you will merge.

For the merge operation, begin by instantiating a new mergeShardsRequest object. Specify the stream
name with the setStreamName() method. Then specify the two shards to merge using the
setShardToMerge() and setAdjacentShardToMerge() methods. Finally, call the mergeShards()
method on the Amazon Kinesis service client to carry out the operation.

MergeShardsRequest mergeShardsRequest = new MergeShardsRequest();
mergeShardsRequest.setStreamName(myStreamName);
mergeShardsRequest.setShardToMerge(shard1.getShardId());
mergeShardsRequest.setAdjacentShardToMerge(shard2.getShardId());
client.mergeShards(mergeShardsRequest);

Wait after Resharding for Stream to Become Active
After you call a resharding operation, either splitShard() or mergeShards(), you need to wait for
the stream to become active again.The code to use is the same as when you wait for a stream to become
active after creating a stream (p. 18). That code is reproduced below.

DescribeStreamRequest describeStreamRequest = new DescribeStreamRequest();
describeStreamRequest.setStreamName(myStreamName);

long startTime = System.currentTimeMillis();
long endTime = startTime + (10 * 60 * 1000);
while (System.currentTimeMillis() < endTime) {
 try {
 Thread.sleep(20 * 1000);
 }
 catch (Exception e) {}

 try {
 DescribeStreamResult describeStreamResponse = client.describeStream(de
scribeStreamRequest);
 String streamStatus = describeStreamResponse.getStreamDescription().get
StreamStatus();
 if (streamStatus.equals("ACTIVE")) {
 break;
 }
 //
 // sleep for one second
 //
 try {
 Thread.sleep(1000);

API Version 2013-12-02
28

Amazon Kinesis Developer Guide
Wait after Resharding for Stream to Become Active

 }
 catch (Exception e) {}
 }
 catch (ResourceNotFoundException e) {}
}
if (System.currentTimeMillis() >= endTime) {
 throw new RuntimeException("Stream " + myStreamName + " never went active"
);
}

Data Routing, Data Persistence, and Shard State
after a Reshard
Amazon Kinesis is a real-time data streaming service, which is to say that your applications should assume
that data is flowing continuously through the shards in your stream. When you reshard, data records that
were flowing to the parent shards are re-routed to flow to the child shards based on the hash key values
that the data-record partition keys map to. However, any data records that were in the parent shards
before the reshard remain in those shards. In other words, the parent shards do not disappear when the
reshard occurs; they persist along with the data they contained prior to the reshard. The data records in
the parent shards are accessible using the getShardIterator and getRecords() (p. 22) operations
in the Amazon Kinesis service API or using the Amazon Kinesis Client Library.

Note
These data records are accessible for only 24 hours from the time that they were added to the
stream. (This 24-hour retention limit applies to all data records in Amazon Kinesis shards, not
just parent shards that remain after a reshard.)

In the process of resharding, a parent shard transitions from an OPEN state to a CLOSED state to an
EXPIRED state.

• OPEN: Before a reshard operation, a parent shard is in the OPEN state, which means that data records
can be both added to the shard and retrieved from the shard.

• CLOSED: After a reshard operation, the parent shard transitions to a CLOSED state. This means that
data records are no longer added to the shard. Data records that would have been added to this shard
are now added to a child shard instead. However, data records can still be retrieved from the shard for
a limited time.

• EXPIRED: After 24 hours, all the data records in the parent shard have expired and are no longer
accessible. At this point, the shard itself transitions to an EXPIRED state. Calls to
getStreamDescription().getShards() to enumerate the shards in the stream do not include
EXPIRED shards in the list shards returned.

Exhaust Parent Shard Data before Reading Child Shard Data
After the reshard has occurred and the stream is once again in an ACTIVE state, you could immediately
begin to read data from the child shards. However, the parent shards that remain after the reshard could
still contain data that you haven't read yet that was added to the stream prior to the reshard. If you read
data from the child shards before having read all data from the parent shards, you could read data for a
particular hash key out of the order given by the data records' sequence numbers. Therefore, assuming
that the order of the data is important, you should, after a reshard, always continue to read data from the
parent shards until it is exhausted, and only then begin reading data from the child shards. When
getRecordsResult.getNextShardIterator() returns null, it indicates that you have read all the
data in the parent shard. If you are reading data using the Amazon Kinesis Client Library, the library
ensures that you receive the data in order even if a reshard occurs.

API Version 2013-12-02
29

Amazon Kinesis Developer Guide
Data Routing, Data Persistence, and Shard State after

a Reshard

https://github.com/awslabs/amazon-kinesis-client

Strategies for Resharding
The purpose of resharding is to enable your stream to adapt to changes in the rate of data flow.You split
shards to increase the capacity (and cost) of your stream.You merge shards to reduce the cost (and
capacity) of your stream.

One approach to resharding could be to simply split every shard in the stream—which would double the
stream's capacity. However, this might provide more additional capacity than you actually need and
therefore create unnecessary cost.

You can also use metrics to determine which are your "hot" or "cold" shards, that is, shards that are
receiving much more data, or much less data, than expected.You could then selectively split the hot
shards to increase capacity for the hash keys that target those shards. Similarly, you could merge cold
shards to make better use of their unused capacity.

