
AWS SDK for Ruby
Developer Guide

Version v1.0.0

AWS SDK for Ruby: Developer Guide
Copyright © 2014 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

The following are trademarks of Amazon Web Services, Inc.: Amazon, Amazon Web Services Design, AWS, Amazon CloudFront,
Cloudfront, CloudTrail, Amazon DevPay, DynamoDB, ElastiCache, Amazon EC2, Amazon Elastic Compute Cloud, Amazon Glacier,
Kinesis, Kindle, Kindle Fire, AWS Marketplace Design, Mechanical Turk, Amazon Redshift, Amazon Route 53, Amazon S3, Amazon
VPC. In addition, Amazon.com graphics, logos, page headers, button icons, scripts, and service names are trademarks, or trade dress
of Amazon in the U.S. and/or other countries. Amazon's trademarks and trade dress may not be used in connection with any product
or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages
or discredits Amazon.

All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected
to, or sponsored by Amazon.

AWS SDK for Ruby Developer Guide

Table of Contents
What is the AWS SDK for Ruby? .. 1

What's in this Guide? ... 1
Viewing the Revision History for the SDK for Ruby .. 2
About Amazon Web Services .. 2

Getting Started ... 3
Get an AWS Account and Your AWS Credentials ... 3
Installing the SDK for Ruby ... 4
Setting up AWS Credentials .. 4
Specifying Credentials .. 5

Using Default Credentials ... 6
Specifying a Credentials Provider ... 6
Explicitly Specifying Credentials ... 7

Where to Go from Here .. 8
Using AWS Services .. 9

Using IAM Roles for EC2 Instances .. 9
Using IAM Roles for EC2 Instances to Manage Your Credentials .. 10
Walkthrough: Using IAM Roles to Retrieve an Amazon S3 Object from an EC2 Instance 10

Start an Amazon EC2 Instance .. 16
Create an Amazon EC2 Client ... 16
Create a Security Group ... 17
Authorize Security Group Ingress ... 17
Create a Key Pair .. 18
Run an Amazon EC2 Instance ... 18
Connect to Your Amazon EC2 Instance .. 19
Related Resources .. 19

Additional Resources ... 20
Home Page for AWS SDK for Ruby ... 20
SDK Reference Documentation .. 20
AWS Forums .. 20
AWS SDK for Ruby Samples ... 20

Installing the samples ... 21
Set your AWS Credentials ... 22
Run the Samples ... 22

Document History .. 25

Version v1.0.0
iii

AWS SDK for Ruby Developer Guide

What is the AWS SDK for Ruby?

The AWS SDK for Ruby provides a Ruby API for AWS infrastructure services. Using the SDK, you can
build applications on top of Amazon Simple Storage Service (Amazon S3), Amazon Elastic Compute
Cloud (Amazon EC2), Amazon SimpleDB, and more.

New AWS services are occasionally added to the AWS SDK for Ruby. For a complete list of the services
that are supported by the SDK for Ruby, see Supported Services on the AWS SDK for Ruby home page.

Topics

• What's in this Guide? (p. 1)

• Viewing the Revision History for the SDK for Ruby (p. 2)

• About Amazon Web Services (p. 2)

What's in this Guide?
This is the AWS SDK for Ruby Developer Guide, which aims to provide you with information about how
to install, set up, and use the SDK for Ruby to program applications in Ruby that can make full use of the
services offered by Amazon Web Services.

Here is a guide to the contents:

Getting Started (p. 3)
If you are just starting out with the SDK for Ruby, you should first read through the Getting Star-
ted (p. 3) section. It will guide you through downloading and installing the AWS SDK for Ruby, and
how to set up your development environment.

Using AWS Services (p. 9)
This chapter provides specific guidance about using the SDK for Ruby with various AWS services.

Additional Resources (p. 20)
This chapter provides information about additional resources that you can use to learn about the
SDK for Ruby.

Document History (p. 25)
This chapter provides details about major changes to the documentation. New sections and topics
as well as significantly revised topics are listed here.

Version v1.0.0
1

AWS SDK for Ruby Developer Guide
What's in this Guide?

https://aws.amazon.com/sdkforruby/#Supported_Services

Viewing the Revision History for the SDK for
Ruby

The AWS SDK for Ruby is regularly updated to support new services and new service features. To see
what changed with a given release, you can check the release notes history.

Each release of the AWS SDK for Ruby is also published to GitHub. The comments in the commit history
provide information about what changed in each commit.To view the comments associated with a commit,
click the plus sign next to that commit.

About Amazon Web Services
Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model.You are charged
only for the services that you—or your applications—use. Also, to make AWS more approachable as a
platform for prototyping and experimentation, AWS offers a free usage tier. On this tier, services are free
below a certain level of usage. For more information about AWS costs and the Free Tier, see Test-Driving
AWS in the Free Usage Tier. To obtain an AWS account, open the AWS home page and then click Sign
Up.

Version v1.0.0
2

AWS SDK for Ruby Developer Guide
Viewing the Revision History for the SDK for Ruby

http://aws.amazon.com/releasenotes/Ruby?browse=1
https://github.com/amazonwebservices/aws-sdk-for-ruby/commits/master
http://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
http://docs.aws.amazon.com/FeaturedArticles/latest/TestDriveFreeTier.html
https://portal.aws.amazon.com/gp/aws/developer/registration/index.html

Getting Started with the AWS SDK
for Ruby

This section provides information about how to install, set up, and use the AWS SDK for Ruby. If you
have never used the SDK for Ruby before, you should start here.

