
AWS SDK for iOS 2.0
Developer Guide

AWS SDK for iOS 2.0: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier, Kindle, Kindle
Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon VPC. In addition,
Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress of Amazon in
the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product or service that
is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits
Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS SDK for iOS 2.0 Developer Guide

Table of Contents
What Is the AWS SDK for iOS? .. 1

About the AWS Mobile Services ... 1
Amazon Cognito ... 1
Amazon Mobile Analytics .. 1

About the SDK for iOS ... 2
Next Steps ... 2

Set Up the SDK for iOS .. 3
Setting Up .. 3

Get the iOS SDK ... 3
Include the SDK for iOS in an Existing Application ... 3

Get AWS Credentials with Amazon Cognito or AWS Identity and Access Management 5
Run the Demos ... 5

Run the Amazon S3 TransferManager Sample .. 5
Run the Amazon DynamoDB Object Mapper Sample ... 6

Install the Reference Documentation in Xcode .. 6
Getting Started with Services .. 8

How to Authenticate Users .. 8
Amazon Cognito Overview .. 9
Prerequisites .. 9
Cognito Security .. 9
Cognito Identity Pools ... 10
Setting Up Identity Provider Applications .. 10
Integrating Identity Providers ... 12
Providing AWS Credentials .. 13
Getting an Amazon Cognito ID and AWS Credentials ... 14

How to Sync Profile Data .. 15
Profile Data Synchronization .. 15
Initializing the Cognito Sync Client .. 15
Datasets .. 16
Reading and Writing Data in Datasets ... 16
Synchronization ... 16
Conflict Resolution Handler ... 17

How to Use Analytics in Your App ... 18
What is Amazon Mobile Analytics ... 18
Integrating Amazon Mobile Analytics ... 18

How to Upload Files from Your App to the Cloud .. 20
What Is the Amazon S3 TransferManager? ... 20
Uploading a File .. 20

How to Store Objects in the Cloud .. 23
What is Amazon DynamoDB? .. 23
Integrating Amazon DynamoDB ... 23
Create a DynamoDB Table .. 24
Create a DynamoDB Client ... 24
Describe a Table .. 25
Create a DynamoDB Object Mapper ... 25
Save an Object .. 26
Delete a Table Row .. 27

How to Stream Data for Real-Time Processing ... 27
What is Amazon Kinesis? .. 27
Integrating Amazon Kinesis ... 27

Document History .. 30

iii

AWS SDK for iOS 2.0 Developer Guide

What Is the AWS SDK for iOS?

The AWS SDK for iOS is an open-source software development kit, distributed under an Apache Open
Source license.The SDK for iOS provides a library, code samples, and documentation to help developers
build connected mobile applications using AWS. This guide explains how to get started with the SDK for
iOS, how to work with related mobile services such as Amazon Cognito and Amazon Mobile Analytics,
and how to use Amazon Web Services effectively in a mobile app.

Note
This guide describes AWS SDK for iOS 2.0, which is currently in developer preview.

About the AWS Mobile Services
The AWS Mobile SDKs include client-side libraries for working with Amazon Web Services. These client
libraries provide high-level, mobile-optimized interfaces to services such as Amazon DynamoDB, Amazon
Simple Storage Service, and Amazon Kinesis.

The Mobile SDKs also include clients for Amazon Cognito and Amazon Mobile Analytics—web services
designed specifically for use by mobile developers.

Amazon Cognito
Amazon Cognito facilitates the delivery of scoped, temporary credentials to mobile devices or other un-
trusted environments, and it uniquely identifies a device or user and supplies the user with a consistent
identity throughout the lifetime of an application. The Cognito Sync service enables cross-device syncing
of application-related user data. Cognito also persists data locally, so that it's available even if the device
is offline.

After you've set up the SDK, you can start using Amazon Cognito by following the instructions at How to
Authenticate Users (p. 8) and How to Sync Profile Data (p. 15).

Amazon Mobile Analytics
Amazon Mobile Analytics lets you collect, visualize, and understand app usage for your mobile apps.
Reports are available for metrics on active users, sessions, retention, in-app revenue, and custom events,
and can be filtered by platform and date range.

1

AWS SDK for iOS 2.0 Developer Guide
About the AWS Mobile Services

After you've set up the SDK, you can start using Amazon Mobile Analytics by following the instructions
at How to Use Analytics in Your App (p. 18).

About the SDK for iOS
The AWS SDK for iOS includes:

• AWS iOS libraries – APIs that hide much of the lower-level plumbing of the web service interface, in-
cluding authentication, request retries, and error handling. Each service has its own library, so you can
include libraries for only the services you need.

• Code samples – Practical examples of using the libraries to build applications.

• Documentation – Reference documentation for the AWS SDK for iOS.

The SDK is distributed as a .zip file containing the following:

• LICENSE

• NOTICE

• README.md

• frameworks/

• AWSiOSSDKv2.framework

• extras/

• AWSCognitoSync.framework–The framework for Amazon Cognito sync.

• Amazon Software License.txt

• NOTICE

• documentation/–Contains documentation, including a docset, for the AWS SDK for iOS.

• samples/–Contains an HTML document that links to samples, which are named based on the services
that they demonstrate.

• src/–Contains an HTML document that links to source, which contains the implementation and
header files for the AWS iOS libraries.

• third-party/–Contains third-party frameworks.

Next Steps
• To start using the SDK for iOS, follow the setup instructions at Set Up the SDK for iOS (p. 3).

• For more information about the AWS SDK for iOS, including a complete list of supported AWS products,
go to http://aws.amazon.com/mobile/sdk.

• The SDK reference documentation includes the ability to browse and search code included with the
SDK. It provides thorough documentation and usage examples.You can find it at AWS SDK for iOS
API Reference.

• Post questions and feedback at the Mobile Developer Forum.

• Source code and sample applications are available at AWS SDK for iOS project on GitHub.

2

AWS SDK for iOS 2.0 Developer Guide
About the SDK for iOS

http://aws.amazon.com/mobile/sdk
http://docs.aws.amazon.com/AWSiOSSDK/latest/
http://docs.aws.amazon.com/AWSiOSSDK/latest/
https://forums.aws.amazon.com//forum.jspa?forumID=88
https://github.com/aws/aws-sdk-ios-v2

Set Up the SDK for iOS

To get started with the AWS SDK for iOS, you can set up the SDK and start building a new project, or
you integrate the SDK in an existing project.You can also run the samples to get a sense of how the
SDK works.

Setting Up
To get started, you will need to get the SDK for iOS and set up a credential provider using Amazon
Cognito.

Get the iOS SDK
To use the AWS SDK for iOS, you will need the following installed on your development machine:

• Xcode 5 or later

• iOS 7 or later

Download the SDK from http://aws.amazon.com/mobile/sdk. The SDK is stored in a compressed file
archive named aws-ios-sdk-#.#.#.zip (where '#.#.#' represents the version number, so for version
2.0.0, the filename is aws-ios-sdk-2.0.0).

You can also download the SDK source code.

Include the SDK for iOS in an Existing Applica-
tion

The samples included with the SDK for iOS are standalone projects that are already set up for you.You
can also integrate the SDK for iOS with an existing application. If you have an existing app in which you'd
like to use AWS, follow these steps:

1. With your project open in Xcode, Control+click Frameworks and then click Add files to "<project
name>"....

3

AWS SDK for iOS 2.0 Developer Guide
Setting Up

http://aws.amazon.com/mobile/sdk
https://github.com/aws/aws-sdk-ios

2. In Finder, navigate to the AWSiOSSDKv2.framework file and select it. Click Add. If you want to use
Amazon Cognito Sync, you also need to add the AWSCognitoSync.framework, which is in the
extras directory.

3. In your source code, import the appropriate headers for the services you are using. The header file
import convention is FRAMEWORKNAME/SERVICENAME.h, as in the following example:

#import <AWSiOSSDKv2/S3.h>
#import <AWSiOSSDKv2/DynamoDB.h>
#import <AWSiOSSDKv2/SQS.h>
#import <AWSiOSSDKv2/SNS.h>

4. Open a target for your project, select Build Phases, expand Link Binary With Libraries, click the
+ button, and add libsqlite3.dylib and libz.dylib.

