
AWS Flow Framework for Ruby
Developer Guide

Release 1.0

Amazon Web Services

January 22, 2015

CONTENTS

1 What is the AWS Flow Framework for Ruby? 1
1.1 Contents . 1
1.2 Important Notes About the AWS Flow Framework for Ruby 2
1.3 Where to Find the Source Code and Samples . 3
1.4 Framework and SDK References in the Text . 3
1.5 About Amazon Web Services . 3

2 Getting Started 5
2.1 Setting Up . 5
2.2 Providing AWS Credentials . 6
2.3 Hello World . 7
2.4 Basic Workflow Example . 11

3 Flow Concepts 17
3.1 Parts of an Amazon SWF Application . 17
3.2 Amazon SWF Timeout Types . 19

4 Basic Workflow Programming 23
4.1 Registering a Domain . 23
4.2 Implementing Activities . 24
4.3 Running Activities . 28
4.4 Implementing Workflows . 29
4.5 Starting Workflow and Activity Workers . 32
4.6 Starting a Workflow Execution . 34
4.7 Specifying Workflow and Activity Options . 36

5 Advanced Topics 43
5.1 Setting Task Priority . 43
5.2 Implementing Workflow Patterns . 45
5.3 Handling Errors . 48
5.4 Executing Tasks Asynchronously . 49
5.5 Retrying Failed Tasks . 52
5.6 Troubleshooting and Debugging Workflows . 56

6 Working with Other AWS Products 59
6.1 Deploying Workflows With AWS Elastic Beanstalk . 59

i

6.2 Tutorial: Hello AWS OpsWorks! . 63
6.3 Amazon SWF Metrics for CloudWatch . 73

7 Utilities 77
7.1 aws-flow-ruby . 77
7.2 aws-flow-utils . 81

8 Additional Resources 83
8.1 AWS Flow Framework for Ruby API Reference . 83
8.2 Amazon Simple Workflow Service Forums . 83
8.3 Videos . 83
8.4 Samples and Recipes . 83

9 Document History 85

Index 87

ii

CHAPTER

ONE

WHAT IS THE AWS FLOW FRAMEWORK FOR RUBY?

The AWS Flow Framework for Ruby is a version of AWS Flow Framework designed for the Ruby pro-
gramming language; it provides all of the benefits of the AWS Flow Framework while remaining true to
idiomatic Ruby programming practices. Since the AWS Flow Framework handles the mechanics of coor-
dinating workflow tasks and communicating with Amazon SWF, you can focus instead on developing the
code that describes your workflow logic.

1.1 Contents

The documentation is divided into these major sections:

• Getting Started (page 5) – basic information for new users about how to set up and use the framework.

• Flow Concepts (page 17) – describes the conceptual components of a flow application. Understanding
these will help you to understand how Amazon SWF works and what parts of a workflow you are
responsible for registering and implementing.

• Basic Workflow Programming (page 23) – covers the basics of workflow programming, describing
how to register domains, program activities and workflows, start task pollers, how to start a workflow
execution, and how to set options.

• Advanced Topics (page 43) – covers advanced workflow programming topics, such as setting task
priority, programming workflow patterns, error handling, asynchronous programming, retrying work-
flows and troubleshooting.

• Working with Other AWS Products (page 59) – describes how to use the AWS Flow Framework for
Ruby in conjunction with other AWS services, such as Amazon CloudWatch, AWS OpsWorks, and
Amazon Elastic Block Store.

• Utilities (page 77) – describes the command-line utilities provided with the AWS Flow Framework
for Ruby that you can use to generate application skeletons and to start workers.

• Additional Resources (page 83) – where to go for additional documentation, code samples, forums
and videos that don’t fit within this documentation.

• Document History (page 85) – a history of this documentation, including a description of changes
made with each major release.

• genindex – an index of terms that can be used to navigate the documentation by keyword.

1

http://www.ruby-lang.org/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

1.2 Important Notes About the AWS Flow Framework for Ruby

1.2.1 Tested Ruby Runtimes

The AWS Flow Framework for Ruby has been tested with the official Ruby 1.9 runtime, also known as
YARV. Other versions of the Ruby runtime may work, but are unsupported.

1.2.2 Forking on Microsoft Windows

Although the AWS Flow Framework for Ruby has been tested on Windows, forking does not work unless
you are using Cygwin to run Ruby.