Topics

• Get an AWS Account and Your AWS Credentials (p. 3)

• Installing the SDK for Ruby (p. 4)

• Setting up AWS Credentials for Use with the SDK for Ruby (p. 4)

• Specifying AWS Credentials for SDK for Ruby Applications (p. 5)

• Where to Go from Here (p. 8)

Get an AWS Account and Your AWS Credentials
To access AWS, you will need to sign up for an AWS account.

To sign up for an AWS account

1. Open http://aws.amazon.com, and then click Sign Up.

2. Follow the on-screen instructions.

Part of the sign-up procedure involves receiving a phone call and entering a PIN using the phone
keypad.

AWS sends you a confirmation e-mail after the sign-up process is complete. At any time, you can view
your current account activity and manage your account by going to http://aws.amazon.com and clicking
My Account/Console.

To get your access key ID and secret access key

Access keys consist of an access key ID and secret access key, which are used to sign programmatic
requests that you make to AWS. If you don't have access keys, you can create them by using the AWS
Management Console.

Version v1.0.0
3

AWS SDK for Ruby Developer Guide
Get an AWS Account and Your AWS Credentials

http://aws.amazon.com
http://aws.amazon.com

Note
To create access keys, you must have permissions to perform the required IAM actions. For
more information, see Granting IAM User Permission to Manage Password Policy and Credentials
in Using IAM.

1. Open the IAM console.

2. From the navigation menu, click Users.

3. Select your IAM user name.

4. Click User Actions, and then click Manage Access Keys.

5. Click Create Access Key.

Your keys will look something like this:

• Access key ID example: AKIAIOSFODNN7EXAMPLE

• Secret access key example: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

6. Click Download Credentials, and store the keys in a secure location.

Your secret key will no longer be available through the AWS Management Console; you will have
the only copy. Keep it confidential in order to protect your account, and never email it. Do not share
it outside your organization, even if an inquiry appears to come from AWS or Amazon.com. No one
who legitimately represents Amazon will ever ask you for your secret key.

Related topics

• What Is IAM? in Using IAM

• AWS Security Credentials in AWS General Reference

Installing the SDK for Ruby
The SDK for Ruby is packaged as a gem. To install the SDK, enter the following command:

gem install aws-sdk

Tip
The AWS Ruby SDK runs on Ruby 1.8.7 and later versions. If you have an older version of Ruby,
Ruby enVironment Manager (RVM) is a great way to try the latest version. RVM is a command-
line tool that manages multiple versions of Ruby on a single computer.

Setting up AWS Credentials for Use with the
SDK for Ruby

To use the SDK for Ruby to access AWS resources, you must provide a set of AWS credentials, which
consist of an access key ID and a secret access key. We recommend that you do not use your account's
root credentials to access AWS. Instead, create one or more IAM users and provide those credentials to
the SDK for Ruby. In addition to providing a better way to manage credentials, each IAM user has one
or more attached policies that specify which resources the user can access, and which actions they can
perform on those resources. For more information, see Best Practices for Managing AWS Access Keys.

Version v1.0.0
4

AWS SDK for Ruby Developer Guide
Installing the SDK for Ruby

http://docs.aws.amazon.com/IAM/latest/UserGuide/PasswordPolicyPermission.html
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_Introduction.html
http://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://rvm.io/
http://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

The recommended approach for managing credentials is to store them in one of the following ways and
then load them into your application. This avoids putting explicit keys in your code, where they might be
inadvertently exposed. For more information on how to load credentials, see Specifying Credentials (p. 5).

Credentials file
Create one or more profiles in your local system's AWS credentials file, which is located at
~/.aws/credentials (Linux, Unix, and OS X systems) or C:\Users\User_Name\.aws\creden-
tials (Windows systems). Each profile consists of a name and a set of credentials in the following
format:

[profile_name]
aws_access_key_id = access_key_id
aws_secret_access_key = secret_access_key

Substitute a set of IAM credentials for the access_key_id and secret_access_key.You can
use any name you prefer for the profile name except for the default profile, which must be named
default. For example, if you have multiple IAM users with different policies, you can create a profile
for each user, named with the user name.You can specify the appropriate profile by name for each
application.

Environment variables
Specify default credentials by assigning an access key ID and a secret access key to the AWS_AC-
CESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

For Linux, OS X, or Unix systems, use export:

export AWS_ACCESS_KEY_ID=access_key_id
export AWS_SECRET_ACCESS_KEY=secret_access_key

For Windows, use set:

set AWS_ACCESS_KEY_ID=access_key_id
set AWS_SECRET_ACCESS_KEY=secret_access_key

IAM role
For applications running on an EC2 instance, the recommended approach is to create an IAM role
with appropriate permissions and assign it to the instance. The application will then run with those
permissions, as shown in Using IAM Roles for Amazon EC2 Instances with the AWS SDK for
Ruby (p. 9).

The AWS SDKs and CLIs use a provider chain to look for default AWS credentials, or you can specify
the appropriate credentials explicitly. For more information, see Specifying Credentials (p. 5).

Specifying AWS Credentials for SDK for Ruby
Applications

For an SDK for Ruby application to access Amazon Web Services, you must provide the application with
a set AWS credentials that have appropriate permissions.You specify which credentials your application

Version v1.0.0
5

AWS SDK for Ruby Developer Guide
Specifying Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

will use to access a service when you initialize a new service client. This topic describes how to specify
AWS credentials for SDK for Ruby applications.

Topics

• Using Default Credentials (p. 6)

• Specifying a Credentials Provider (p. 6)

• Explicitly Specifying Credentials (p. 7)

Using Default Credentials
One option is to create the client without any arguments, as shown in the following example.

Create a new S3 object
s3 = AWS::S3.new

In this case, the SDK for Ruby attempts to use your default AWS credentials to create the client object.
It locates them by using the default credential provider chain, which is implemented by the DefaultProvider
class. It looks for default credentials in the following order and loads the first set that it finds:

1. Credentials passed to the AWS.config method with the :access_key_id and :secret_ac-
cess_key_id options.

2. Environment Variables – AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment vari-
ables.

The SDK for Ruby uses the ENVProvider class to load these credentials.