You can obtain some performance data for your stream from the CloudWatch metrics that the Amazon
Kinesis service publishes. However, you can also collect some of your own metrics for your streams. One
approach would be to log the hash key values generated by the partition keys for your data records.
Recall that you specify the partition key at the time that you add the record to the stream.

putRecordRequest.setPartitionKey(String.format("myPartitionKey"));

The Amazon Kinesis service uses MD5 to compute the hash key from the partition key. Because you
specify the partition key for the record, you could use MD5 to compute the hash key value for that record
and log it.

You could also log the IDs of the shards that your data records are assigned to. The shard ID is available
by using the getShardId() method of the putRecordResult object returned by the putRecord()
method.

String shardId = putRecordResult.getShardId();

With the shard IDs and the hash key values, you can determine which shards and hash keys are receiving
the most or least traffic.You can then use resharding to provide more or less capacity, as appropriate
for these keys.

Delete the Stream
The following code deletes the stream.

DeleteStreamRequest deleteStreamRequest = new DeleteStreamRequest();
deleteStreamRequest.setStreamName(myStreamName);
client.deleteStream(deleteStreamRequest);

You should shut down any applications that are operating on the stream before you delete it. If an
application attempts to operate on a deleted stream, it will receive ResourceNotFound exceptions. Also,
if you subsequently create a new stream that has the same name as your previous stream, and applications
that were operating on the previous stream are still running, these applications might try to interact with
the new stream as though it was the previous stream—which would result in unpredictable behavior.

API Version 2013-12-02
30

Amazon Kinesis Developer Guide
Strategies for Resharding

http://en.wikipedia.org/wiki/MD5

Related Resources
• Amazon Kinesis API Reference

API Version 2013-12-02
31

Amazon Kinesis Developer Guide
Related Resources

http://docs.aws.amazon.com/kinesis/latest/APIReference/

Developing Record Consumer
Applications with the Amazon
Kinesis Client Library

This section explains how to develop an Amazon Kinesis record consumer application using the Amazon
Kinesis Client Library (KCL). Although you can use the Amazon Kinesis service API to get data from an
Amazon Kinesis stream, we recommend using the design patterns and code for Kinesis applications
provided in this section.

Topics

• Overview (p. 32)

• Building a Kinesis Application (p. 33)

• Advanced Topics and Techniques (p. 37)

Overview
This section introduces the Amazon Kinesis Client Library, Kinesis applications, and the relationship
between the two. Each is described in more detail in following sections.

Amazon Kinesis Client Library (KCL)
The Amazon Kinesis Client Library for Java (KCL) helps you consume and process data from an Amazon
Kinesis stream.The KCL takes care of many of the complex tasks associated with distributed computing,
such as load-balancing across multiple instances, responding to instance failures, checkpointing processed
records, and reacting to resharding. The KCL allows you to focus on writing record processing logic.

Note that the KCL is different from the Amazon Kinesis service API that is available in the AWS SDKs.
The Amazon Kinesis API helps you manage many aspects of the service (including creating streams,
resharding, and putting and getting records), while the KCL provides a layer of abstraction specifically
for processing data. For information about the Amazon Kinesis API, see the Amazon Kinesis API Reference.

Before you work through this section, download the KCL from Maven or GitHub.

API Version 2013-12-02
32

Amazon Kinesis Developer Guide
Overview

https://github.com/awslabs/amazon-kinesis-client
https://github.com/awslabs/amazon-kinesis-client
http://docs.aws.amazon.com/kinesis/latest/APIReference/
http://maven.apache.org
https://github.com/awslabs/amazon-kinesis-client

Kinesis Applications
A "Kinesis application" is simply a Java application built with the KCL. A Kinesis application instantiates
a worker with configuration information, and then uses the IRecordProcessor interface to process data
received from an Amazon Kinesis stream.

A Kinesis application can be run on any number of instances. Multiple instances of the same application
coordinate on failures and load-balance dynamically.You can also have multiple Amazon Kinesis
applications working on the same stream, subject to throughput limits.

Building a Kinesis Application
This section introduces the components and methods of Kinesis applications. For illustration purposes,
this section refers to the Kinesis application sample code that is available on GitHub.The sample application
uses Apache Commons Logging.You can change the logging configuration in the static configure()
method defined in the file SampleAmazon KinesisApplication.java.

For more information about how to use Apache Commons Logging with Log4j and AWS Java applications,
go to Logging with Log4j in the AWS Java Developer Guide.

Role of the Amazon Kinesis Client Library
The Amazon Kinesis Client Library acts as an intermediary between your record processing logic and
the Amazon Kinesis service itself.

When a Kinesis application starts, it calls the KCL to instantiate a worker. This call provides the KCL with
configuration information for the application, such as the stream name and AWS credentials.

For more information, see Initializing the Application (p. 36).