If you are not using Cygwin, you will need to set use_forking to false in your WorkerOptions to use
the AWS Flow Framework for Ruby on Windows.

AWS::Flow::ActivityWorker.new(
@domain.client, @domain, ACTIVITY_TASKLIST, klass) { { use_forking: false } }

1.2.3 Update :version Whenever Updating Activity or Workflow Options

Once registered, any workflow or activity type is immutable. Because a workflow or activity type is identified
by the combination of name and version, whenever you modify any registration options for the type, you
must also update its version in order to register it.

1.2.4 The AWS Management Console and the AWS SDK for Ruby have Different
Region Defaults

The AWS Management Console defaults to the us-west-2 region, but the AWS SDK for Ruby defaults
to the us-east-1 region.

Because of this, be sure to set your AWS Management Console to the same region as the one in which you
registered your Amazon SWF domain using the AWS Flow Framework for Ruby, or vice-versa. Otherwise,
you won’t see your registered domain in the AWS Management Console.

You can set the region used by the AWS SDK for Ruby by setting the :region option in AWS#config. For
example:

AWS.config({
:access_key_id => 'ACCESS_KEY_ID',
:secret_access_key => 'SECRET_ACCESS_KEY',
:region => 'us-west-2',

})

2 Chapter 1. What is the AWS Flow Framework for Ruby?

AWS Flow Framework for Ruby Developer Guide, Release 1.0

1.3 Where to Find the Source Code and Samples

The AWS Flow Framework for Ruby is an open-source project. The source code is available on GitHub at:

• https://github.com/aws/aws-flow-ruby

Code samples and recipes for the AWS Flow Framework for Ruby are also available on GitHub at:

• AWS Flow Framework for Ruby samples and recipes

1.4 Framework and SDK References in the Text

All classes and methods used by the AWS Flow Framework for Ruby reside in the AWS::Flow namespace.
Because of this, AWS::Flow is usually dropped from the text when referring to the framework’s classes or
methods. For example, the AWS::Flow::Activities class is simply referred to as the Activities
class, and the AWS::Flow#workflow_client method is simply referred to as the workflow_client method.

Classes and their methods that reside within the AWS::Flow namespace follow the same
rule: AWS::Flow::Activities#activity is referred to as Activities#activity in the text, and
AWS::Flow::Core::Future#get is referred to as Core::Future#get.

In some cases, references are made to the underlying AWS SDK for Ruby. For references such as these, the
full namespace is always used. AWS::SimpleWorkflow and AWS::SimpleWorkflow::Domain
are written in full form to distinguish them from any names in the AWS::Flow namespace.

1.5 About Amazon Web Services

Amazon Web Services (AWS) is a collection of digital infrastructure services that developers can leverage
when developing their applications. The services include computing, storage, database, and application
synchronization (messaging and queuing). AWS uses a pay-as-you-go service model: you are charged only
for the services that you—or your applications—use. For new AWS users, a free usage tier is available.
On this tier, services are free below a certain level of usage. For more information about AWS costs and
the Free Tier, see Use the AWS Free Tier. To obtain an AWS account, visit the AWS home page and click
Create a Free Account.

1.3. Where to Find the Source Code and Samples 3

https://github.com/aws/aws-flow-ruby
https://github.com/awslabs/aws-flow-ruby-samples
https://aws.amazon.com/sdk-for-ruby/
http://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-free-tier.html
https://aws.amazon.com/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

4 Chapter 1. What is the AWS Flow Framework for Ruby?

CHAPTER

TWO

GETTING STARTED

This section provides information about the prerequisites you need to use the AWS Flow Framework for
Ruby, how to set up the framework, and provides a short example of using the framework to write a simple
workflow.

More advanced information about programming with the AWS Flow Framework for Ruby can be found in
the Basic Workflow Programming (page 23).

2.1 Setting Up

To set up and use the AWS Flow Framework for Ruby, you will need to meet the prerequisites (page 5) and
then install the framework (page 5).

2.1.1 Prerequisites

Before you can install the framework, you must have the following software installed:

• Ruby 1.9 or greater. The AWS Flow Framework for Ruby relies on fibers, which were introduced
with Ruby version 1.9.1. To determine the version of Ruby that you have installed, use the following
command:

ruby --version

For information about installing Ruby for the first time, or about updating your Ruby version, visit
http://www.ruby-lang.org/en/downloads/.