3. The credentials file's default profile – For more information about the credentials file, see Setting
up AWS Credentials (p. 4).

The SDK for Ruby uses the SharedCredentialFileProvider to load profiles.

4. Instance profile credentials – these credentials can be assigned to Amazon EC2 instances, and are
delivered through the Amazon EC2 metadata service.

The SDK for Ruby uses EC2Provider to load these credentials.

Note
You must have specified default credentials in at least one of these ways, or the attempt will fail.
For more information, see Setting up AWS Credentials (p. 4).

Specifying a Credentials Provider
If you don't want to use the default credentials provider, you can specify your preferred credentials provider.
For example, you might want to use a nondefault profile from the credentials file, which is handled by
SharedCredentialFileProvider.You can specify a credentials provider as follows:

• To specify a credentials provider for a particular service, pass a provider object to the service's client
constructor, which must take a class with the Provider interface as input. A provider typically has options
that you can use to specify a particular set of credentials.

The following example directs the Amazon S3 client constructor to get its credentials from the
SharedCredentialFileProvider object, which loads credentials from the credentials file.

Create a new S3 object using a specific provider
s3 = AWS::S3.new(

Version v1.0.0
6

AWS SDK for Ruby Developer Guide
Using Default Credentials

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/DefaultProvider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/ENVProvider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/SharedCredentialFileProvider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/EC2Provider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/SharedCredentialFileProvider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/Provider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/SharedCredentialFileProvider.html

 :credential_provider => AWS::Core::CredentialProviders::SharedCredentialFile
Provider.new)

Creating the provider object with the default constructor specifies the credentials file's default profile.
You can also use the constructor's profile_name option to specify a profile by name or its path option
to specify a nondefault credentials file location.

• You can specify a credential provider that will be used by all service clients by passing a provider object
to the AWS.config method. The following example specifies the default profile from the credentials file
for all services.

AWS.config(
 :credential_provider => AWS::Core::CredentialProviders::SharedCredentialFile
Provider.new)
Create a new S3 object
s3 = AWS::S3.new

You can then use the Amazon S3 client object's default constructor, which automatically loads the ap-
propriate profile.

For the full list of SDK for Ruby credential provider classes, see AWS::Core::CredentialProviders. In the
SDK for Ruby, all provider classes mix in the Provider interface.

Tip
You can also use this approach to supply your own credentials provider. Just implement a cre-
dentials provider class that mixes in the Provider interface.You can then pass an instance of
the class to a service's client class constructor or to AWS.config, as described above.

Explicitly Specifying Credentials
You can specify credentials explicitly as follows.

• Specify credentials for a particular service by using the client class constructor's :access_key_id
and :secret_access_key options.

The following example specifies an explicit set of credentials for the Amazon S3 client object.

s3 = AWS::S3.new(
 :access_key_id => 'AKIAIOSFODNN7EXAMPLE',
 :secret_access_key => 'wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY')

• Specify credentials for every service by using the AWS.config method's :access_key_id and
:secret_access_key options.

The following example specifies an explicit set of credentials for every service, so you can use the default
constructor to create the Amazon S3 client object. It will automatically use the credentials that you
passed to AWS.config.

AWS.config(
 :access_key_id => 'AKIAIOSFODNN7EXAMPLE',
 :secret_access_key => 'wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY')

Version v1.0.0
7

AWS SDK for Ruby Developer Guide
Explicitly Specifying Credentials

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/Provider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method

S3.new will now use the credentials specified in AWS.config
s3 = AWS::S3.new

Warning
If you explicitly specify credentials, make sure that you do not accidentally expose your code on
a publicly accessible site, such as a public GitHub repository. Doing so could compromise your
account's integrity.

Where to Go from Here
The SDK reference documentation provides information about both the AWS Ruby gem and AWS Rails
integration gem.

The Additional Resources section has pointers to other resources to assist you in programming AWS.

The SDK for Ruby is packaged with a number of code samples, which you can browse on your machine
or view on GitHub. For more information about the samples that are provided, see AWS SDK for Ruby
Samples (p. 20).

Version v1.0.0
8

AWS SDK for Ruby Developer Guide
Where to Go from Here

http://docs.aws.amazon.com/AWSRubySDK/latest/_index.html
ruby-dg-additional-resources.html

Using Amazon Web Services with
the AWS SDK for Ruby

This section provides information about how to program various Amazon Web Services using the SDK
for Ruby.

Topics

• Using IAM Roles for Amazon EC2 Instances with the AWS SDK for Ruby (p. 9)

• Start an Amazon EC2 Instance (p. 16)

Using IAM Roles for Amazon EC2 Instances with
the AWS SDK for Ruby

Note
For in-depth information about using IAM roles for EC2 instances, see Roles in Using IAM.

Securely managing authentication credentials is one of the first challenges that developers will face when
writing software that accesses Amazon Web Services (AWS). All requests to AWS must be cryptograph-
ically signed using credentials issued by AWS. For software that runs on Amazon Elastic Compute Cloud
(Amazon EC2) instances, developers must store these credentials in a way that keeps them secure but
also makes them accessible to the software, which needs them in order to make requests.

IAM roles for EC2 instances provides you with an effective way to manage credentials for AWS software
running on EC2 instances. With IAM roles, you can develop software and deploy it to an EC2 instance
without having to otherwise manage the credentials that the software is using.