5. In the target for your project, select Build Settings, go to Linking and ensure that it's expanded.
Add the -ObjC linker flag to Other Linker Flags.

6. If your project does not already include them, drag the following frameworks, located in the third-
party directory, into your project.

• Bolts.framework (If your application uses the Facebook SDK, you won't need this framework,
as it's already included with the Facebook SDK.)

• GZIP.framework

• Mantle.framework

• Reachability.framework

• TMCache.framework

• UICKeyChainStore.framework

• XMLDictionary.framework

7. Drag and drop the following JSON files, located in the service-definitions directory, into your
project.

• autoscaling-2011-01-01.json

• cib-2014-06-30.json

• css-2014-06-30.json

• dynamodb-2012-08-10.json

• ec2-2014-06-15.json

• elasticloadbalancing-2012-06-01.json

• email-2010-12-01.json

• kinesis-2013-12-02.json

• mobileanalytics-2014-06-30.json

• monitoring-2010-08-01.json

• s3-2006-03-01.json

• sdb-2009-04-15.json

• sns-2010-03-31.json

• sqs-2012-11-05.json

• sts-2011-06-15.json

Note
You can change the log level by importing AWSCore.h and calling:

4

AWS SDK for iOS 2.0 Developer Guide
Include the SDK for iOS in an Existing Application

[AWSLogger defaultLogger].logLevel = AWSLogLevelVerbose;

The following logging level options are available:

• AWSLogLevelNone

• AWSLogLevelError (This is the default. Only error logs are printed to the console.)

• AWSLogLevelWarn

• AWSLogLevelInfo

• AWSLogLevelDebug

• AWSLogLevelVerbose

Get AWS Credentials with Amazon Cognito or AWS
Identity and Access Management
We recommend using Amazon Cognito as your credential provider to access AWS services from your
mobile app. Amazon Cognito provides a secure mechanism to access AWS services without having to
embed credentials in your app. To learn more, see How to Authenticate Users (p. 8).

Alternatively, you can use AWS Identity and Access Management (IAM). If you choose IAM, ensure that
your role's policy is minimally scoped so that it can only perform the desired actions for the service being
used.

Run the Demos
The AWS SDK for iOS includes sample apps that demonstrate common use cases.To import dependen-
cies, you can either add frameworks, as described above, or you can use CocoaPods. If you use Cocoa-
Pods, you'll need a podfile in your application folder, to which you'll add dependencies.

For example, to use the iOS SDK and Amazon Cognito Sync, you'd add the following to your podfile:

pod 'AWSiOSSDKv2'
pod 'AWSCognitoSync'

Then you would run the pod install command. CocoaPods will generate a workspace for you.

Run the Amazon S3 TransferManager Sample
This sample demonstrates the Amazon S3 TransferManager found in the AWS SDK for iOS.

1. Create an Amazon S3 bucket. (For details on creating a bucket in the Amazon S3 console, see
Create a Bucket.)

2. In the Amazon Cognito console, create an identity pool and download or copy the starter code snippets.
Make sure the role has full permissions for the bucket you created.

3. Open S3TransferManagerSample.xcodeproj.

4. Open Constants.m and update the following lines with the appropriate constants:

5

AWS SDK for iOS 2.0 Developer Guide
Get AWS Credentials with Amazon Cognito or AWS

Identity and Access Management

http://aws.amazon.com/iam/
http://cocoapods.org/
http://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/iam/home?region=us-east-1#roles

NSString *const AWSAccountID = @"Your-AccountID";
NSString *const CognitoPoolID = @"Your-PoolID";
NSString *const CognitoRoleUnauth = @"Your-RoleUnauth";
NSString *const S3BucketName = @"Your-S3-Bucket-Name";

5. Build and run the sample app.

Run the Amazon DynamoDB Object Mapper
Sample
This sample demonstrates the DynamoDB object mapper found in the AWS SDK for iOS.

1. In the Amazon Cognito console, use Amazon Cognito to create a new identity pool. Obtain the Ac-
countID, PoolID, and RoleUnauth constants. Make sure the role has full permissions for the
sample table.

2. Open DynamoDBSample.xcodeproj.

3. Open Constants.m and update the following lines with the constants from step 1:

• NSString *const AWSAccountID = @"Your-AccountID";

• NSString *const CognitoPoolID = @"Your-PoolID";

• NSString *const CognitoRoleUnauth = @"Your-RoleUnauth";

4. Build and run the sample app.

Install the Reference Documentation in Xcode
The AWS SDK for iOS includes documentation in the DocSets format that you can view within Xcode.
The easiest way to install the documentation is to use the Mac OS X terminal.

To install the DocSet for Xcode

1. Open the Mac OS X terminal and go to the directory containing the expanded archive. For example:

$ cd ~/Downloads/aws-ios-sdk-2.0.0

Note
Remember to replace 2.0.0 in the example above with the actual version number of the
AWS SDK for iOS that you downloaded.

2. Create a directory called ~/Library/Developer/Shared/Documentation/DocSets:

$ mkdir -p ~/Library/Developer/Shared/Documentation/DocSets

3. Copy (or move) Documentation/com.amazon.aws.ios.docset from the SDK installation files
to the directory you created in the previous step:

6

AWS SDK for iOS 2.0 Developer Guide
Run the Amazon DynamoDB Object Mapper Sample

https://console.aws.amazon.com/iam/home?region=us-east-1#roles

$ mv Documentation/com.amazon.aws.ios.docset ~/Library/Developer/Shared/Doc
umentation/DocSets/

4. If Xcode was running during this procedure, restart Xcode.To browse the documentation, go to Help,
click Documentation and API Reference, and select AWS SDK for iOS v#.# Documentation.

7

AWS SDK for iOS 2.0 Developer Guide
Install the Reference Documentation in Xcode

Getting Started with Services

Using the AWS SDK for iOS, you can build iOS applications that rely on AWS for user authentication,
data syncing, analytics, and other services. The following topics show you how to get started.

Topics

• How to Authenticate Users (p. 8)

• How to Sync Profile Data (p. 15)

• How to Use Analytics in Your App (p. 18)

• How to Upload Files from Your App to the Cloud (p. 20)

• How to Store Objects in the Cloud (p. 23)

• How to Stream Data for Real-Time Processing (p. 27)

How to Authenticate Users
Using Amazon Cognito, you can create unique identities for your users and authenticate them for secure
access to your AWS resources. Amazon Cognito also provides a cloud sync store and synchronization
APIs for end user profiles. With Amazon Cognito, you can support public identity providers such as
Amazon, Facebook, and Google, as well as unauthenticated identities. To use Amazon Cognito in your
app, you must include AWSCognitoSync.framework in your project.

Topics

• Amazon Cognito Overview (p. 9)

• Prerequisites (p. 9)

• Cognito Security (p. 9)

• Cognito Identity Pools (p. 10)

• Setting Up Identity Provider Applications (p. 10)

• Integrating Identity Providers (p. 12)

• Providing AWS Credentials (p. 13)

• Getting an Amazon Cognito ID and AWS Credentials (p. 14)

8

AWS SDK for iOS 2.0 Developer Guide
How to Authenticate Users

Amazon Cognito Overview
Amazon Cognito is a web service that simplifies the process of authenticating mobile users and syncing
user data across mobile devices. Amazon Cognito comprises two services, each with its own API.

The Amazon Cognito Identity service is intended to ease the delivery of scoped, temporary credentials
to mobile devices or other untrusted environments. It works in concert with AWS Identity and Access
Management (IAM) and AWS Security Token Service (AWS STS) to uniquely identify a user and supply
the user with a consistent identity throughout the lifetime of an application. The following sections focus
on Amazon Cognito Identity.