• AWS SDK for Ruby. The AWS Flow Framework for Ruby is built upon the Ruby SDK. If you will
be using RubyGems to install the framework, then the Ruby SDK will be automatically downloaded
and installed for you—you can ignore this prerequisite. Otherwise, you will need to obtain and install
the AWS SDK for Ruby before downloading and building the AWS Flow Framework for Ruby.

2.1.2 Installing the Framework

You can install the AWS Flow Framework for Ruby using RubyGems or by downloading the source code
and building it yourself.

5

http://www.ruby-lang.org/en/downloads/
https://rubygems.org/
http://aws.amazon.com/sdkforruby/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Using RubyGems

If you have Ruby and RubyGems installed, you can install the framework on your system with the following
command:

gem install aws-flow

This command will also install any additional libraries needed by the framework.

Building from Source

Before building the AWS Flow Framework for Ruby from source, you will first need to make sure that you
have both of the prerequisites (page 5) installed. You should also have Bundler installed on your system,
which will make it easy to assemble all of the dependencies for the framework. Then, use the following
procedure to get the framework installed on your system.

To build the framework from source:

1. Download the source code from https://github.com/aws/aws-flow-ruby. There are two ways to do this:

• Clone the repository on your local system using either of the following git commands, depend-
ing on whether you authenticate Git with SSH or HTTPS:

SSH git clone git@github.com:aws/aws-flow-ruby.git
HTTPS git clone https://github.com/aws/aws-flow-ruby.git

• Download the code in a .zip archive using the URL https://github.com/aws/aws-flow-
ruby/archive/master.zip and unpack the archive on your local system.

2. Using the command line, navigate to the directory where you cloned (or unpacked) the source code,
and then enter the aws-flow directory. For example, if you downloaded the source and unpacked it
in your Downloads directory, you would type:

cd Downloads/aws-flow-ruby-master/aws-flow

3. Install the framework with Bundler:

bundle install

2.2 Providing AWS Credentials

To connect to any AWS service, you must provide your AWS credentials. The AWS SDKs and CLIs use
provider chains to look for AWS credentials in a number of different places, including system or user
environment variables and in local AWS configuration files.

The AWS Flow Framework for Ruby is based on the SDK for Ruby; setup and specification of AWS cre-
dentials is the same for each. For more information, see Providing AWS Credentials in the AWS SDK for
Ruby Developer Guide.

6 Chapter 2. Getting Started

http://bundler.io/
https://github.com/aws/aws-flow-ruby
https://github.com/aws/aws-flow-ruby/archive/master.zip
https://github.com/aws/aws-flow-ruby/archive/master.zip
http://docs.aws.amazon.com/AWSSdkDocsRuby/latest/DeveloperGuide/prog-basics-creds.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Setting your credentials for use by the SDK for Ruby can be done in a number of ways, but here are the
recommended approaches:

• Set credentials in the AWS credentials profile file on your local system, located at:

– ~/.aws/credentials on Linux, OS X, or Unix

– C:\Users\USERNAME\.aws\credentials on Windows

This file should contain lines in the following format:

[default]
aws_access_key_id = your_access_key_id
aws_secret_access_key = your_secret_access_key

Note: Substitute your own AWS credentials values for the values your_access_key_id and
your_secret_access_key.

• Set the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

To set these variables in Linux, OS X, or Unix, use export:

export AWS_ACCESS_KEY_ID=your_access_key_id
export AWS_SECRET_ACCESS_KEY=your_secret_access_key

To set these variables in Windows, use set:

set AWS_ACCESS_KEY_ID=your_access_key_id
set AWS_SECRET_ACCESS_KEY=your_secret_access_key

• To set credentials for an EC2 instance, you should specify an IAM role and then give your EC2
instance access to that role as shown in Using IAM Roles for Amazon EC2 Instances in the AWS SDK
for Ruby Developer Guide.

Once you have set your AWS credentials using one of these methods, they can be loaded automatically by
the SDK for Ruby by using the default credential provider chain.

2.3 Hello World

To introduce you to programming with the AWS Flow Framework for Ruby, we’ll begin with a variant of
the famous “Hello, World” application. This version of Hello World will use Amazon SWF to schedule and
run an activity, which implements some work to be done.