Topics

• Using IAM Roles for EC2 Instances to Manage Your Credentials (p. 10)

• Walkthrough: Using IAM Roles to Retrieve an Amazon S3 Object from an EC2 Instance (p. 10)

Version v1.0.0
9

AWS SDK for Ruby Developer Guide
Using IAM Roles for EC2 Instances

http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

Using IAM Roles for EC2 Instances to Manage Your
Credentials
You can use the AWS Management Console to create an IAM role and configure it with the permissions
that your software requires. Permissions for IAM roles are specified in a way similar to permissions for
IAM users. For more information, see IAM Users and Groups in Using IAM.

EC2 can access credentials using EC2's Instance Metadata Service (IMDS), which can securely provide
credentials using the IAM role you create. The instance metadata service is part of the default credential
provider chain, so you don't need to change your code to use it if you're already using the default provider
chain for your application.

Note
The default credential provider chain is explained in detail in the topic: Specifying Creden-
tials (p. 5).

You can also specify the EC2 provider explicitly, by passing an instance of EC2Provider to either
AWS.config or to your service object during initialization. For example:

AWS.config(:credential_provider => AWS::Core::CredentialProviders::EC2Pro
vider.new)

The EC2Provider object uses the IMDS to retrieve temporary credentials that have the same permissions
as those associated with the IAM role. Although the credentials are temporary and eventually expire, the
SDK periodically refreshes them so that they continue to enable access. This refresh is completely
transparent to your code—you don't need to initiate it yourself.

Note
AWS CloudFormation does not support calling its API with an IAM role.You must call the AWS
CloudFormation API as a regular IAM user.

Walkthrough: Using IAM Roles to Retrieve an
Amazon S3 Object from an EC2 Instance
In this walkthrough, we'll begin with a program that retrieves an object from Amazon S3 using regular
account credentials loaded from the environment. Then, we'll use the IMDS in conjunction with an IAM
role to get credentials.

Important
This tutorial assumes that you have installed the AWS SDK for Ruby and a compatible Ruby
interpreter. If you have not done so, install the SDK (p. 3) before proceeding.

Create the sample program
Here's the program:

require 'rubygems'
require 'aws-sdk'

s3 = AWS::S3.new

bucket_name = 'text-content'
obj_name = 'text-object.txt'

Version v1.0.0
10

AWS SDK for Ruby Developer Guide
Using IAM Roles for EC2 Instances to Manage Your

Credentials

http://docs.aws.amazon.com/IAM/latest/UserGuide/Using_WorkingWithGroupsAndUsers.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AESDG-section-instancedata.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/Core/CredentialProviders/EC2Provider.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

document = s3.buckets[bucket_name].objects[obj_name]

File.open(obj_name, "w") do |f|
 f.write(document.read)
end

puts "'#{obj_name}' copied from S3."

You can either type or copy this code into a file on your machine. Name it whatever you like. For the
purposes of the tutorial, we'll call it get_object.rb.

This code initializes an AWS::S3 object without specifying any credentials, which initiates a search for
credentials using the default credential provider chain. The default credential provider chain looks for
credentials specified in the environment, and failing that, will look for credentials from EC2's metadata
service.

You can use this feature to test your code locally by specifying credentials in the environment. On an
EC2 instance, your code will work with the IMDS without any modification.

To test the program locally

1. Specify your AWS credentials in the local environment varables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY. For more information about how to do this, see Setting up AWS Creden-
tials (p. 4).

2. Substitute the names of an Amazon S3 bucket and text object associated with your AWS account
for the values of bucket_name and obj_name, respectively.

For instructions about how to create an Amazon S3 bucket and upload an object, see the Amazon
Simple Storage Service Getting Started Guide.

3. Open a terminal and change to the directory where you saved your application code. For example,
if you placed it in a directory called aws_ruby_test in your home directory, you would type:

cd ~/aws_ruby_test

4. Run the program with the Ruby interpreter:

ruby get_object.rb

Run the Program on EC2 using IAM Roles
Next, we'll run the program on an EC2 instance using IAM roles.To do this, we'll take the following actions:

1. Create an IAM role using the AWS Management Console (p. 12)

2. Launch an EC2 instance with the corresponding instance profile (p. 12)

3. Transfer the source to your EC2 instance (p. 14)

4. Run the program within the EC2 instance (p. 15)

We'll now examine each of these steps in detail.

Version v1.0.0
11

AWS SDK for Ruby Developer Guide
Walkthrough: Using IAM Roles to Retrieve an Amazon

S3 Object from an EC2 Instance

http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html?
http://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html?

Create an IAM role using the AWS Management Console

The first step is to create an IAM role that has the appropriate permissions. To create the IAM role, follow
the procedure Creating a IAM Role in Using IAM.

When creating the role, select Amazon EC2 as the role type, and then select Amazon S3 Read Only
Access as the permission type:

Policies can also be represented in JSON format. The following JSON block describes the policy for
Amazon S3 read-only access.

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": "*"
 }
]
}

Note the name of the role that you create so that you can specify it when you create your EC2 instance
in the next step.

Launch an EC2 instance with the corresponding instance profile

To create an EC2 instance, follow the procedure Running an Instance in the Amazon EC2 User Guide
for Linux Instances. We recommend that you specify a recent Amazon Linux AMI for your EC2 instance.
When you create the EC2 instance, specify the IAM role that you created previously in the IAM console.

Version v1.0.0
12

AWS SDK for Ruby Developer Guide
Walkthrough: Using IAM Roles to Retrieve an Amazon

S3 Object from an EC2 Instance

http://docs.aws.amazon.com/IAM/latest/UserGuide/CreateRole.html
http://json.org/
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/launching-an-instance.html

When you create your EC2 instance, you must specify a key pair and a security group for access.You
can create and configure these while setting up your EC2 instance.