Amazon Cognito Sync is a synchronization service designed to enable cross-device syncing of application
data. A high-level client library, available for both Android and iOS, stores the data locally so it's available
even if the device is offline. To learn more about using Cognito Sync in an application, see How to Sync
Profile Data (p. 15)

When you use Amazon Cognito, you decide if users can run your app without authenticating or if they
have to sign in using one of the supported identity providers: Facebook, Google, or Amazon. User data
that's saved when the user is running unauthenticated is preserved when the user signs in.

Prerequisites
To integrate Amazon Cognito with your app, you need the following:

• An AWS account

• An Xcode development environment

• AWS Mobile SDK for iOS

• Optionally, a developer account and an application registered with the identity provider you want to
use (Facebook, Google, or Amazon)

Cognito Security
When application users log in, Amazon Cognito generates a unique identifier and delivers temporary
AWS credentials.These credentials are tied to a user identity and are associated with a specific IAM role.

When creating an Amazon Cognito identity pool, you are asked to specify a role (or create a new one)
that authenticated and unauthenticated users will assume when logged in to an AWS account. The role
identifiers (ARNs) are passed to the Amazon Cognito APIs from the client device.

The default roles created by the Amazon Cognito management console give end users access to certain
AWS services. These include the following:

• Amazon Cognito sync service

• Mobile Analytics service

To allow or restrict access to other services, log in to the IAM management console, click Roles, and
select a role generated for the Amazon Cognito identity pool. The policies attached to the selected role
are listed in the Permissions tab.You can customize an access policy by clicking the corresponding
Manage Policy link.

To learn more about using and defining policies, see the Overview of IAM Policies in the AWS Identity
and Access Management User Guide.

For Amazon Cognito to work, the IAM policy must at least enable access to the Amazon Cognito sync
store for each identity, as in the following example:

9

AWS SDK for iOS 2.0 Developer Guide
Amazon Cognito Overview

http://aws.amazon.com/iam/
http://aws.amazon.com/iam/
http://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://console.aws.amazon.com/iam/home
http://docs.aws.amazon.com/IAM/latest/UserGuide/PoliciesOverview.html

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"cognito-sync:*",
 "Resource":["arn:aws:cognito-sync:us-east-1:123456789012:identitypool/${cog
nito-identity.amazonaws.com:aud}/identity/${cognito-identity.amazon
aws.com:sub}/*"]
 }]
}

If you want access to your entire identity pool, you can use the following snippet to give your IAM user
access to the entire Amazon Cognito sync store:

{
 "Version": "2012-10-17",
 "Statement":[{
 "Effect":"Allow",
 "Action":"cognito-sync:*",
 "Resource":["arn:aws:cognito:us-east-1:123456789012:identitypool/*"]
 }]
}

Amazon Cognito supports both unauthenticated and authenticated users. Authenticated users are authen-
ticated by one of three public login providers: Amazon, Facebook, or Google. The two different identity
types—unauthenticated and authenticated—should be assigned separate IAM roles and policies. When
you create a new identity pool in the Cognito console, Cognito creates the roles and policies for you.

Cognito Identity Pools
Before you integrate with Amazon Cognito, you'll need to create an identity pool where your app can
store data.The identity pool is a store of user identity information specific to your account.The information
is retrievable across client platforms, devices, and operating systems, so that if a user starts using the
app on a phone and later switches to a tablet, the persisted app information is still available for that user.

To create a new identity pool for your users, log in to the Amazon Cognito console. The New Identity
Pool wizard will guide you through the creation of your first identity pool.

When an identity pool is created successfully, you'll have access to the AWS account ID, the new Amazon
Cognito identity pool ID, and the role ARNs necessary to initialize the Amazon Cognito client.

Setting Up Identity Provider Applications
Amazon Cognito integrates with Facebook, Google, and Amazon to provide federated authentication for
your mobile application users. In order to verify tokens from a given identity provider, Amazon Cognito
needs to know the identifier of the application that you registered with the provider. Amazon Cognito asks
for identifiers during the identity pool creation process.

This section explains how to register and set up your application with each identity provider.

10

AWS SDK for iOS 2.0 Developer Guide
Cognito Identity Pools

https://console.aws.amazon.com/cognito/

Facebook
You need to register your application with Facebook before you can start authenticating Facebook users
and interacting with Facebook APIs.

The Facebook Developers portal takes you through the process of declaring and setting up your application.

1. At the Facebook Developers portal, log in with your Facebook credentials.

2. From the Apps menu select Create a New App.

3. In the create application window, specify the Display Name and Namespace for your application.
Once your application is created, Facebook will take you to the application dashboard.

The top section of the application dashboard shows you the App ID and App Secret that Facebook has
generated for your application.You will need the application ID to set up your Amazon Cognito Identity
Pool for Facebook login.

Both the iOS and Android guides on the Facebook developers portal have a comprehensive getting
started guide detailing how to integrate your application with Facebook Login.

Google
To enable Google+ Sign-in for iOS and Android, you will need to create a Google Developers console
project for your application.

1. Go to the Google Developers Console and log in with your Google account.

2. Click the Create Project button and give your project a name and an ID.

3. Once the project is created, select APIS & AUTH and then APIs to open the APIs screen.

4. Ensure the Google+ API status is set to ON.

5. Select Credentials.

6. Click Create New Client ID in the OAuth credentials category.

7. In the form that appears, select Installed application and then your platform of choice. The form will
ask you for your application details.

You will need to use the generated client ID to authenticate users in your application.You will also need
to specify your Google client ID when creating your Amazon Cognito identity pool.

To learn more, see the comprehensive Google documentation for iOS or Android.

Amazon
To enable Login with Amazon, you'll need to create an Application ID in the Amazon App Console.

1. Navigate to the Amazon App Console and login with your Amazon account.

2. Click Register New Application.The form will ask you for a name, description, privacy note, and logo
for your application. The next screen will show your Amazon App ID.

3. Open the iOS or Android settings and configure your application to allow login with Amazon.

You will need to specify the generated app ID when creating your Amazon Cognito identity pool.

The Amazon Developer portal has a comprehensive guide on how to integrate Login with Amazon in your
iOS and Android applications.

11

AWS SDK for iOS 2.0 Developer Guide
Setting Up Identity Provider Applications

https://developers.facebook.com/
https://developers.facebook.com/
https://developers.facebook.com/docs/ios/getting-started/
https://developers.facebook.com/docs/android/getting-started
https://developers.google.com/console
https://developers.google.com/+/mobile/ios/getting-started
https://developers.google.com/+/mobile/android/getting-started
http://login.amazon.com/manageApps
http://login.amazon.com/manageApps
http://login.amazon.com/ios
http://login.amazon.com/android

Integrating Identity Providers
You can use the logins property to set up credentials received from an identity provider.The instructions
below guide you through authentication with the identity providers supported by Amazon Cognito.

You can associate a Amazon Cognito identity with multiple identity providers by setting all required tokens
in the logins property. For example, you could set both the Facebook and Google tokens in the logins
property, so that the unique Amazon Cognito identity would be associated with both identity provider logins.
No matter which account the end user uses for authentication, Amazon Cognito returns the same user
identifier.

Facebook
To provide Facebook authentication, first follow the Facebook guide to include their SDK in your application.
Then add a "Login with Facebook" button to your iOS user interface. The Facebook SDK uses a session
object to track its state. The access token property of the session object is what Amazon Cognito uses
to authenticate the user, generate the unique identifier, and, if needed, grant the user access to other
AWS resources.

Once you have authenticated your end user with the Facebook SDK, add the session token to the Amazon
Cognito credentials provider.

NSString *token = FBSession.activeSession.accessTokenData.accessToken;
credentialsProvider.logins = @{ AWSCognitoLoginProviderKeyFacebook: token };

The Facebook logins process initializes a singleton session within its SDK.The Facebook session object
contains an Open ID token that Amazon Cognito uses to generate AWS credentials for your authenticated
end user. Amazon Cognito also uses the token to check against your user database for the existence of
a user matching this particular Facebook identity. If the user already exists, the existing identifier is returned
by the APIs. Otherwise, a new identifier is returned. Identifiers are automatically cached by the client SDK
on the local device.