The complete code for the example is presented in this topic, but you will also find it in the awslabs/aws-
flow-ruby-samples repository on GitHub along with many other examples of programming with the AWS
Flow Framework for Ruby.

2.3. Hello World 7

http://docs.aws.amazon.com/AWSSdkDocsRuby/latest/DeveloperGuide/ruby-dg-roles.html
https://github.com/awslabs/aws-flow-ruby-samples
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2.3.1 Prerequisites

To follow this example, you should:

• have both Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) installed, as described
in Setting Up (page 5).

• have your AWS credentials configured as described in Providing AWS Credentials (page 6).

• be familiar with navigating your filesystem using the command-line (terminal), creating directories
and files, and executing Ruby scripts.

2.3.2 Create an Activity

An activity represents a single unit of work. At its most basic, an activity is a simple Ruby method that is
housed within a class. For this example, we’ll create a single activity called hello.

To create the “hello” activity:

1. Open a command-line (terminal) window and create a new file, hello.rb.

2. Add the following code:

class HelloWorld
def hello(input)

"Hello #{input[:name]}!"
end

end

The method hello is our activity implementation—it prints a greeting customized by the value of the input
parameter, which is provided to the activity by Amazon SWF when the activity is run.

2.3.3 Generate the Application

You can use the aws-flow-utils command to automatically generate an application skeleton for you based
on the activity you just created. For this tutorial, we will create a locally-run application, but you can also
create application skeletons ready for use with AWS Elastic Beanstalk. For more information, see Deploying
Workflows With AWS Elastic Beanstalk (page 59).

To create an Amazon SWF application with aws-flow-utils:

• Open a command-line (terminal) window and type:

aws-flow-utils -c local -n HelloWorld -a hello.rb -A HelloWorld

An Amazon SWF application configured to use the AWS Flow Framework for Ruby will be created for you
in the local directory, called HelloWorld. Here is the layout of the project that will be created:

HelloWorld/
|-- Gemfile

8 Chapter 2. Getting Started

AWS Flow Framework for Ruby Developer Guide, Release 1.0

|-- flow/
| |-- activities.rb
| |-- hello.rb
| `-- workflows.rb
`-- worker.json

This is a standard layout for AWS Flow Framework for Ruby applications: a flow directory that contains
your activity (page 18) and workflow (page 17) classes and methods, and a worker.json configuration
file used to spawn workers (page 18).

2.3.4 Start an Activity Worker

To run the hello activity and provide it with its necessary input data, we need to start at least one activity
worker to receive activity tasks from Amazon SWF. You can start the activity worker right now, and it will
begin polling for tasks.

To start the worker:

• Starting within the HelloWorld directory, run the aws-flow-ruby utility, specifying the name of
your configuration file:

aws-flow-ruby -f worker.json

The output of this command lists the process IDs of your worker threads:

waiting on workers [10972, 10975] to complete

Your worker is now polling for tasks, but to provide it with tasks to process, you need to start a workflow
execution (page 19).

2.3.5 Starting a Workflow Execution

Now that your workers are running, you can start your activity by initiating a workflow execution.
This signals to Amazon SWF to begin running your workflow (or in this case, a single activity). You
can do this from anywhere: Amazon SWF will communicate with the workers you started to run the
HelloWorld.hello activity.

For example, you can use the following script (call it starter.rb) to start the activity:

require 'aws/decider'
AWS::Flow::start("HelloWorld.hello", { name: "AWS Flow Framework!" })

To run this script, open a new command-line window and run it using Ruby:

ruby starter.rb

This will begin executing the :methodname:hello activity in the background on the worker.

2.3. Hello World 9

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2.3.6 Viewing your Execution with the AWS Management Console

The program didn’t provide any output—how do you know that it ran? When you use the start method to
run an activity, Amazon SWF runs it as a workflow execution. Since Amazon SWF keeps a history of all
workflow executions that you’ve started, you can view your activity’s progress using the AWS Management
Console.

To view your activity’s execution history:

1. Log in to the AWS Management Console.

2. Go to the Amazon SWF Dashboard and select the domain: FlowDefault.

3. Click Workflow Executions. By default, only active workflow executions are listed.

4. Perform one of the following actions:

• If your workflow execution has finished, select an Execution Status of Closed in the Workflow
Execution List Parameters view, then click List Executions to refresh the list.