In a Kinesis application, the KCL performs the following tasks:

• Connects to the stream

• Enumerates the shards

• Coordinates shard associations with other workers (if any)

• Instantiates a record processor for every shard it will manage, using a factory for the class that
implements IRecordProcessor

• Pulls data records from the Amazon Kinesis stream

• Pushes the records to the corresponding record processor, calling the processRecords() method
of the IRecordProcessor interface, and passing an instance of IRecordProcessorCheckpointer
along with the list of records

• Checkpoints processed records

• Balances shard-worker associations when the worker instance count changes

• Balances shard-worker associations when shards are split or merged

Amazon Kinesis Application Components
Every Kinesis application must include these three components:

• The IRecordProcessor interface

• A factory for the class that implements the IRecordProcessor interface

API Version 2013-12-02
33

Amazon Kinesis Developer Guide
Kinesis Applications

https://github.com/aws/aws-sdk-java/tree/master/src/samples
http://commons.apache.org/proper/commons-logging/guide.html
http://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/java-dg-logging.html
https://github.com/awslabs/amazon-kinesis-client

• Code that initializes the application and creates the worker

Implementing the IRecordProcessor Interface
The IRecordProcessor interface exposes the following methods.Your Kinesis application must
implement all of these methods.

public void initialize(String shardId)

public void processRecords(List<Record> records, IRecordProcessorCheckpointer
checkpointer)

public void shutdown(IRecordProcessorCheckpointer checkpointer, ShutdownReason
 reason)

The sample provides implementations that you can use as a starting point for your own application. See
the class SampleRecordProcessor in the file SampleRecordProcessor.java.

initialize

 public void initialize(String shardId)

The KCL calls the initialize() method when the record processor is instantiated, passing a specific
shard ID as a parameter. This record processor processes only this shard, and typically, the reverse is
also true (this shard is processed only by this record processor). However, your application should account
for the possibility that a data record might be processed more than once. Amazon Kinesis has "at least
once" semantics, meaning that every data record from a shard will be processed at least once by a worker
in your Amazon Kinesis application.

For more information about cases in which a particular shard may be processed by more than one worker,
see Resharding, Scaling, and Parallel Processing (p. 38).

processRecords

public void processRecords(List<Record> records, IRecordProcessorCheckpointer
checkpointer)

The KCL calls the processRecords() method, passing a list of data records from the shard specified
by initialize(shardId). The record processor processes the data in these records according to the
semantics of the application. For example, the worker might perform a transformation on the data and
then store the result in an Amazon S3 bucket.

In addition to the data itself, the record also contains a sequence number and partition key. The worker
can use these values when processing the data. For example, the worker could choose the Amazon S3
bucket in which to store the data based on the value of the partition key. The Record class exposes the
following methods that provide access to the record's data, sequence number, and partition key.

record.getData()

API Version 2013-12-02
34

Amazon Kinesis Developer Guide
Amazon Kinesis Application Components

record.getSequenceNumber()

record.getPartitionKey()

In the sample, the private method processRecordsWithRetries() has code that shows how a worker
can access the record's data, sequence number, and partition key.

checkpoint

The Amazon Kinesis service requires the record processor to keep track of the records that have already
been processed in a given shard. The KCL takes care of this tracking by passing an
IRecordProcessorCheckpointer interface to processRecords(). The record processor calls the
checkpoint() method on this interface to inform the KCL of how far it has progressed in processing
the records in the shard. In the event that the worker fails, the KCL uses this information to restart the
processing of the shard at the last known processed record.

In the case of a split or merge operation, the KCL won't start processing the new shard(s) until the
processors for the original shards have called checkpoint() to signal that all processing on the original
shards is complete.

The KCL assumes that the call to checkpoint() means that all records have been processed, up to
the last record that was passed to the record processor. Thus the record processor should call
checkpoint() only after it has processed all the records in the list that was passed to it. Record
processors do not need to call checkpoint() on each call to processRecords(). A processor could,
for example, call checkpoint() on every third call to processRecords().

In the sample, the private method checkpoint() shows how to call the
IRecordProcessorCheckpointer.checkpoint() method using appropriate exception handling and
retry logic.

The KCL relies on processRecords() to handle any exceptions that arise from processing the data
records. If an exception is thrown out of processRecords(), the KCL skips over the data records that
were passed to processRecords() prior to the exception; that is, these records are not re-sent to the
record processor that threw the exception or to any other record processor in the application.

shutdown

public void shutdown(IRecordProcessorCheckpointer checkpointer, ShutdownReason
 reason)

The KCL calls the shutdown() method if either of the following is true:

• Processing ends: This record processor will not receive any further records from the shard, for one
of these reasons:

• A shard split or shard merge operation has occurred and has affected this shard.

• The stream itself is being deleted, and all data in this shard of the stream has been processed.

In these cases, the ShutdownReason parameter of the shutdown() method has a value of
TERMINATE.

• Unresponsive worker: It appears that the worker is no longer responding to the KCL. In this case,
the ShutdownReason parameter has a value of ZOMBIE.

The KCL also passes an IRecordProcessorCheckpointer interface to shutdown(). If the
ShutdownReason parameter is TERMINATE, the record processor should finish processing any data

API Version 2013-12-02
35

Amazon Kinesis Developer Guide
Amazon Kinesis Application Components

records, and then call the checkpoint() method on this interface. For more information, see
checkpoint (p. 35).

Implementing a Class Factory for IRecordProcessor
You'll also need to implement a factory for the class that implements the IRecordProcessor interface
methods. When your application instantiates the worker, it passes a reference to this factory.

The sample implements the factory class SampleRecordProcessorFactory in the file
SampleRecordProcessorFactory.java.

public class SampleRecordProcessorFactory implements IRecordProcessorFactory {

 /**
 * Constructor.
 */
 public SampleRecordProcessorFactory() {
 super();
 }
 /**
 * {@inheritDoc}
 */
 @Override
 public IRecordProcessor createProcessor() {
 return new SampleRecordProcessor();
 }
}

Initializing the Application
A Kinesis application must be initialized with the following configuration values:

• The application name

• The name of the stream that the application will process

• The HTTPS endpoint for the Amazon Kinesis service

The sample initialization code provides default configuration values in the file SampleAmazon
KinesisApplication.java.You can override any of these with your own values, using a Java properties file.
If you're using a properties file, specify it on the command line when you run the sample application.