Google
To enable login with Google in your application, follow the Google+ documentation for iOS. A successful
authentication with Google results in a GTMOAuth2Authentication token. Amazon Cognito uses this
token to authenticate the user and generate the unique identifier.

- (void)finishedWithAuth: (GTMOAuth2Authentication *)auth error: (NSError *)
error {
 NSString *idToken = [auth.parameters objectForKey:@"id_token"];
 credentialsProvider.logins = @{ AWSCognitoLoginProviderKeyFacebook: idToken
 };
}

Amazon
The login with Amazon guide takes you through the steps necessary to set up Login with Amazon in your
application, download the client SDK, and declare your application on the Amazon developer platform.

Once login with Amazon is implemented, you can pass the token to the Cognito credentials provider in
the requestDidSucceed method of the AMZNAccessTokenDelegate.

12

AWS SDK for iOS 2.0 Developer Guide
Integrating Identity Providers

https://developers.facebook.com/docs/
https://developers.facebook.com/docs/facebook-login/ios/v2.0
https://developers.google.com/+/mobile/ios/sign-in
http://login.amazon.com/ios

- (void)requestDidSucceed:(APIResult *)apiResult {
 credentialsProvider.logins = @{ AWSCognitoLoginProviderKeyLoginWithAmazon:
 apiResult.result };
}

Providing AWS Credentials
Amazon Cognito generates unique identifiers for your users and acts as a credentials provider to AWS
services. For each user, Amazon Cognito delivers a temporary access token retrieved from the AWS
Security Token Service.

By default, the credentials provider assumes it is dealing with an unauthenticated identity. If your applic-
ation logs in with an identity provider, you'll need to add the login method to the credentials provider.

To provide AWS credentials to your app:

1. In the Amazon Cognito console, create an identity pool and download or copy the starter code snippets.

2. If you haven't already done so, add the AWSiOSSDKv2.framework to your project. (For more inform-
ation, see Include the SDK for iOS in an Existing Application (p. 3)).

3. In your source code, include the AWSCore header.

#import <AWSiOSSDKv2/AWSCore.h>

(If you are using CocoaPods, replace <AWSiOSSDK/AWSCore.h> with "AWSCore.h".)

4. Initialize the Amazon Cognito credentials provider using the code snippet generated by the Cognito
console. The replaceable values shown below will be specific to your account:

AWSCognitoCredentialsProvider *credentialsProvider =
 [AWSCognitoCredentialsProvider credentialsWithRegionType:AWSRegionUSEast1

 accountId:@"XXXXXXXXXXXX"

 identityPoolId:@"us-east-
1:XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXX"
 unau
thRoleArn:@"arn:aws:iam::XXXXXXXXXX:role/YourUnauthRoleName"
 au
thRoleArn:@"arn:aws:iam::XXXXXXXXXX:role/YourAuthRoleName"];

AWSServiceConfiguration *configuration = [AWSServiceConfiguration configur
ationWithRegion:AWSRegionUSEast1
 cre
dentialsProvider:credentialsProvider];

[AWSServiceManager defaultServiceManager].defaultServiceConfiguration =
configuration;

13

AWS SDK for iOS 2.0 Developer Guide
Providing AWS Credentials

https://console.aws.amazon.com/cognito/

Getting an Amazon Cognito ID and AWS Creden-
tials
Once the login tokens are set up in the credentials provider object, you can retrieve the Amazon Cognito
unique identifier for your end user and the temporary credentials that let the app access your AWS re-
sources.

// Retrieve your cognito ID.
NSString *cognitoId = credentialsProvider.identityId;

The unique identifier is available in the identityId property of the credentials provider object.

Once the Amazon Cognito credentials provider is initialized, you can use it as the credentials provider
when you create clients for other Amazon Web Services using the mobile SDK.

// create a configuration that uses the provider
AWSServiceConfiguration *configuration = [AWSServiceConfiguration configuration
WithRegion:AWSRegionUSEast1
provider:credentialsProvider];
// get a client with the specified config
AWSDynamoDB *dynamoDB = [[AWSDynamoDB new] initWithConfiguration:configuration];

The credentials provider object communicates with the Amazon Cognito APIs and retrieves both the
unique identifier for authenticated and unauthenticated users as well as temporary, limited privilege AWS
credentials for the AWS Mobile SDK.The credentials retrieved by the Amazon Cognito credentials provider
are valid for one hour.

Switching Identities
Users can begin their life in an application as unauthenticated guests. Eventually they may decide to log
in using one of the supported identity providers. Amazon Cognito will ensure the authenticated identity
retains the same unique identifier as the new, authenticated one and that the profile data is merged
automatically.

The NSNotificationCenter informs your application of a profile merge.

[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(iden
tityIdDidChange:) name:AWSCognitoIdentityIdChangedNotification object:nil];
-(void)identityDidChange:(NSNotification*)notification {
 NSDictionary *userInfo = notification.userInfo;
 NSLog(@"identity changed from %@ to %@", [userInfo objectForKey:AWSCognitoNo
tificationPreviousId], [userInfo objectForKey:AWSCognitoNotificationNewId]);
}

14

AWS SDK for iOS 2.0 Developer Guide
Getting an Amazon Cognito ID and AWS Credentials

How to Sync Profile Data
Amazon Cognito is an AWS service and client library designed to enable cross-device syncing of applic-
ation-related user data.You can use Cognito Sync to synchronize user profile data across devices and
login providers such as Amazon, Facebook, and Google. To use Amazon Cognito in your app, you must
include AWSCognitoSync.framework in your project.

Topics

• Profile Data Synchronization (p. 15)

• Initializing the Cognito Sync Client (p. 15)

• Datasets (p. 16)

• Reading and Writing Data in Datasets (p. 16)

• Synchronization (p. 16)

• Conflict Resolution Handler (p. 17)

Profile Data Synchronization
Amazon Cognito lets you save key-value pairs to a profile. To keep this data in sync between the service
and an end user’s devices, invoke the synchronize method. Data is stored within data sets associated
with an identity. Each data set can have a maximum size of 1 MB. The total maximum size for an identity
is 20 MB.

The Amazon Cognito sync client creates a local cache in a SQLite database for the identity data. When
the synchronize method is called, changes from the service are pulled to the device and any local
changes are pushed to the service.

Initializing the Cognito Sync Client
To initialize the Amazon Cognito sync client, you first need to obtain credentials. With Amazon Cognito,
each identity has access only to its own data in the sync store.You have use Amazon Cognito to provide
temporary AWS credentials to your application.These credentials let the app access your AWS resources.
To create a credentials provider, follow the instructions at Providing AWS Credentials (p. 13).

Once you have an Amazon Cognito credentials provider, you can initialize the Amazon Cognito sync client
to write data to your end user's identity. The constructor method informs the Cognito Sync service to ini-
tialize a sync store for the identity contained in the credentials provider.

The following code shows how to initialize a sync client.The Amazon Cognito sync client reads the unique
user identifier from the Amazon Cognito credentials provider embedded in the configuration object that
was created in the previous example.

To initialize a sync client, you need to include the required header file and provide the Amazon Cognito
credentials provider object.

#import <AWSiOSSDKv2/AWSCore.h>
#import <AWSCognitoSync/Cognito.h>
AWSCognito *syncClient = [AWSCognito defaultCognito];

(If you are using CocoaPods, replace <AWSiOSSDKv2/AWSCore.h> with "AWSCore.h".)

15

AWS SDK for iOS 2.0 Developer Guide
How to Sync Profile Data

Datasets
Within a Amazon Cognito identity, end user profile data is organized in datasets. Each dataset can contain
up to 1 MB of data in the form of key-value pairs. A dataset is the most granular entity on which you can
perform a synchronize operation.

Read and write operations performed on a dataset only affect the local store until the sync method is in-
voked. Datasets are identified by a unique name in the form of an alphanumeric string.

The Amazon Cognito sync client exposes a method to create a new dataset or open an existing one.