• If your workflow execution is still running, leave the Execution Status as Active.

5. Click the Workflow Execution ID associated with your workflow execution to see the details of the
workflow execution.

6. Click the Events tab to see a view of individual workflow events, listed in order from most recent
to oldest. Once your workflow execution is complete, you will see a WorkflowExecutionCompleted
event at the top of the history.

7. Click on the date that’s associated with the WorkflowExecutionCompleted event to view the event
details, which include the result of the workflow execution:

Congratulations, you’ve run your first Amazon SWF workflow using the AWS Flow Framework for Ruby!

2.3.7 Next Steps

This topic is meant to be only a simple introduction to the way you create workflows with AWS Flow
Framework for Ruby. Use the following topics and resources to learn more about the framework:

• To learn how to create a workflow with multiple activities, see Basic Workflow Example (page 11).

• To learn more about the AWS Flow Framework for Ruby and about how Amazon SWF applications
work, see Flow Concepts (page 17).

10 Chapter 2. Getting Started

https://aws.amazon.com/console/
https://console.aws.amazon.com/swf

AWS Flow Framework for Ruby Developer Guide, Release 1.0

• For more information about and examples of programming with the AWS Flow Framework for Ruby,
see Basic Workflow Programming (page 23) and Advanced Topics (page 43).

• For information about how you can use the AWS Flow Framework for Ruby with other AWS products,
see Working with Other AWS Products (page 59).

• You can view and download working examples that demonstrate many of the features and techniques
described in this documentation in the aws-flow-ruby-samples repository on GitHub.

2.4 Basic Workflow Example

Continuing from Hello World (page 7), this topic provides an introduction to creating a basic workflow with
the AWS Flow Framework for Ruby, and demonstrates the basic process of creating a multi-step workflow,
setting options, and starting a workflow execution.

Note: The complete code for the example is presented in this topic, but you will also find it in the
awslabs/aws-flow-ruby-samples repository on GitHub along with many other examples of programming
with the AWS Flow Framework for Ruby.

2.4.1 Prerequisites

To follow this example, you should:

• have both Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) installed, as described
in Setting Up (page 5).

• have your AWS credentials configured as described in Providing AWS Credentials (page 6).

• be familiar with navigating your filesystem using the command-line (terminal), creating directories
and files, and executing Ruby scripts.

2.4.2 Create your Application

Just as with the Hello World (page 7) example, we’ll use the aws-flow-utils command to generate an appli-
cation skeleton project.

To create the application project:

• Open a command-line (terminal) window and type:

aws-flow-utils -c local -n Booking

An Amazon SWF application configured to use the AWS Flow Framework for Ruby will be created for you
in the local directory, called Booking. Here is the layout of the project that will be created:

Booking/
|-- Gemfile
|-- flow/

2.4. Basic Workflow Example 11

https://github.com/awslabs/aws-flow-ruby-samples
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

| |-- activities.rb
| `-- workflows.rb
`-- worker.json

2.4.3 Create the Activities

For this example, we’ll define a couple of activities that emulate a travel-booking workflow:
reserve_car, reserve_air, and send_confirmation.

To define the Booking activities:

1. Open the flow/activities.rb file in your generated Booking project.

2. Add the following code:

require 'aws/decider'

class BookingActivities
extend AWS::Flow::Activities
activity :reserve_car, :reserve_air, :send_confirmation do

{
version: "1.0"

}
end

def reserve_car(request_id)
puts "Reserving car for Request ID: #{request_id}\n"

end

def reserve_air(request_id)
puts "Reserving airline for Request ID: #{request_id}\n"

end

def send_confirmation(customer_id)
puts "Sending notification to customer: #{customer_id}\n"

end
end

The activity class is based on Activities, which provides a common interface for defining and working with
activity methods. In fact, in the activity defined in the Hello World (page 7) tutorial, AWS Flow Framework
for Ruby converted the HelloWorld class to an Activities-based class behind the scenes, before
running it.

In this example, the activities are assigned options using the Activities#activity method, which takes a list
of activity names and assigns each of them the set of ActivityRegistrationOptions defined in the block.

As with HelloWorld, activities are defined by methods that take a single input parameter, and each one
performs a specific job in the workflow.