Application Name

The KCL uses the application name configuration value in the following ways:

• All workers associated with this application name are assumed to be working together on the same
stream. These workers may be distributed on multiple instances. If you run an additional instance of
the same application code, but with a different application name, the KCL treats the second instance
as an entirely separate application that is also operating on the same stream.

• The KCL creates an Amazon DynamoDB table with the application name and uses the table to maintain
state information (such as checkpoints and worker-shard mapping) for the application. Each application
has its own DynamoDB table.

For more information, see Kinesis Application State and Amazon DynamoDB (p. 38).

API Version 2013-12-02
36

Amazon Kinesis Developer Guide
Amazon Kinesis Application Components

http://docs.aws.amazon.com/general/latest/gr/rande.html#ak_region

For the KCL to function as expected, the application name must be unique among your Kinesis applications,
and it must also be unique among DynamoDB tables in the same account and region. Choose your
application name carefully.

Worker ID

The sample initialization code creates an ID for the worker using the name of the local computer and
appending a globally unique identifier:

String workerId = InetAddress.getLocalHost().getCanonicalHostName() + ":" +
UUID.randomUUID();

This approach supports the scenario of having multiple instances of the application running on a single
computer.

Credentials

If you are running your Kinesis application on an Amazon EC2 instance, we recommend that you configure
the instance with an AWS Identity and Access Management role. AWS credentials that reflect the
permissions associated with this IAM role are made available to applications on the instance through the
instance metadata service (IMDS). This is the most secure way to manage credentials for a Kinesis
application running on an Amazon EC2 instance.

The sample application includes code that first attempts to retrieve IAM credentials from the IMDS:

credentialsProvider = new InstanceProfileCredentialsProvider();

If the sample application cannot obtain credentials from the IMDS, it attempts to retrieve credentials from
a properties file:

credentialsProvider = new ClasspathPropertiesFileCredentialsProvider();

For more information about IMDS, see Using IAM.

The sample consolidates the configuration data for the worker in a KinesisClientLibConfiguration
object. This object and a reference to the class factory for IRecordProcessor are passed in the call
that instantiates the worker.

Advanced Topics and Techniques
This section helps you optimize your Kinesis application and understand advanced Amazon Kinesis
concepts.

Topics

• Kinesis Application State and Amazon DynamoDB (p. 38)

• Resharding, Scaling, and Parallel Processing (p. 38)

• Failover and Recovery (p. 39)

• Startup, Shutdown, and Throttling (p. 40)

API Version 2013-12-02
37

Amazon Kinesis Developer Guide
Advanced Topics and Techniques

http://docs.aws.amazon.com/IAM/latest/UserGuide//AESDG-chapter-instancedata.html

Kinesis Application State and Amazon DynamoDB
For each Kinesis application, the KCL uses a unique Amazon DynamoDB table to keep track of the
application's state. Because the KCL uses the Kinesis application name to create the name of the table,
each application name must be unique.

You can view the table using the Amazon DynamoDB console while the application is running.

If the Amazon DynamoDB table for your Kinesis application does not exist when the application starts
up, one of the workers creates the table and calls the describeStream() method to populate the table.
See Application State Data (p. 38) for details.

Important
Your account is charged for the costs associated with the DynamoDB table, in addition to the
costs associated with Amazon Kinesis itself.

Throughput
If your Kinesis application receives provisioned-throughput exceptions, you should increase the provisioned
throughput for the DynamoDB table.The KCL creates the table with a provisioned throughput of 10 reads
per second and 10 writes per second, but this might not be sufficient for your application. For example,
if your Kinesis application does frequent checkpointing or operates on a stream that is composed of many
shards, you might need more throughput.

For information about provisioned throughput in DynamoDB, see Provisioned Throughput in Amazon
DynamoDB and Working with Tables in the Amazon DynamoDB Developer Guide.

Application State Data
Each row in the DynamoDB table represents a shard that is being processed by your application. The
hash key for the table is the shard ID.

In addition to the shard ID, each row also includes the following data:

• Checkpoint: The most recent checkpoint sequence number for the shard. This value is unique across
all shards in the stream.

• Worker ID: The ID of the worker that is processing the shard. A single worker ID can be associated
with multiple record processors and therefore with multiple shards. As a result, the same worker ID
might appear in multiple rows in the table.

• Heartbeat: A count that is periodically incremented by the record processor to indicate that it is still
actively processing records from the shard. The workers associated with the application periodically
scan these values to ensure that all shards continue to be processed. If the heartbeat count does not
increase within a configurable timeout period, other workers take over processing of that shard.

Resharding, Scaling, and Parallel Processing

Resharding
Resharding allows you to increase or decrease the number of shards in a stream in order to adapt to
changes in the rate of data flowing through the stream. Resharding is typically performed by an
administrative application that monitors shard data-handling metrics. Although the KCL itself doesn't
initiate resharding operations, it is designed to adapt to changes in the number of shards that result from
resharding.