AWSCognitoDataset *dataset = [syncClient openOrCreateDataset:@"myDataSet"];

An entire dataset can be deleted from the local storage using the clear method of the AWSCognitoData-
Set object. In order to delete a dataset from Amazon Cognito, call the synchronize method.

[dataset clear];
[dataset synchronize];

Reading and Writing Data in Datasets
Amazon Cognito datasets can be treated as dictionaries. Values written to a dataset only affect the local
cached copy of the data until the synchronize method is called.

Keys and values are read, added, or modified in a dataset exactly as if it were a dictionary.

[dataset setString:@"my value" forKey:@"myKey"];
NSString *value = [dataset stringForKey:@"myKey"];

Keys can also be deleted from a dataset with the removeObjectForKey method.

[dataset removeObjectForKey:@"myKey"];

Synchronization
The synchronize method compares local cached data to the data stored in the Cognito sync store. Remote
changes are pulled from the Cognito sync store, and then updated values on the device are pushed to
the service.

A synchronize operation is initiated simply by calling the synchronize method of the dataset object.
The synchronize method is asynchronous and returns a BFTask object to handle the response.

[[dataset synchronize] continueWithBlock:^id(BFTask *task) {

16

AWS SDK for iOS 2.0 Developer Guide
Datasets

 if (task.isCancelled) {
 // task cancelled
 } else if (task.error) {
 // error while executing task
 } else {
 // task succeeded. The data was saved in the sync store
 }
 return nil;
}];

The synchronizeOnConnectivity method attempts to synchronize when the device has connectivity.
First, synchronizeOnConnectivity checks for connectivity and, if the device is online, immediately
invokes synchronize and returns the BFTask associated with the attempt.

If the device is offline, synchronizeOnConnectivity schedules a synchronize for the next time the
device comes online and returns a BFTask with a nil result. The scheduled synchronize is only valid
for the lifecycle of the dataset object. The data will not be synchronized if the app is exited before con-
nectivity is regained. If you want to be notified when events occur during the scheduled synchronize, you
must add observers of the notifications found in AWSCognito.

Conflict Resolution Handler
Applications can receive notifications regarding changes to datasets and synchronization operations by
implementing AWSCognitoRecordConflictHandler. By using the handler, applications can make
active decisions about what data is synchronized.

client.conflictHandler = ^AWSCognitoResolvedConflict* (NSString *datasetName,
AWSCognitoConflict *conflict) {
 // always choose local changes
 return [[AWSCognitoResolvedConflict alloc] initWithLocalRecord: con
flict];
 };

The conflict resolution handler can be set on the Cognito client and overridden on individual AWSCog-
nitoDataSet objects.

dataset.conflictHandler = ^AWSCognitoResolvedConflict* (NSString *datasetName,
 AWSCognitoConflict *conflict) {
 // override and always choose remote changes
 return [[AWSCognitoResolvedConflict alloc] initWithRemoteRecord: con
flict];
 };

Conflicts may arise during the sync operation if the same key on the local store and cloud sync store has
been modified. If the handler is not set, Cognito’s default conflict resolution chooses the most recent update.

The conflict resolution method receives an AWSCognitoRecord object for both the local cached data
and the conflicting record from the cloud sync store.The AWSCognitoRecord contains the key and value
set for the conflicting key-value pair.

17

AWS SDK for iOS 2.0 Developer Guide
Conflict Resolution Handler

Returning nil from this method prevents the synchronization from continuing. The conflicts will be
presented again the next time the synchronization process starts.

How to Use Analytics in Your App
Using Amazon Mobile Analytics, you can track customer behaviors, aggregate metrics, generate data
visualizations, and identify meaningful patterns.The AWS SDK for iOS provides integration with the Mobile
Analytics service.

What is Amazon Mobile Analytics
Amazon Mobile Analytics lets you collect, visualize, and understand app usage for your iOS, Android,
and Fire OS apps. Reports are available for metrics on active users, sessions, retention, in-app revenue,
and custom events, and can be filtered by platform and date range. Amazon Mobile Analytics is built to
scale with your business and can collect and process billions of events from many millions of endpoints.

IAM Policy for Amazon Mobile Analytics
To use Mobile Analytics, AWS users must have the correct permissions. The following IAM policy allows
the user to submit events to Mobile Analytics:

{
"Statement": [{
 "Effect": "Allow",
 "Action": "mobileanalytics:PutEvents",
 "Resource": "*"
}]
}

This policy should be applied to roles to which the Cognito identity pool is assigned. The policy allows
clients to record events with the Mobile Analytics service. Amazon Cognito will set this policy for you, if
you let it create new roles. Other policies are required to allow IAM users to view reports.

You can set permissions at https://console.aws.amazon.com/iam/. To learn more about IAM policies, see
Using IAM.

Integrating Amazon Mobile Analytics
1. If you haven't already done so, download the SDK for iOS, unzip it, and include it in your application

as described at Include the SDK for iOS in an Existing Application (p. 3). The instructions direct
you to import the headers for the services you'll be using. For this example, you need the following
imports:

#import <AWSiOSSDKv2/AWSCore.h>
#import <AWSiOSSDKv2/AWSMobileAnalytics.h>

2. You can use Amazon Cognito to provide temporary AWS credentials to your application. These
credentials let the app access your AWS resources. To create a credentials provider, follow the in-
structions at Providing AWS Credentials (p. 13).

18

AWS SDK for iOS 2.0 Developer Guide
How to Use Analytics in Your App

https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://aws.amazon.com/mobile/sdk/

3. Initialize an AWSMobileAnalytics client. In doing so, you'll need to provide a globally unique ID
string that differentiates your client from all other apps using Mobile Analytics.

 AWSMobileAnalytics* analytics = [AWSMobileAnalytics mobileAnalyticsForAp
pId:@"85e55ef0-0df7-11e4-a2a9-b2227EXAMPLE"];

This example shows an altered UUID, but you could pass in the app name or some other string instead.
However, it's important that the string you pass in doesn't collide with another instance of Mobile
Analytics. Using a UUID minimizes the possibility of collision, and using a UUID concatenated with
your app name (for example 85e55ef0-0df7-11e4-a2a9-b2227EXAMPLE-my-app) is even safer.

4. Get the event client from the AWSMobileAnalytics instance.

id<AWSMobileAnalyticsEventClient> eventClient = analytics.eventClient;

5. For this example, let's say your app is a game, and you want to record an event when a user completes
a level. Create a "LevelComplete" event.

id<AWSMobileAnalyticsEvent> levelEvent = [eventClient createEventWithEvent
Type:@"LevelComplete"];

Note that custom events can't start with an underscore (_), or they'll be filtered out.

6. Add attributes and metrics to the event in key-value pairs.

[levelEvent addAttribute:@"Upper Dungeon" forKey:@"LevelName"];
[levelEvent addAttribute:@"Moderately difficult" forKey:@"Difficulty"];
[levelEvent addMetric:@1763 forKey:@"TimeToComplete"];

7. Record the event.

[eventClient recordEvent:levelEvent];

8. Events are submitted automatically when the user goes into the background. However, if you want
to submit events manually, you can do so with the submitEvents method:

[eventClient submitEvents];

If you don't call submitEvents, events will automatically be submitted at periodic intervals.

19

AWS SDK for iOS 2.0 Developer Guide
Integrating Amazon Mobile Analytics

How to Upload Files from Your App to the Cloud
The Amazon S3 TransferManager simplifies the process of transferring files to and from Amazon
Simple Storage Service (S3). Using the Amazon S3 TransferManager, you can transfer files from your
app on the device to storage in the cloud.

What Is the Amazon S3 TransferManager?
The Amazon S3 TransferManager is a high-level utility for managing transfers to Amazon S3. Transfer-
Manager provides a simple API for uploading content to Amazon S3, and makes use of Amazon S3
multipart uploads to achieve enhanced throughput, performance, and reliability. TransferManager also
supports progress updates, pause, and resume.When possible, TransferManager attempts to use multiple
threads to upload multiple parts of a single upload at once. When dealing with large content sizes and
high bandwidth, this can have a significant increase on throughput.