When setting up your security group, make sure that it has SSH access enabled:

Be sure to download the .pem file for the keypair you created:

Version v1.0.0
13

AWS SDK for Ruby Developer Guide
Walkthrough: Using IAM Roles to Retrieve an Amazon

S3 Object from an EC2 Instance

When you are finished, click Launch Instance to launch your EC2 instance.

Go to the EC2 Instances area of the AWS Management Console and view the launch status of your in-
stance. Once your instance is running, copy its public DNS name.You will use this DNS name to connect
to the instance.

Transfer the source to your EC2 instance

Transfer the modified source file to your EC2 instance using scp. Be sure to specify the .pem file you
created earlier, and use the public DNS name of the instance to connect with. The command will look
something like this:

Version v1.0.0
14

AWS SDK for Ruby Developer Guide
Walkthrough: Using IAM Roles to Retrieve an Amazon

S3 Object from an EC2 Instance

scp -i ruby-iam-ec2-ssh.pem get_object.rb \
ec2-user@ec2-23-20-56-134.compute-1.amazonaws.com:

Note
If you launched an EC2 machine image other than the Amazon Linux AMI recommended earlier,
you may need to use "root" instead of "ec2-user" when connecting to the instance using ssh or
scp. Additionally, the steps for configuring and running the program in the next section may differ
somewhat.

Run the program within the EC2 instance

To run the program

1. Connect to your EC2 instance with ssh. Use the same public DNS name and .pem file you used to
copy the source code in the preceding section—for example:

ssh -i ruby-iam-ec2-ssh.pem ec2-user@ec2-23-20-56-134.compute-1.amazonaws.com

2. The Amazon Linux AMI has Ruby 1.8.7 installed by default. However, we recommend using Ruby
1.9 with the AWS SDK for Ruby. To install Ruby 1.9 on the Amazon Linux AMI, use the following
command:

sudo yum install ruby19 rubygems19

3. Set your AMI to use Ruby 1.9 by default by executing the following command:

sudo alternatives --set ruby /usr/bin/ruby1.9

4. Install additional development packages needed by the AWS SDK for Ruby:

sudo yum install -y gcc ruby-devel19 libxml2 libxml2-devel libxslt libxslt-
devel make

5. Install the AWS SDK for Ruby:

sudo gem install aws-sdk --no-ri --no-rdoc

The --no-ri and --no-rdoc options tell gem to not compile the Ruby documentation for the aws-
sdk gem. This will make the installation considerably faster.

6. Run the program:

ruby get_object.rb

If everything is set up correctly, the file should be copied to your EC2 instance just as it was to your local
machine when you were using credentials. This time, however, the credentials you used were not stored
in your program or on your EC2 instance. Instead, IAM managed the credentials for you!

Version v1.0.0
15

AWS SDK for Ruby Developer Guide
Walkthrough: Using IAM Roles to Retrieve an Amazon

S3 Object from an EC2 Instance

Start an Amazon EC2 Instance
This section demonstrates how to use the AWS SDK for Ruby to start an Amazon Elastic Compute Cloud
(Amazon EC2) instance.

Topics

• Create an Amazon EC2 Client (p. 16)

• Create a Security Group (p. 17)

• Authorize Security Group Ingress (p. 17)

• Create a Key Pair (p. 18)

• Run an Amazon EC2 Instance (p. 18)

• Connect to Your Amazon EC2 Instance (p. 19)

• Related Resources (p. 19)

Create an Amazon EC2 Client
You will need an Amazon EC2 client in order to create security groups and key pairs, and run Amazon
EC2 instances. Before configuring your client, you must create a YAML file to store your AWS Access
Key and your Secret Key. This YAML file must be placed in the same directory as your Ruby program.

The file looks like this:

access_key_id: YOUR_ACCESS_KEY
secret_access_key: YOUR_SECRET_KEY

Specify your AWS credentials as values for the access_key_id and secret_access_key entries. To
learn more about your AWS credentials, including where to find them, go to About AWS Security Creden-
tials.

After you create this file, you are ready to create and initialize your Amazon EC2 client.

To create and initialize an Amazon EC2 client

1. Pass your configuration file into the AWS.config method, as follows:

config_file = File.join(File.dirname(__FILE__), "config.yml")

AWS.config(YAML.load(File.read(config_file)))

2. Create a new EC2 instance, specifying the service endpoint as follows:

ec2 = AWS::EC2.new(region: 'us-west-1')

By default, the service endpoint is us-east-1. For a list of Amazon EC2 service endpoints, go to
Regions and Endpoints .

Before running an Amazon EC2 instance, you will need to create an Amazon EC2 security group, authorize
security group ingress, and create a key pair to allow you to log into your instance.

For information about creating a security group, see Create an Amazon EC2 Security Group (p. 17).

Version v1.0.0
16

AWS SDK for Ruby Developer Guide
Start an Amazon EC2 Instance

http://aws.amazon.com/sdkforruby/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://aws.amazon.com/AWSSecurityCredentials/1.0/AboutAWSCredentials.html#AccessKeys
http://aws.amazon.com/AWSSecurityCredentials/1.0/AboutAWSCredentials.html#AccessKeys
http://aws.amazon.com/AWSRubySDK/latest/AWS.html#config-class_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

For information about authorizing security group ingress, see Authorize Amazon EC2 Security Group In-
gress (p. 17).

For information about creating a key pair, see Create a Key Pair (p. 18).

For information about running your Amazon EC2 instance, see Run an Amazon EC2 Instance (p. 18).

Create a Security Group
An Amazon EC2 security group controls traffic through your Amazon EC2 instances, much like a firewall.
If you do not create a security group, Amazon EC2 provides a default security group that allows no inbound
traffic. For more information about security groups, go to Security Group Concepts.