API Version 2013-12-02
38

Amazon Kinesis Developer Guide
Kinesis Application State and Amazon DynamoDB

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ConsoleDynamoDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide//ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide//ProvisionedThroughputIntro.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithDDTables.html

As noted in Kinesis Application State and Amazon DynamoDB (p. 38), the KCL tracks the shards in the
stream using an Amazon DynamoDB table. When new shards are created as a result of resharding, the
KCL discovers the new shards and populates new rows in the table. The workers automatically discover
the new shards and create processors to handle the data from them.The KCL also distributes the shards
in the stream across all the available workers and record processors.

The KCL ensures that any data that existed in shards prior to the resharding is processed first. After that
data has been processed, data from the new shards is sent to record processors. In this way, the KCL
preserves the order in which data records were added to the stream for a particular partition key.

Example: Resharding, Scaling, and Parallel Processing

The following example illustrates how the KCL helps you handle scaling and resharding:

• Let's say your application is running on one Amazon EC2 instance, and is processing one Amazon
Kinesis stream that has four shards.This one instance has one KCL worker and four record processors
(one record processor for every shard). These four record processors run in parallel within the same
process.

• Next, let’s say you scale the application to use another instance, so now you have two instances
processing one stream that has four shards. When the KCL worker starts up on the second instance,
it load-balances with the first instance, so that each instance now processes two shards.

• Suppose you then decide to split the four shards into five shards. The KCL again coordinates the
processing across instances: one instance processes three shards, and the other processes two shards.
A similar coordination occurs when you merge shards.

Typically, when you use the KCL, you should ensure that the number of instances does not exceed the
number of shards (except for failure standby purposes). Each shard is processed by exactly one KCL
worker and has exactly one corresponding IRecordProcessor, so you never need multiple instances to
process one shard. However, one worker can process any number of shards, so it's fine if the number of
shards exceeds the number of instances.

To scale up processing in your application, you should test a combination of these approaches:

• Increasing the instance size (because all record processors run in parallel within a process)

• Increasing the number of instances up to the maximum number of open shards (because shards can
be independently processed)

• Increasing the number of shards (which increases the level of parallelism)

Note that you can use Auto Scaling to automatically scale your instances based on appropriate metrics.

When resharding increases the number of shards in the stream, the corresponding increase in the number
of record processors increases the load on the Amazon EC2 instances that are hosting them. If the
Amazon EC2 instances are part of an autoscaling group, and the load increases sufficiently, the autoscaling
group adds more instances to handle the increased load.You should configure your Amazon EC2 instances
to launch your Kinesis application at startup, so that additional workers and record processors become
active on the new instance right away.

For more details about resharding, see Resharding a Stream (p. 26).

Failover and Recovery
Failure can occur at several levels when you use a Kinesis application to process data from an Amazon
Kinesis stream.

• A record processor could fail

• A worker could fail, or the instance of the Kinesis application that instantiated the worker could fail

API Version 2013-12-02
39

Amazon Kinesis Developer Guide
Failover and Recovery

http://docs.aws.amazon.com/AutoScaling/latest/GettingStartedGuide/

• An Amazon EC2 instance that is hosting one or more instances of the application could fail

Record Processor Failure
The worker invokes RecordProcessor APIs, such as processRecords, using Java ExecutorService
tasks. If a task fails, the worker retains control of the shard that the record processor was processing.
The worker starts a new record processor task to process that shard. See also Read Throttling (p. 41).

Worker or Application Failure
If a worker — or an instance of the Kinesis application itself — fails, you should detect and handle the
situation. For example, if the Worker.run() method throws an exception, you should catch and handle
it.

If the application itself fails, you should detect this and restart it. When the application starts up, it
instantiates a new worker, which in turn instantiates new record processors that are automatically assigned
shards to process.These could be the same shards that these record processors were processing before
the failure, or shards that are new to these processors.

If the worker or application fails but you do not detect the failure, and there are other instances of the
application running on other Amazon EC2 instances, the workers on these instances will handle the
failure: they will create additional record processors to process the shards that are no longer being
processed by the failed worker.The load on these other Amazon EC2 instances will increase accordingly.

The scenario described here assumes that although the worker or application has failed, the hosting
Amazon EC2 instance is still running and is therefore not restarted by an Auto Scaling group.

Amazon EC2 Instance Failure
We recommend that you run the Amazon EC2 instances for your application in an Auto Scaling group.
This way, if one of the Amazon EC2 instances fails, the Auto Scaling group automatically launches a new
instance to replace it.You should configure the Amazon EC2 instances to launch your Kinesis application
at startup.

Startup, Shutdown, and Throttling
Here are some additional considerations to incorporate into the design of your Kinesis application.

Starting Up Data Producers and Kinesis Applications
By default, the KCL begins reading records from the tip of the stream; i.e., the most recently added record.
In this configuration, if a data-producing application adds records to the stream before any receiving
record processors are running, the records will not be read by the record processors after they start up.

To change the behavior of the record processors to always read data from the beginning of the stream
instead, set the following value in the properties file for your Kinesis application:

initialPositionInStream = TRIM_HORIZON

Important
The Amazon Kinesis service keeps records for no more than 24 hours. Even with the
TRIM_HORIZON setting, if a record processor were to start more than 24 hours after a
data-producing application began adding records to the stream, some of the records would not
be available to the record processor.

API Version 2013-12-02
40

Amazon Kinesis Developer Guide
Startup, Shutdown, and Throttling

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ExecutorService.html

In some scenarios, it may be fine for record processors to miss the first few records in the stream. For
example, you might run some initial records through the stream to test that the stream is working end-to-end
as expected. After doing this initial verification, you would then start your workers and begin to put
production data into the stream.