Uploading a File
To use Amazon S3 TransferManager, you'll need to configure a service client and provide AWS cre-
dentials.You can use Amazon Cognito to authenticate users and provide credentials to AWS services.
You can use Amazon Cognito to provide temporary AWS credentials to your application.These credentials
let the app access your AWS resources. To create a credentials provider, follow the instructions at
Providing AWS Credentials (p. 13).

Note
By default, the Cognito console will not create roles with permissions to S3.You will need to
modify your roles in the AWS Identity and Access Management console.

Now that we have a credentials provider, let's look at an example of uploading a file using the S3Trans-
ferManager class. We'll also try canceling, pausing, and resuming the upload. We'll put this logic in a
class called FirstViewController.

First, we'll create a class interface that defines four buttons and four corresponding methods.

#import <UIKit/UIKit.h>

@interface FirstViewController : UIViewController

@property (nonatomic, weak) IBOutlet UILabel *uploadStatusLabel;
@property (nonatomic, weak) IBOutlet UIButton *uploadButton;
@property (nonatomic, weak) IBOutlet UIButton *pauseButton;
@property (nonatomic, weak) IBOutlet UIButton *resumeButton;
@property (nonatomic, weak) IBOutlet UIButton *cancelButton;

- (IBAction)uploadButtonPressed:(id)sender;
- (IBAction)pauseButtonPressed:(id)sender;
- (IBAction)resumeButtonPressed:(id)sender;
- (IBAction)cancelButtonPressed:(id)sender;

@end

Then, in the class implementation, we'll use a viewDidLoad method to create a new BFTask. SDK for
iOS provides native support for BFTask, so that you can chain asynchronous requests instead of nesting

20

AWS SDK for iOS 2.0 Developer Guide
How to Upload Files from Your App to the Cloud

http://aws.amazon.com/s3/
http://aws.amazon.com/s3/

them. This helps keep logic clean and code readable. In this case, the BFTask creates a test file in a
temporary directory.

- (void)viewDidLoad {
 [super viewDidLoad];

 BFTask *task = [BFTask taskWithResult:nil];
 [[task continueWithBlock:^id(BFTask *task) {
 // Creates a test file in the temporary directory
 self.testFileURL = [NSURL fileURLWithPath:[NSTemporaryDirectory()
stringByAppendingPathComponent:S3KeyName]];

 NSMutableString *dataString = [NSMutableString new];
 for (int32_t i = 1; i < 2000000; i++) {
 [dataString appendFormat:@"%d\n", i];
 }

 NSError *error = nil;
 [dataString writeToURL:self.testFileURL
 atomically:YES
 encoding:NSUTF8StringEncoding
 error:&error];

 return nil;
 }] continueWithExecutor:[BFExecutor mainThreadExecutor] withBlock:^id(BFTask
 *task) {
 self.uploadButton.enabled = YES;
 self.pauseButton.enabled = YES;
 self.resumeButton.enabled = YES;
 self.cancelButton.enabled = YES;

 return nil;
 }];

Having created the task, we need to handle user interactions with the upload, cancel, pause, and resume
buttons. First, we define an uploadButtonPressed method, where we instantiate AWSS3TransferMan-
ager, build a request, and pass the request to the upload: method.

- (IBAction)uploadButtonPressed:(id)sender {
 AWSS3TransferManager *transferManager = [AWSS3TransferManager defaultS3Trans
ferManager];

 self.uploadRequest = [AWSS3TransferManagerUploadRequest new];
 self.uploadRequest.bucket = S3BucketName;
 self.uploadRequest.key = S3KeyName;
 self.uploadRequest.body = self.testFileURL;

 self.uploadStatusLabel.text = StatusLabelUploading;

 [[transferManager upload:self.uploadRequest] continueWithExecutor:[BFExecutor
 mainThreadExecutor] withBlock:^id(BFTask *task) {
 if (task.error != nil) {
 NSLog(@"Error: [%@]", task.error);
 self.uploadStatusLabel.text = StatusLabelFailed;

21

AWS SDK for iOS 2.0 Developer Guide
Uploading a File

 } else {
 self.uploadRequest = nil;
 self.uploadStatusLabel.text = StatusLabelCompleted;
 }
 return nil;
 }];
}

Note that upload: is an asynchronous method and returns immediately. Since it doesn't block the running
thread, it's safe to call this method on the main thread.

We handle the cancel button with a cancelButtonPressed: method.

- (IBAction)cancelButtonPressed:(id)sender {
 [[self.uploadRequest cancel] continueWithExecutor:[BFExecutor mainThreadEx
ecutor] withBlock:^id(BFTask *task) {
 self.uploadRequest = nil;
 self.uploadStatusLabel.text = StatusLabelReady;
 return nil;
 }];
}

We handle the pause button similarly and also check for errors in the upload process:

- (IBAction)pauseButtonPressed:(id)sender {
 [[self.uploadRequest pause] continueWithExecutor:[BFExecutor mainThreadEx
ecutor] withBlock:^id(BFTask *task) {
 if(task.error != nil){
 NSLog(@"Error: [%@]", task.error);
 self.uploadStatusLabel.text = StatusLabelFailed;
 } else {
 self.uploadStatusLabel.text = StatusLabelReady;
 }
 return nil;
 }];
}

The resumeButtonPressed: method is identical to the original uploadButtonPressed: method except
that we don't need to build the request, since we've already done that:

- (IBAction)resumeButtonPressed:(id)sender {
 AWSS3TransferManager *transferManager = [AWSS3TransferManager defaultS3Trans
ferManager];

 self.uploadStatusLabel.text = StatusLabelUploading;

 [[transferManager upload:self.uploadRequest] continueWithExecutor:[BFExecutor
 mainThreadExecutor] withBlock:^id(BFTask *task) {
 if (task.error != nil){

22

AWS SDK for iOS 2.0 Developer Guide
Uploading a File

 NSLog(@"Error: [%@]", task.error);
 self.uploadStatusLabel.text = StatusLabelFailed;
 } else {
 self.uploadRequest = nil;
 self.uploadStatusLabel.text = StatusLabelCompleted;
 }
 return nil;
 }];
}

Of course, there's much more that you can do with Amazon S3. If you'd like to download the latest sample
code for Amazon S3 TransferManager and other supported AWS services, go to the GitHub repository
for AWS SDK for iOS.

How to Store Objects in the Cloud
Using the DynamoDB Object Mapper, you can store application data to an Amazon DynamoDB database
in the cloud. The DynamoDB Object Mapper makes it easy to connect to the database, and it supports
high-level operations like creating, getting, querying, updating, and deleting records.

What is Amazon DynamoDB?
Amazon DynamoDB is a fast, highly scalable, highly available, cost-effective, nonrelational database
service. DynamoDB removes traditional scalability limitations on data storage while maintaining low
latency and predictable performance.

The AWS Mobile SDKs provide a high-level library for working with DynamoDB.You can also make re-
quests directly against the low-level DynamoDB API, but for most use cases the high-level library is re-
commended.

The DynamoDB Object Mapper is an especially useful part of the high-level library. Using the Object
Mapper, you can map client-side classes to DynamoDB tables; perform various create, read, update, and
delete (CRUD) operations; and execute queries.

Integrating Amazon DynamoDB
To use DynamoDB in an iOS application, you'll need to integrate the SDK for iOS into your app and import
the necessary libraries. The following steps walk you through the process of integrating the SDK with an
existing app.

Note
If you'd rather try out DynamoDB in an example app, you can download the DynamoDB sample
app from the iOS Samples repo.

1. If you haven't already done so, download the SDK for iOS, unzip it, and include it in your application
as described at Include the SDK for iOS in an Existing Application (p. 3). The instructions direct
you to import the headers for the services you'll be using. For this example, you need the following
import:

#import <AWSiOSSDKv2/DynamoDB.h>

23

AWS SDK for iOS 2.0 Developer Guide
How to Store Objects in the Cloud

https://github.com/aws/aws-sdk-ios-v2
https://github.com/aws/aws-sdk-ios-v2
http://aws.amazon.com/dynamodb/
https://github.com/awslabs/aws-sdk-ios-samples
http://aws.amazon.com/mobile/sdk/

2. You can use Amazon Cognito to provide temporary AWS credentials to your application. These
credentials let the app access your AWS resources. To create a credentials provider, follow the in-
structions at Providing AWS Credentials (p. 13).