12 Chapter 2. Getting Started

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html#activity-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityRegistrationOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2.4.4 Create the Workflow

The defined activities comprise a synchronization (page 46) workflow pattern: the customer could either
reserve a car, an airline ticket, or both. In any of these cases, a confirmation will be sent.

To implement the Booking workflow:

1. Open the flow/activities.rb file in your generated Booking project.

2. Add the following code:

class BookingWorkflow
extend AWS::Flow::Workflows

workflow :make_booking do
{

version: "1.0",
default_execution_start_to_close_timeout: 120

}
end

activity_client(:client) { { from_class: "BookingActivities" } }

def make_booking(options)
puts "Workflow has started\n" unless is_replaying?
futures = []

if options[:reserve_car]
puts "Reserving a car for customer\n" unless is_replaying?
futures << client.send_async(:reserve_car, options[:request_id])

end

if options[:reserve_air]
puts "Reserving air ticket\n" unless is_replaying?
futures << client.send_async(:reserve_air, options[:customer_id])

end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all(futures)

client.send_confirmation(options[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

def is_replaying?
decision_context.workflow_clock.replaying

end
end

Workflow methods are defined in a class based on Workflows, and each workflow method takes an input
parameter, just as the activity methods did. Similarly, you can use the Workflows#workflow method to set
registration options for your workflows.

2.4. Basic Workflow Example 13

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html#workflow-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

The workflow method, make_booking, uses the input parameter to choose whether or not to run
the reserve_car and reserve_air activities, each of which it runs asynchronously using Generic-
Client#send_async, which returns immediately with a future that is filled once the activity completes. For
more information, see Executing Tasks Asynchronously (page 49).

Activities and workflows will normally be replayed if an exception occurs, which sets the value of
is_replaying in the workflow_clock attribute of the DecisionContext object held by the Work-
flows class. In this case, the workflow checks its value to avoid repeating its status messages with every
replay.

Finally, the workflow calls Core#wait_for_all to wait for all of the running activities to complete before
running the final activity, send_confirmation.

2.4.5 Start Workers

For the workflow and activities to run, we need to start workers (page 18) to listen for tasks and start running
the appropriate methods in our implementation. As with HelloWorld, we’ll start the worker using the aws-
flow-ruby (page 77) utility.

To write the runner configuration:

1. Open the worker.rb file in your Booking project.

2. Add the following JSON configuration data to the file:

{
"domain":

{
"name": "Booking"

},
"workflow_workers": [

{
"task_list": "booking_workflow_tasklist",
"number_of_workers": 4

}
],
"activity_workers": [

{
"activity_classes": ["BookingActivities"],
"task_list": "booking_activity_tasklist",
"number_of_workers": 4

}
]

}

Now, start the workers so they can begin polling for tasks.

To start the workers:

• Starting within the Booking directory, run the aws-flow-ruby utility:

aws-flow-ruby -f worker.json

14 Chapter 2. Getting Started

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/DecisionContext.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

The runner will provide you with some output describing the process IDs of your worker threads:

waiting on workers [10972, 10975, ...] to complete

Your worker is now polling for tasks, but to provide it with tasks to process, you need to start a workflow
execution (page 19).

2.4.6 Starting a Workflow Execution

When executing a workflow instead of a single activity, use the start_workflow method instead of start.

For example, you can use the following script (call it starter.rb) to start the Booking workflow:

require 'aws/decider'

AWS::Flow::start_workflow(
"BookingWorkflow.make_booking",
{

request_id: "1234567890",
customer_id: "1234567890",
reserve_car: true,
reserve_air: true,

},
{

version: "1.0",
domain: "Booking"

}
)

The call to start_workflow includes both input for the make_booking workflow and a block of StartWork-
flowOptions for the workflow execution. To run the script, open a new command-line window and run it
using Ruby:

ruby starter.rb

The make_booking workflow and its associated activities will now begin running in the background on the
previously-started workers.

You can view your workflow execution the same way as for HelloWorld (page 10), just be sure to select the
Booking domain in the Amazon SWF Dashboard.

2.4.7 Next Steps

Use the following topics and resources to learn more about the framework:

• To learn more about the AWS Flow Framework for Ruby and about how Amazon SWF applications
work, see Flow Concepts (page 17).