For more information about the TRIM_HORIZON setting, see Using Shard Iterators.

Shutting Down a Kinesis Application
When your Kinesis application has completed its intended task, you should shut it down by terminating
the Amazon EC2 instances on which it is running.You can terminate the instances using the AWS
Management Console or the AWS Command Line Interface.

After shutting down a Kinesis application, you should delete the Amazon DynamoDB table that the KCL
used to track the application's state.

Read Throttling
The throughput of a stream is provisioned at the shard level. Each shard has a read throughput of 2
MB/sec, at 5 transactions per second. If an application (or a group of applications operating on the same
stream) attempts to get data from a shard at a faster rate, the service throttles the corresponding Get
operations.

In a Java application, throttling typically appears as an exception. In a Amazon Kinesis application, if a
record processor is processing data faster than the 2 MB/sec limit — such as in the case of a failover —
throttling will occur. Because the Amazon Kinesis Client Library (KCL) (p. 32) manages the interactions
between the application and the Amazon Kinesis service, throttling exceptions occur in the KCL code
rather than in the application code. However, because the KCL logs these exceptions, you will see them
in the logs.

If you find that your application is throttled consistently, you should consider provisioning a higher number
of shards for the stream.

API Version 2013-12-02
41

Amazon Kinesis Developer Guide
Startup, Shutdown, and Throttling

http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-api-java.html#kinesis-using-api-java-get-data-shard-iterators
https://console.aws.amazon.com/ec2/home
https://console.aws.amazon.com/ec2/home
http://docs.aws.amazon.com/cli/latest/reference/ec2/index.html

Controlling Access to Amazon
Kinesis Resources with IAM

Amazon Kinesis integrates with AWS Identity and Access Management (IAM), a service that enables you
to do the following:

• Create users and groups under your AWS account

• Easily share your AWS resources between the users in your AWS account

• Assign unique security credentials to each user

• Control each user's access to services and resources

• Get a single bill for all users in your AWS account

Each IAM user or group must be granted access to Amazon Kinesis. For examples of policies that allow
access to Amazon Kinesis operations and resources, see Example Policies for Amazon Kinesis (p. 43)
below. As you create and manage IAM policies, you might want to use the AWS Policy Generator and
the IAM Policy Simulator.

If you are developing an application using the Amazon Kinesis Client Library, your policy also needs to
include permissions for Amazon DynamoDB; the Amazon Kinesis Client Library uses Amazon DynamoDB
to track state information for the application. For more information about Amazon Kinesis Client Library
applications, see Developing Record Consumer Applications with the Amazon Kinesis Client Library (p. 32).
For more information about IAM and Amazon DynamoDB, go to Using IAM to Control Access to Amazon
DynamoDB Resources in the Amazon DynamoDB Developer Guide.

Amazon Kinesis Actions
In the Action element of an IAM policy, you can specify any set of Amazon Kinesis operations. Action
supports all Kinesis operations.You must prefix each action name with the string kinesis. The following
examples specify several Kinesis operations. An astersik (*) specifies all Amazon Kinesis operations.

kinesis:CreateStream
kinesis:DescribeStream

API Version 2013-12-02
42

Amazon Kinesis Developer Guide
Amazon Kinesis Actions

http://awspolicygen.s3.amazonaws.com/policygen.html
https://policysim.aws.amazon.com
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html

kinesis:ListStreams
kinesis:*

For a list of all the Amazon Kinesis operations, go to the Amazon Kinesis API Reference.

Amazon Resource Names (ARNs) for Amazon
Kinesis

Amazon Kinesis supports IAM resource-level permissions, which use ARNs to represent streams. Use
the following ARN resource format:

"Resource": arn:aws:kinesis:<region>:<accountID>:stream/<streamname>

For example:

"Resource": arn:aws:kinesis:*:111122223333:stream/mystream

Example Policies for Amazon Kinesis
This section shows example policies for controlling user access to Amazon Kinesis streams.

API Version 2013-12-02
43

Amazon Kinesis Developer Guide
Amazon Resource Names (ARNs) for Amazon Kinesis

http://docs.aws.amazon.com/kinesis/latest/APIReference/
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Example 1: Allow users to get data from an Amazon Kinesis stream

This policy allows a user or group to perform the DescribeStream, ListStreams, GetShardIterator,
and GetRecords operations on the specified stream. This policy could be applied to users who should
be able to get data from a specific stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis: Get*"
],
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStream"
],
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:ListStreams"
],
 "Resource": [
 "*"
]
 }
]
}

API Version 2013-12-02
44

Amazon Kinesis Developer Guide
Example Policies for Amazon Kinesis

Example 2: Allow users to add data to any Amazon Kinesis stream in the account

This policy allows a user or group to use the PutRecord operation with any of the account's streams.
This policy could be applied to users that should be able to add data records to all streams in an account.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "kinesis:PutRecord"
],
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/*"
]
 }
]
}

Example 3: Allow any Amazon Kinesis action on a specific stream

This policy allows a user or group to use any Amazon Kinesis operation on the specified stream. This
policy could be applied to users that should have administrative control over a specific stream.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": [
 "arn:aws:kinesis:us-east-1:111122223333:stream/stream1"
]
 }
]
}