If you want to allow inbound traffic, create a security group and assign a rule to it that allows the ingress
that you want.Then associate the new security group with an Amazon EC2 instance. For more information,
see Authorize Security Group Ingress (p. 17).

To create a security group, use the SecurityGroupCollection.create method and pass the name of a
security group you created. The method returns a SecurityGroup object, as follows:

security_group = ec2.security_groups.create('YOUR_SECURITY_GROUP_NAME')

The security group name must be unique within the AWS region in which you initialize your Amazon EC2
client.You must use US-ASCII characters for the security group name and description.

If you attempt to create a security group with the same name as an existing security group, the method
returns an error.

Before starting an Amazon EC2 instance, you next need to authorize security group ingress and create
a key pair to allow you to log into your instance.You can use the returned SecurityGroup object to
authorize or revoke security group ingress and egress.You must also create a key pair to allow you to
log into your instance.

For information about authorizing security group ingress, see Authorize Amazon EC2 Security Group In-
gress (p. 17).

For information about creating a key pair, see Create a Key Pair (p. 18).

For information about running your Amazon EC2 instance, see Run an Amazon EC2 Instance (p. 18).

Authorize Security Group Ingress
By default, a new security group does not allow any inbound traffic. To allow inbound traffic, you must
explicitly authorize security group ingress.You can authorize ingress for individual IP addresses, for a
range of IP addresses, for a protocol, and for TCP/UDP ports.

To authorize ingress for your security group, use the SecurityGroup.authorize_ingress method.

The following code demonstrates one way to authorize security group ingress for a range of IP addresses.

ip_addresses = ['111.111.111.111/0', '150.150.150.150/0']

security_group.authorize_ingress :tcp, 22, *ip_addresses

Specify the IP address using CIDR notation. If you specify the protocol as TCP/UDP, you must provide
a source port or a range of ports.You can authorize ports only if you specify TCP or UDP.

Version v1.0.0
17

AWS SDK for Ruby Developer Guide
Create a Security Group

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#concepts-security
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/SecurityGroupCollection.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/SecurityGroup.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/SecurityGroup.html#authorize_ingress-instance_method

If you authorize ingress for IP addresses that have already been authorized, the method returns an error.

Whenever you use authorize_ingress or SecurityGroup.authorize_egress, a rule is added to your
security group.You can add up to 100 rules per security group.

For more information about security groups, go to Security Group Concepts.

Create a Key Pair
Public AMI instances have no default password.To log into your Amazon EC2 instance, you must generate
an Amazon EC2 key pair. The key pair consists of a public key and a private key, and is not the same
as your AWS access credentials. For more information about Amazon EC2 key pairs, go to Getting an
SSH Key Pair.

To create a key pair and obtain the private key

1. Use the KeyPairCollection.create method and specify the key pair name. The method returns a
KeyPair object, as follows:

key_pair = ec2.key_pairs.create('YOUR_KEY_PAIR_NAME')

Key pair names must be unique. If you attempt to create a key pair with the same key name as an
existing key pair, an error occurs.

2. Use the returned object's fingerprint property to obtain an SHA-1 digest of the DER-encoded private
key, as follows:

private_key = key_pair.private_key;

Calling create is the only way to obtain the private key programmatically.You can always access
your private key through the AWS Management Console.

Before logging onto an Amazon EC2 instance, you must create the instance and ensure that it is running.
For information about how to run an Amazon EC2 instance, see Run an Amazon EC2 Instance (p. 18).

For information about how to use your key pair to connect to your Amazon EC2 instance, see Connect
to Your Amazon EC2 Instance (p. 19).

Run an Amazon EC2 Instance
Before running an Amazon EC2 instance, ensure that you have created a security group and a key pair
for your instance. For information about creating a key pair, see Create a Key Pair (p. 18). For information
about creating a security group, see Create an Amazon EC2 Security Group (p. 17).

Use the InstanceCollection.create method to run an Amazon EC2 instance. Specify the Amazon Machine
Image (AMI), the instance type, the maximum number of instance to run, the names of a security group
and key pair you created, as follows:

instance = ec2.instances.create(
:image_id => 'ami-11d68a54',
:instance_type => 'm1.small',
:count => 1,
:security_groups => 'YOUR_SECURITY_GROUP_NAME',
:key_pair => ec2.key_pairs['YOUR_KEY_PAIR_NAME'])

Version v1.0.0
18

AWS SDK for Ruby Developer Guide
Create a Key Pair

http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/SecurityGroup.html#authorize_egress-instance_method
http://aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html#concepts-security
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/generating-a-keypair.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/generating-a-keypair.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/KeyPairCollection.html#create-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/KeyPair.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/KeyPair.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/KeyPair.html#fingerprint-instance_method
https://console.aws.amazon.com/ec2/home
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/EC2/InstanceCollection.html#create-instance_method

You must specify a public or privately-provided AMI. A large selection of Amazon-provided public AMIs
is available for you to use. For a list of public AMIs provided by Amazon, go to Amazon Machine Images.
Ensure that the specified image ID exists in the region in which your client was created.

The instance type must match the AMI you want to run. For 64-bit architecture, you cannot specify an
instance type of m1.small. For more information on instance types, go to Instance Families and Types.

You must specify a maximum number of instances to launch. If the specified number of instances is
greater than the number of instances you are authorized to launch, no instances are launched. The spe-
cified number of maximum instances must be no greater than the maximum number allowed for your
account; by default, this is 20. If fewer instances are available than the maximum number specified, the
largest possible number of images are launched.

Ensure that the specified key name and security group exists for the region in which your client was created.

After you have created your Amazon EC2 instance, you can log onto the AWS Management Console to
check the status of the instance.