3. To use DynamoDB in an application, you must set the correct permissions. The following IAM policy
allows the user to delete, get, put, scan, and update items in a specific DynamoDB table, which is
identified by ARN:

{
"Statement": [{
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Scan",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:us-west-2:123456789012:table/MyTable"
}]
}

This policy should be applied to roles assigned to the Cognito identity pool, but you will need to replace
the Resource value with the correct ARN for your DynamoDB table. Cognito automatically creates
a role for your new identity pool, and you can apply policies to this role at the IAM console.You
should add or remove allowed actions based on the needs of your app. To learn more about IAM
policies, see Using IAM. To learn more about DynamoDB-specific policies, see Using IAM to Control
Access to DynamoDB Resources.

Create a DynamoDB Table
Now that we have our permissions and credentials set up, let's create a DynamoDB table for our applic-
ation. We can create the table in our code using the createTable: method, or through the console.
Let's use the console.To create a DynamoDB table, go to the DynamoDB console and follow these steps:

1. Click Create Table.

2. Enter Bookstore as the name of the table.

3. Select Hash as the primary key type.

4. Select String and enter bookId for the hash attribute name. Click Continue.

5. Click Continue again to skip adding indexes.

6. Set the read capacity to 10 and the write capacity to 5. Click Continue.

7. Enter a notification email and click Continue to create throughput alarms.

8. Click Create. DynamoDB will create your database.

Create a DynamoDB Client
For our app to interact with a DynamoDB table, we need a client. We can create a default DynamodDB
client as follows:

24

AWS SDK for iOS 2.0 Developer Guide
Create a DynamoDB Table

http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDB.html#//api/name/createTable:
https://console.aws.amazon.com/dynamodb/home

AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];

The AWSDynamoDB class is the entry point for the DynamoDB API. The class provides instance methods
for creating, describing, updating, and deleting tables, among other operations.

Describe a Table
The SDK for iOS provides native support for BFTask, a Bolts class that makes it easier to manage
asynchronous operations and background threads. To get a description of our DynamoDB table, we can
use the following code block, which employs BFTask:

AWSDynamoDB *dynamoDB = [AWSDynamoDB defaultDynamoDB];
AWSDynamoDBDescribeTableInput *describeTableInput = [AWSDynamoDBDescribeTableIn
put new];
describeTableInput.tableName = @"Bookstore";
[[dynamoDB describeTable:describeTableInput] continueWithSuccessBlock:^id(BFTask
 *task) {
 AWSDynamoDBDescribeTableOutput *describeTableOutput = task.result;
 NSString *tableDescription = describeTableOutput.table.description;
 //Do something with tableDescription...
 return nil;
}];

In this example, we create a client and an AWSDynamoDBDescribeTableInput object, assign the name
of our table to the tableName property of the input object, and then pass the input object to the de-
scribeTable: method. By putting the rest of the table description logic in continueWithSuccessB-
lock:, we ensure that the result of describeTable: will have returned before we assign it to AWSDy-
namoDBDescribeTableOutput. Note that the return value of describeTable: is an instance of
BFTask.When the method executes successfully, task.result will contain an instance of AWSDynamoD-
BDescribeTableOutput.

All of the AWSDynamoDB methods return instances of BFTask. Thus, we can use the describeTable:
example above as a model for other method calls.

To learn more about working with BFTask, see The AWS Mobile SDK for iOS - How to Use BFTask.

Create a DynamoDB Object Mapper
The SDK for iOS provides an Object Mapper class, AWSDynamoDBObjectMapper, that supports high-
level operations like creating, getting, querying, updating, and deleting records. We can create an Object
Mapper as follows:

AWSDynamoDBObjectMapper *dynamoDBObjectMapper = [AWSDynamoDBObjectMapper default
DynamoDBObjectMapper];

The Object Mapper provides a number of instance methods, including save:, remove:,
load:hashKey:rangeKey:, query:expression:, and scan:expression:. Like the AWSDynamoDB
methods, all of the Object Mapper methods return a BFTask object.

25

AWS SDK for iOS 2.0 Developer Guide
Describe a Table

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDB.html
https://github.com/BoltsFramework/Bolts-iOS#tasks
https://github.com/BoltsFramework/Bolts-iOS#bolts
https://github.com/BoltsFramework/Bolts-iOS#tasks
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBDescribeTableInput.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDB.html#//api/name/describeTable:
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDB.html#//api/name/describeTable:
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBDescribeTableOutput.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBDescribeTableOutput.html
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDB.html
http://mobile.awsblog.com/post/Tx2B17V9NSVLP3I/The-AWS-Mobile-SDK-for-iOS-How-to-use-BFTask
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBObjectMapper.html

Save an Object
The save: method saves an object to DynamoDB, using the default configuration. save: takes as a
parameter an object that inherits from AWSDynamoDBModel and conforms to the AWSDynamoDBModeling
protocol.The properties of this object will be mapped to attributes in the DynamoDB table. Let's see what
this looks like.

We called our database "Bookstore", and in keeping with that theme we'll implement a data model that
records book-related attributes. Here's XYZDatabaseModel.h, the header for our data model class:

#import <Foundation/Foundation.h>
#import <AWSiOSSDKv2/DynamoDB.h>

@interface DDBTableRow : AWSDynamoDBModel <AWSDynamoDBModeling>

@property (nonatomic, assign) NSString *bookId;
@property (nonatomic, strong) NSString *isbn;
@property (nonatomic, strong) NSString *title;

@end

(Of course, for a real bookstore application we'd need additional fields for things like author and price.)

And here's the implementation of our model:

#import <AWSiOSSDKv2/DynamoDB.h>
#import "XYZDatabaseModel.h"

@implementation DDBTableRow

+ (NSString *)dynamoDBTableName {
 return @"Bookstore";
}

+ (NSString *)hashKeyAttribute {
 return @"hashKeyAttribute";
}

+ (NSString *)rangeKeyAttribute {
 return @"rangeKey";
}

@end

To conform to AWSDynamoDBModeling, we have to implement dynamoDBTableName and hashKeyAt-
tribute.

With the model in place, we can construct a DDBTableRow object and pass it to the save: method:

26

AWS SDK for iOS 2.0 Developer Guide
Save an Object

http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSDynamoDBObjectMapper.html#//api/name/save:

DDBTableRow *tableRow = [DDBTableRow new];
tableRow.bookId = @"31";
tableRow.isbn = @"222-222222-222";
tableRow.title = @"Some Book Title";

AWSDynamoDBObjectMapper *dynamoDBObjectMapper = [AWSDynamoDBObjectMapper default
DynamoDBObjectMapper];
[[dynamoDBObjectMapper save:tableRow]
continueWithExecutor:[BFExecutor mainThreadExecutor]
 withBlock:^id(BFTask *task) {
 //This block will be executed after the table row is saved.
 return nil;
}];

To update a table row, we would also use the save: method. We would just pass in a DDBTableRow
object with the bookId (that is, the hash key) of the item to be updated and with updated attribute values.

Delete a Table Row
To delete a table row, use the remove: method:

[[dynamoDBObjectMapper remove:tableRow]

How to Stream Data for Real-Time Processing
Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale.

The SDK for iOS provides a high-level client, AWSKinesisRecorder, designed to help you interface
with Amazon Kinesis. The Kinesis client lets you store PutRecord requests on disk and then send them
all at once.This is useful because many mobile applications that use Kinesis will create multiple PutRecord
requests per second. Sending an individual request for each PutRecord action could adversely impact
battery life. Moreover, the requests could be lost if the device goes offline. Thus, using the high-level
Kinesis client for batching can preserve both battery life and data.