API Version 2013-12-02
45

Amazon Kinesis Developer Guide
Example Policies for Amazon Kinesis

Example 4: Allow any Amazon Kinesis action on any stream

This policy allows a user or group to use any Amazon Kinesis operation on any stream in an account.
Because this policy grants full access to all your Amazon Kinesis streams, you should restrict it to
administrators only.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "kinesis:*",
 "Resource": [
 "arn:aws:kinesis:*:111122223333:stream/*"
]
 }
]
}

For more information about IAM, see the following:

• Identity and Access Management (IAM)

• IAM Getting Started Guide

• Using IAM

API Version 2013-12-02
46

Amazon Kinesis Developer Guide
Example Policies for Amazon Kinesis

http://aws.amazon.com/iam
http://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
http://docs.aws.amazon.com/IAM/latest/UserGuide/

Logging Amazon Kinesis API Calls
Using AWS CloudTrail

Amazon Kinesis is integrated with CloudTrail, a service that captures API calls made by or on behalf of
Amazon Kinesis and delivers the log files to an Amazon S3 bucket that you specify. The API calls can
be made indirectly by using the Amazon Kinesis console or directly by using the Amazon Kinesis API.
Using the information collected by CloudTrail, you can determine what request was made to Amazon
Kinesis, the source IP address from which the request was made, who made the request, when it was
made, and so on. To learn more about CloudTrail, including how to configure and enable it, see the AWS
CloudTrail User Guide.

Amazon Kinesis Information in CloudTrail
When CloudTrail logging is enabled, calls made to Amazon Kinesis actions are tracked in log files. Kinesis
records are written together with any other AWS service records in a log file. CloudTrail determines when
to create and write to a new file based on a specified time period and file size.

The following actions are supported:

• CreateStream

• DeleteStream

• DescribeStream

• ListStreams

• MergeShards

• SplitShard

For more information about these actions, see Amazon Kinesis Actions.

Every log entry contains information about who generated the request. For example, if a request is made
to create a Amazon Kinesis stream (CreateStream), the user identity of the person or service that made
the request is logged. The user identity information helps you determine whether the request was made
with root or IAM user credentials, with temporary security credentials for a role or federated user, or by
another AWS service. For more information, see the userIdentity field in the CloudTrail Event Reference.

API Version 2013-12-02
47

Amazon Kinesis Developer Guide
Amazon Kinesis Information in CloudTrail

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/
http://docs.aws.amazon.com/kinesis/latest/APIReference/API_Operations.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_top_level.html

You can store your log files in your bucket for as long as you want, but you can also define Amazon S3
lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted by using
Amazon S3 server-side encryption (SSE).

You can choose to have CloudTrail publish SNS notifications when new log files are delivered if you want
to take quick action upon log file delivery. For information, see Configuring Amazon SNS Notifications.

You can also aggregate Amazon Kinesis log files from multiple AWS regions and multiple AWS accounts
into a single Amazon S3 bucket. For information, see Aggregating CloudTrail Log Files to a Single
Amazon S3 Bucket.

Understanding Amazon Kinesis Log File Entries
CloudTrail log files can contain one or more log entries where each entry is made up of multiple
JSON-formatted events. A log entry represents a single request from any source and includes information
about the requested action, any parameters, the date and time of the action, and so on. The log entries
are not guaranteed to be in any particular order. That is, they are not an ordered stack trace of the public
API calls.

The following example shows a CloudTrail log entry:

{
 "Records": [
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:16:31Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "CreateStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "shardCount": 1,
 "streamName": "GoodStream"
 },
 "responseElements": null,
 "requestID": "db6c59f8-c757-11e3-bc3b-57923b443c1c",
 "eventID": "b7acfcd0-6ca9-4ee1-a3d7-c4e8d420d99b"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",

API Version 2013-12-02
48

Amazon Kinesis Developer Guide
Understanding Amazon Kinesis Log File Entries

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_top_level.html

 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:17:06Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "DescribeStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream"
 },
 "responseElements": null,
 "requestID": "f0944d86-c757-11e3-b4ae-25654b1d3136",
 "eventID": "0b2f1396-88af-4561-b16f-398f8eaea596"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:15:02Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "ListStreams",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "limit": 10
 },
 "responseElements": null,
 "requestID": "a68541ca-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "22a5fb8f-4e61-4bee-a8ad-3b72046b4c4d"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:17:07Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "DeleteStream",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream"
 },
 "responseElements": null,

API Version 2013-12-02
49

Amazon Kinesis Developer Guide
Understanding Amazon Kinesis Log File Entries

 "requestID": "f10cd97c-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "607e7217-311a-4a08-a904-ec02944596dd"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:15:03Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "SplitShard",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "shardToSplit": "shardId-000000000000",
 "streamName": "GoodStream",
 "newStartingHashKey": "11111111"
 },
 "responseElements": null,
 "requestID": "a6e6e9cd-c757-11e3-901b-cbcfe5b3677a",
 "eventID": "dcd2126f-c8d2-4186-b32a-192dd48d7e33"
 },
 {
 "eventVersion": "1.01",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "EX_PRINCIPAL_ID",
 "arn": "arn:aws:iam::012345678910:user/Alice",
 "accountId": "012345678910",
 "accessKeyId": "EXAMPLE_KEY_ID",
 "userName": "Alice"
 },
 "eventTime": "2014-04-19T00:16:56Z",
 "eventSource": "kinesis.amazonaws.com",
 "eventName": "MergeShards",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "127.0.0.1",
 "userAgent": "aws-sdk-java/unknown-version Linux/x.xx",
 "requestParameters": {
 "streamName": "GoodStream",
 "adjacentShardToMerge": "shardId-000000000002",
 "shardToMerge": "shardId-000000000001"
 },
 "responseElements": null,
 "requestID": "e9f9c8eb-c757-11e3-bf1d-6948db3cd570",
 "eventID": "77cf0d06-ce90-42da-9576-71986fec411f"
 }
]
}

API Version 2013-12-02
50

Amazon Kinesis Developer Guide
Understanding Amazon Kinesis Log File Entries

History

The following table describes the important changes to the documentation in this release of Amazon
Kinesis.