Once your Amazon EC2 instance is running, you can remotely connect to it using your key pair. For in-
formation about connecting to your instance, see Connect to Your Amazon EC2 Instance (p. 19).

Connect to Your Amazon EC2 Instance
Before connecting to your Amazon EC2 instance, you must ensure that the instance’s SSH/RDP port is
open to traffic.You must also install an SSH/RDP client on the computer you are accessing your instance
from.You will need your Amazon EC2 instance ID and the private key from the key pair you created. For
information about how to obtain the private key, see Create a Key Pair (p. 18).

If you did not authorize ingress for the security group that your instance belongs to, you will not be able
to connect to your instance. By default, Amazon EC2 instances do not permit inbound traffic. For more
information about authorizing security group ingress, see Authorize Security Group Ingress (p. 17).

For information about how to connect to your Amazon EC2 instance, go to Connecting to Instances in
the Amazon EC2 User Guide.

Related Resources
The following table lists related resources that you'll find useful when using Amazon EC2 with the AWS
SDK for Ruby.

DescriptionResource

Provides sample code, documentation, tools, and additional
resources to help you build applications on Amazon Web
Services.

Ruby Developer Center

Provides documentation for the AWS SDK for Ruby.AWS SDK for Ruby Documentation

Provides documentation for the Amazon EC2 service.Amazon Elastic Compute Cloud
(Amazon EC2) Documentation

Version v1.0.0
19

AWS SDK for Ruby Developer Guide
Connect to Your Amazon EC2 Instance

http://aws.amazon.com/amis/AWS?browse=1
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://console.aws.amazon.com/ec2/home?#
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
http://aws.amazon.com/ruby/
http://aws.amazon.com/documentation/sdkforruby/
http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/

Additional Resources

Topics

• Home Page for AWS SDK for Ruby (p. 20)

• SDK Reference Documentation (p. 20)

• AWS Forums (p. 20)

• AWS SDK for Ruby Samples (p. 20)

Home Page for AWS SDK for Ruby
For more information about the AWS SDK for Ruby, go to the homepage for the SDK at http://
aws.amazon.com/sdkforruby.

SDK Reference Documentation
The SDK reference documentation includes the ability to browse and search across all code included
with the SDK. It provides thorough documentation, usage examples, and even the ability to browse
method source.You can find it at http://docs.aws.amazon.com/sdkforruby/latest/apidocs/Index.html.

AWS Forums
Visit the AWS forums to ask questions or provide feedback about AWS. There is a forum specifically for
AWS development in Ruby as well as forums for individual services such as Amazon S3. AWS engineers
monitor the forums and respond to questions, feedback, and issues.You can also subscribe RSS feeds
for any of the forums.

To visit the AWS forums, visit aws.amazon.com/forums

AWS SDK for Ruby Samples
The AWS SDK for Ruby is packaged with a number of samples that demonstrate basic usage of the SDK
for Ruby with AWS services such as Amazon S3 Amazon EC2 and more. By studying and running these

Version v1.0.0
20

AWS SDK for Ruby Developer Guide
Home Page for AWS SDK for Ruby

http://aws.amazon.com/sdkforruby
http://aws.amazon.com/sdkforruby
http://docs.aws.amazon.com/AWSRubySDK/latest/_index.html
aws.amazon.com/forums

samples, you can quickly gain understanding of how to use the SDK for Ruby and implement typical AWS
programming patterns in Ruby.

Topics

• Installing the samples (p. 21)

• Set your AWS Credentials (p. 22)

• Run the Samples (p. 22)

Installing the samples
When you install the SDK for Ruby using gem install, you get the libraries that you can use to start
building AWS applications in Ruby. However, to get the sample code, you'll need to download the SDK
source itself.

The SDK for Ruby is an open-source project hosted on GitHub. However, you don't need an account on
GitHub just to download the source code. In fact, you don't even need the git source control manager,
though if you do, updating the source to keep up with new versions of the SDK is easy.

To get the SDK for Ruby source, follow one of the following procedures.

To download the source with git

1. Open a terminal window and change to the directory where you want to clone the SDK for Ruby
source code. For example:

cd ~/source

2. Clone the AWS SDK for Ruby project with git:

git clone https://github.com/aws/aws-sdk-ruby.git

Note
If you have an account on GitHub and your have installed an SSH key, you can use the the SSH
git URL instead:

git clone git@github.com:aws/aws-sdk-ruby.git

To download the source without git

1. Download the latest SDK for Ruby source code archive using the following URL (either with your
browser, curl, wget or similar):

• https://github.com/aws/aws-sdk-ruby/archive/master.zip

2. Unzip it into a local directory.

3. Open a terminal window and change to the directory where you unzipped the source archive.

The samples are in the samples directory in the SDK for Ruby source.You can view the samples by
listing this directory:

Version v1.0.0
21

AWS SDK for Ruby Developer Guide
Installing the samples

http://www.git-scm.com/
https://help.github.com/articles/generating-ssh-keys
https://github.com/aws/aws-sdk-ruby/archive/master.zip

ls samples

Note
On Windows, use the dir command instead.

Set your AWS Credentials
Because these are AWS SDK for Ruby samples, you will need to provide AWS credentials so that they
can communicate with AWS.

The samples generally use the default credential provider chain (p. 5) to load credentials. The easiest
way to set your credentials so that they can be loaded by the default provider chain is to set the environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY.

For more information about how to set credentials for use with the SDK, including alternate ways to set
credentials, see Setting up AWS Credentials (p. 4).

Run the Samples
Once you have downloaded the samples and have your credentials set, you can run the samples to see
how they interact with AWS. We'll demonstrate using the upload_file.rb sample, located in the aws-
sdk-ruby/samples/s3 directory.