What is Amazon Kinesis?
Amazon Kinesis is a fully managed service for real-time processing of streaming data at massive scale.
Amazon Kinesis can collect and process hundreds of terabytes of data per hour from hundreds of thousands
of sources, so you can write applications that process information in real-time. With Amazon Kinesis ap-
plications, you can build real-time dashboards, capture exceptions and generate alerts, drive recommend-
ations, and make other real-time business or operational decisions.You can also easily send data to
other services such as Amazon Simple Storage Service, Amazon DynamoDB, and Amazon Redshift.

Integrating Amazon Kinesis
To use the Amazon Kinesis mobile client, you'll need to integrate the SDK for iOS into your app and import
the necessary libraries. To do so, follow these steps:

27

AWS SDK for iOS 2.0 Developer Guide
Delete a Table Row

http://docs.aws.amazon.com/kinesis/latest/APIReference/API_PutRecord.html
http://aws.amazon.com/kinesis/

1. If you haven't already done so, download the SDK for iOS, unzip it, and include it in your application
as described at Include the SDK for iOS in an Existing Application (p. 3). The instructions direct
you to import the headers for the services you'll be using. For this example, you need the following
import:

#import <AWSiOSSDKv2/Kinesis.h>

2. You can use Amazon Cognito to provide temporary AWS credentials to your application. These
credentials let the app access your AWS resources. To create a credentials provider, follow the in-
structions at Providing AWS Credentials (p. 13).

3. To use Amazon Kinesis in an application, you must set the correct permissions. The following IAM
policy allows the user to submit records to a specific Kinesis stream, which is identified by ARN:

{
"Statement": [{
 "Effect": "Allow",
 "Action": "kinesis:PutRecord",
 "Resource": "arn:aws:kinesis:us-west-2:111122223333:stream/mystream"
}]
}

This policy should be applied to roles assigned to the Cognito identity pool, but you will need to replace
the Resource value with the correct ARN for your Kinesis stream.You can apply policies at the IAM
console. To learn more about IAM policies, see Using IAM. To learn more about Kinesis-specific
policies, see Controlling Access to Amazon Kinesis Resources with IAM.

Once you have credentials, you can use AWSKinesisRecorder. The following snippet returns a shared
instance of the Kinesis service client:

AWSKinesisRecorder *kinesisRecorder = [AWSKinesisRecorder defaultKinesisRecord
er];

You can configure AWSKinesisRecorder through its properties:

kinesisRecorder.diskAgeLimit = 30 * 24 * 60 * 60; // 30 days
kinesisRecorder.diskByteLimit = 10 * 1024 * 1024; // 10MB
kinesisRecorder.notificationByteThreshold = 5 * 1024 * 1024; // 5MB

The diskAgeLimit property sets the expiration for cached requests. When a request exceeds the limit,
it's discarded. The default is no age limit. The diskByteLimit property holds the limit of the disk cache
size in bytes. If the storage limit is exceeded, older requests are discarded. The default value is 5 MB.
Setting the value to 0 means that there's no practical limit. The notficationByteThreshold property
sets the point beyond which Kinesis issues a notification that the byte threshold has been reached. The
default value is 0, meaning that by default Kinesis doesn't post the notification.

28

AWS SDK for iOS 2.0 Developer Guide
Integrating Amazon Kinesis

http://aws.amazon.com/mobile/sdk/
http://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-using-iam.html

To see how much local storage is being used for Kinesis PutRecord requests, check the diskBytesUsed
property.

With AWSKinesisRecorder created and configured, you can use saveRecord:streamName: to save
records to local storage.

NSData *yourData = [@"Test_data" dataUsingEncoding:NSUTF8StringEncoding];
[kinesisRecorder saveRecord:yourData streamName:@"YourStreamName"]

In the preceding example, we create an NSData object and save it locally. YourStreamName should be
a string corresponding to the name of your Kinesis stream.You can create new streams in the Amazon
Kinesis console.

To submit all the records stored on the device, call submitAllRecords.

[kinesisRecorder submitAllRecords];

submitAllRecords sends all locally saved requests to the Kinesis service. Requests that are successfully
sent will be deleted from the device. Requests that fail because the device is offline will be kept and
submitted later. Invalid requests are deleted.

Both saveRecord and submitAllRecords are asynchronous operations, so you should ensure that
saveRecord is complete before you invoke submitAllRecords. The following code sample shows the
methods used correctly together:

// Create an array to store a batch of objects.
NSMutableArray *tasks = [NSMutableArray new];
for (int32_t i = 0; i < 100; i++) {
 [tasks addObject:[kinesisRecorder saveRecord:[[NSString stringWith
Format:@"TestString-%02d", i] dataUsingEncoding:NSUTF8StringEncoding]
 streamName:@"YourStreamName"]];
}

[[[BFTask taskForCompletionOfAllTasks:tasks] continueWithSuccessBlock:^id(BFTask
 *task) {
 return [kinesisRecorder submitAllRecords];
}] continueWithBlock:^id(BFTask *task) {
 if (task.error) {
 NSLog(@"Error: [%@]", task.error);
 }
 return nil;
}];

To learn more about working with Amazon Kinesis, see the Amazon Kinesis Developer Resources. To
learn more about the Kinesis classes, see the class reference for AWSKinesisRecorder.

29

AWS SDK for iOS 2.0 Developer Guide
Integrating Amazon Kinesis

https://console.aws.amazon.com/kinesis/
https://console.aws.amazon.com/kinesis/
http://aws.amazon.com/kinesis/developer-resources/
http://docs.aws.amazon.com/AWSiOSSDK/latest/Classes/AWSKinesisRecorder.html

Document History

The following table describes the important changes since the last release of the AWS SDK for iOS
Getting Started Guide.

Last documentation update: June 30, 2014

Release DateDescriptionChange

June 30, 2014The AWS SDK for iOS Getting Started Guide has been
updated to document SDK for iOS v2.

SDK for iOS v2

September 9, 2013This topic tracks recent changes to the AWS SDK for iOS
Getting Started Guide. It is intended as a companion to
the release notes history.

New topic

30

AWS SDK for iOS 2.0 Developer Guide

http://aws.amazon.com/releasenotes/iOS?browse=1

	AWS SDK for iOS 2.0
	Table of Contents
	What Is the AWS SDK for iOS?
	About the AWS Mobile Services
	Amazon Cognito
	Amazon Mobile Analytics

	About the SDK for iOS
	Next Steps

	Set Up the SDK for iOS
	Setting Up
	Get the iOS SDK

	Include the SDK for iOS in an Existing Application
	Get AWS Credentials with Amazon Cognito or AWS Identity and Access Management

	Run the Demos
	Run the Amazon S3 TransferManager Sample
	Run the Amazon DynamoDB Object Mapper Sample

	Install the Reference Documentation in Xcode

	Getting Started with Services
	How to Authenticate Users
	Amazon Cognito Overview
	Prerequisites
	Cognito Security
	Cognito Identity Pools
	Setting Up Identity Provider Applications
	Facebook
	Google
	Amazon

	Integrating Identity Providers
	Facebook
	Google
	Amazon

	Providing AWS Credentials
	Getting an Amazon Cognito ID and AWS Credentials
	Switching Identities

	How to Sync Profile Data
	Profile Data Synchronization
	Initializing the Cognito Sync Client
	Datasets
	Reading and Writing Data in Datasets
	Synchronization
	Conflict Resolution Handler

	How to Use Analytics in Your App
	What is Amazon Mobile Analytics
	IAM Policy for Amazon Mobile Analytics

	Integrating Amazon Mobile Analytics

	How to Upload Files from Your App to the Cloud
	What Is the Amazon S3 TransferManager?
	Uploading a File

	How to Store Objects in the Cloud
	What is Amazon DynamoDB?
	Integrating Amazon DynamoDB
	Create a DynamoDB Table
	Create a DynamoDB Client
	Describe a Table
	Create a DynamoDB Object Mapper
	Save an Object
	Delete a Table Row

	How to Stream Data for Real-Time Processing
	What is Amazon Kinesis?
	Integrating Amazon Kinesis

	Document History