• API version: 2013-12-02

• Latest documentation update: June 30, 2014

Date ChangedDescriptionChange

June 27, 2014Added Visualizing Web Traffic with the Amazon Kinesis
Sample Application (p. 12).

New sample
application section

April 30, 2014Expanded and revised Developing Record Consumer
Applications with the Amazon Kinesis Client
Library (p. 32).

Amazon Kinesis
Client Library
revisions

February 25, 2014Updated the Amazon Kinesis Sizes and Limits (p. 5):
the default shard limit has been raised from 5 to 10.

Default shard limit

January 28, 2014Updated the Amazon Kinesis Sizes and Limits (p. 5):
the default shard limit has been raised from 2 to 5.

Default shard limit

December 20, 2013Links to the Amazon Kinesis Client Library have been
added throughout the guide.

Amazon Kinesis
Client Library links

December 12, 2013Updates for version 2013-12-02 of the Amazon Kinesis
API.

API version updates

November 14, 2013Initial release of the Amazon Kinesis Developer Guide.Initial release

API Version 2013-12-02
51

Amazon Kinesis Developer Guide

	Amazon Kinesis
	Table of Contents
	What Is Amazon Kinesis?
	What Can I Do with Amazon Kinesis?
	Benefits of Using Amazon Kinesis
	Key Concepts
	Amazon Kinesis High-level Architecture
	Amazon Kinesis Terminology
	Data Record
	Stream
	Shard
	Partition Key
	Sequence Number
	Amazon Kinesis Application
	Amazon Kinesis Client Library
	Application Name
	Producers

	Amazon Kinesis Sizes and Limits
	Related Resources

	Getting Started
	Before You Begin
	Libraries and Tools
	Requirements
	Overview of Using Amazon Kinesis
	How Do I Size an Amazon Kinesis Stream?
	Determining How Many Shards You Need

	Step 1: Create an Amazon Kinesis Stream
	Step 2: Configure the Producers to Continually Push Data into the Amazon Kinesis Stream
	Step 3: Build a Amazon Kinesis Application to Consume Data from the Amazon Kinesis Stream and Connect It to the Amazon Kinesis Stream
	Step 4: Operate the Amazon Kinesis Application
	Where Do I Go From Here?

	Visualizing Web Traffic with the Amazon Kinesis Sample Application
	Amazon Kinesis Data Visualization Sample Application
	Before You Begin
	Running the Sample Application
	Viewing the Results of the Sample Application
	Deleting Sample Application Resources

	Using the Amazon Kinesis Service API
	Create the Amazon Kinesis Client
	Create the Stream
	List All Streams in an AWS Account
	Add Data to a Stream
	Sequence Number
	Partition Key

	Retrieve the Shards from a Stream
	Get Data from the Shards in a Stream
	Using Shard Iterators
	Using GetRecords()
	GetRecords() Sample

	Adapting to a Reshard

	Resharding a Stream
	Split a Shard
	Merge Two Shards
	Shard Adjacency
	Code for the Merge Operation

	Wait after Resharding for Stream to Become Active
	Data Routing, Data Persistence, and Shard State after a Reshard
	Exhaust Parent Shard Data before Reading Child Shard Data

	Strategies for Resharding

	Delete the Stream
	Related Resources

	Developing Record Consumer Applications with the Amazon Kinesis Client Library
	Overview
	Amazon Kinesis Client Library (KCL)
	Kinesis Applications

	Building a Kinesis Application
	Role of the Amazon Kinesis Client Library
	Amazon Kinesis Application Components
	Implementing the IRecordProcessor Interface
	initialize
	processRecords
	checkpoint

	shutdown

	Implementing a Class Factory for IRecordProcessor
	Initializing the Application
	Application Name
	Worker ID
	Credentials

	Advanced Topics and Techniques
	Kinesis Application State and Amazon DynamoDB
	Throughput
	Application State Data

	Resharding, Scaling, and Parallel Processing
	Resharding
	Example: Resharding, Scaling, and Parallel Processing

	Failover and Recovery
	Record Processor Failure
	Worker or Application Failure
	Amazon EC2 Instance Failure

	Startup, Shutdown, and Throttling
	Starting Up Data Producers and Kinesis Applications
	Shutting Down a Kinesis Application
	Read Throttling

	Controlling Access to Amazon Kinesis Resources with IAM
	Amazon Kinesis Actions
	Amazon Resource Names (ARNs) for Amazon Kinesis
	Example Policies for Amazon Kinesis

	Logging Amazon Kinesis API Calls Using AWS CloudTrail
	Amazon Kinesis Information in CloudTrail
	Understanding Amazon Kinesis Log File Entries

	History