To run the upload_file sample

1. Open a terminal window and change to the samples/s3 directory containing the upload_file.rb
sample. For example, if you put the SDK for Ruby source in ~/source/aws-sdk-ruby, then type:

cd ~/source/aws-sdk-ruby/samples/s3

2. The upload_file.rb script requires a file to upload to S3. Copy any test file you like to the current
directory. For example, if you have a test file called test.png in your Pictures directory, you would
type:

cp ~/Pictures/test.png .

3. Run the upload_file.rb script with Ruby, providing it with an S3 bucket name (the bucket will be
created if it doesn't already exist) and the name of the file you want to upload. For example:

ruby upload_file.rb my_test_bucket test.png

If successful, the sample will output the S3 URL of the file that you just upoaded, with an option to delete
it:

Uploaded test.png to:
https://s3.amazonaws.com/my_test_bucket/test.png

Use this URL to download the file:

Version v1.0.0
22

AWS SDK for Ruby Developer Guide
Set your AWS Credentials

https://s3.amazonaws.com/my_test_bucket/test.png
(press any key to delete the object)

To use the AWS Object Relational Manager (ORM) in a Rails 3 application

1. Install the gem:

$ gem install aws-sdk

2. Start a new Rails project:

$ gem install rails
$ rails new myapp
$ cd myapp/

3. Add the following line to your Gemfile:

gem 'aws-sdk'

4. Install dependencies:

bundle install

5. Configure AWS with your access credentials.

You can use a config initializer script (e.g., config/initializers/aws.rb) and use Ruby to
configure your AWS credentials:

AWS.config({
:access_key_id => 'REPLACE_WITH_ACCESS_KEY_ID',
:secret_access_key => 'REPLACE_WITH_SECRET_ACCESS_KEY',
})

Or you can create a config/aws.yml file that will also be automatically loaded with Rails:

Just like config/database.yml, this file requires an entry for each envir
onment
http://aws.amazon.com/security-credentials
development:
access_key_id: REPLACE_WITH_ACCESS_KEY_ID
secret_access_key: REPLACE_WITH_SECRET_ACCESS_KEY

test:
 <<: *development

 production:
 <<: *development

Version v1.0.0
23

AWS SDK for Ruby Developer Guide
Run the Samples

6. Create app/models/my_record.rb as follows:

class MyRecord < AWS::Record::Base
 string_attr :name
 end

7. Create the SimpleDB domain:

$ rails console
> MyRecord.create_domain

8. Now, you can play around with the model by creating some records and querying them:

> MyRecord.find(:all).to_a
=> []

> MyRecord.new(:name => "The first one").save
=> true

> MyRecord.new(:name => "The second one").save
=> true

> MyRecord.where('name like ?', "%first%").count
=> 1

Exit the rails console before continuing to the next step:

> exit

To generate a scaffold controller for your model

1. Type the following command:

$ rails generate scaffold_controller MyRecord name:string
rails server

2. Add a route to your scaffold controller in config/routes.rb:

Myapp::Application.routes.draw do
 # add this line:
 resources :my_records
end

Now, you can create records in the browser at localhost:3000/my_records. Note that this link is valid
only if you have completed the above procedure.

Version v1.0.0
24

AWS SDK for Ruby Developer Guide
Run the Samples

http://localhost:3000/my_records

Document History

The following table describes the important changes since the last release of the AWS SDK for Ruby
Developer Guide.

Last documentation update: September 9, 2013

Release DateDescriptionChange

May 17, 2014The documentation has been restructured and the Getting
Started (p. 3) chapter has been revised with new
guidance.

The topic, AWS SDK for Ruby Samples (p. 20), has been
updated and moved into Additional Resources (p. 20).

Updated
Documentation

May 17, 2014The new topic, Specifying Credentials (p. 5), discusses
how to load AWS credentials with the AWS SDK for Ruby.

New topic

September 9, 2013This topic tracks recent changes to the AWS SDK for Ruby
Developer Guide. It is intended as a companion to the
release notes history.

New topic

Version v1.0.0
25

AWS SDK for Ruby Developer Guide

http://aws.amazon.com/releasenotes/Ruby?browse=1

	AWS SDK for Ruby
	Table of Contents
	What is the AWS SDK for Ruby?
	What's in this Guide?
	Viewing the Revision History for the SDK for Ruby
	About Amazon Web Services

	Getting Started with the AWS SDK for Ruby
	Get an AWS Account and Your AWS Credentials
	Installing the SDK for Ruby
	Setting up AWS Credentials for Use with the SDK for Ruby
	Specifying AWS Credentials for SDK for Ruby Applications
	Using Default Credentials
	Specifying a Credentials Provider
	Explicitly Specifying Credentials

	Where to Go from Here

	Using Amazon Web Services with the AWS SDK for Ruby
	Using IAM Roles for Amazon EC2 Instances with the AWS SDK for Ruby
	Using IAM Roles for EC2 Instances to Manage Your Credentials
	Walkthrough: Using IAM Roles to Retrieve an Amazon S3 Object from an EC2 Instance
	Create the sample program
	Run the Program on EC2 using IAM Roles
	Create an IAM role using the AWS Management Console
	Launch an EC2 instance with the corresponding instance profile
	Transfer the source to your EC2 instance
	Run the program within the EC2 instance

	Start an Amazon EC2 Instance
	Create an Amazon EC2 Client
	Create a Security Group
	Authorize Security Group Ingress
	Create a Key Pair
	Run an Amazon EC2 Instance
	Connect to Your Amazon EC2 Instance
	Related Resources

	Additional Resources
	Home Page for AWS SDK for Ruby
	SDK Reference Documentation
	AWS Forums
	AWS SDK for Ruby Samples
	Installing the samples
	Set your AWS Credentials
	Run the Samples

	Document History