2.4. Basic Workflow Example 15

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html
https://console.aws.amazon.com/swf

AWS Flow Framework for Ruby Developer Guide, Release 1.0

• To learn how to deploy workflows and workers with AWS Elastic Beanstalk or AWS OpsWorks, see
Deploying Workflows With AWS Elastic Beanstalk (page 59) and Tutorial: Hello AWS OpsWorks!
(page 63).

• For more information about and examples of programming with the AWS Flow Framework for Ruby,
see Basic Workflow Programming (page 23) and Advanced Topics (page 43).

• For information about how you can use the AWS Flow Framework for Ruby with other AWS products,
see Working with Other AWS Products (page 59).

• You can view and download working examples that demonstrate many of the features and techniques
described in this documentation in the aws-flow-ruby-samples repository on GitHub.

16 Chapter 2. Getting Started

https://github.com/awslabs/aws-flow-ruby-samples

CHAPTER

THREE

FLOW CONCEPTS

Throughout the AWS Flow Framework for Ruby documentation, you will find references to a number of
code and conceptual terms specific to Amazon SWF and the flow framework. This section provides topics
that discuss the various parts of a Amazon SWF application and other essential concepts that you should
understand when designing Amazon SWF applications and workflows.

3.1 Parts of an Amazon SWF Application

An Amazon SWF application comprises various logical elements. Understanding these will help you deter-
mine how to build your own flow applications.

3.1.1 Domains

A domain is an identifier (name) that you create to hold workflow processes and data. When you register a
workflow type or activity type, you associate it with a domain name, in which all of the workflow activity
takes place. Workflows and activities can only communicate with workflows and activities that exist within
the same domain, and task lists that are used within a domain are distinct from task lists that exist in a
separate domain, even if the task list has the same name as one that is being used in the other domain.

When you register a domain, you provide it with a workflow retention period, which is the minimum number
of days that workflow history is retained for closed workflow executions within that domain.

Registering a domain is optional—The AWS Flow Framework for Ruby provides a default domain,
FlowDefault, which it uses for workflow executions that are started without specifying a domain name
to use. The default domain has a retention period of 7 days.

To learn how to register and deprecate domains, see Registering a Domain (page 23).

3.1.2 Workflows

A workflow is the primary element in all Amazon SWF applications. It represents a sequence of steps
required to perform a specific task. The steps needn’t be strictly sequential; a workflow can consist of tasks
that run sequentially, in parallel, synchronously or asynchronously. How your workflow behaves depends
largely upon your business logic—the steps that are required to complete a process.

17

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Because workflows contain code that responds to events that are managed by the Amazon SWF service,
making decisions about what steps to take and how workflow execution proceeds, a workflow is also com-
monly referred to as a decider. Workflows are also responsible for passing data from and to any activities
and child workflows that it runs.

The AWS Flow Framework for Ruby provides a default decider for you, so for simple, sequential work-
flows, you may not need to write any workflow code yourself. For a very simple example of a AWS Flow
Framework for Ruby application that uses a default decider, see the Hello World (page 7) topic.

A workflow consists of two parts: a workflow type registration and a workflow implementation:

• When you register a workflow, you provide a name, a version, and a set of options that provide default
settings. These settings are applied by default to any workflow that uses the same workflow name and
version.

• The workflow implementation consists of the code that provides your business logic. This is the part
of the workflow that is specifically referred to as the decider. Workflow code is associated with a
workflow type registration, but you can use the same code for different workflow types: the registered
workflow type controls the default options that will be applied to the workflow when it’s run.

3.1.3 Activities

An activity represents a step, or single unit of work, in a workflow. An activity can calculate a value based
on input data, receive input from a web application, wait for a human task to be completed, or perform any
other action that represents a step in your workflow.

Similar to workflows (page 17), an activity consists of an activity type registration, uniquely identified by a
name and version and which provides default options, and an activity implementation which provides the
code that will be executed when the activity is run.

Activities are scheduled by a workflow implementation (page 17), in response to decision tasks received
from the workflow’s task list (page 18).

See Implementing Activities (page 24) to learn how to implement activites with the AWS Flow Framework
for Ruby.

3.1.4 Task Lists

A task list is a logical entity used by Amazon SWF to manage events for your workflows and activities.
When you register a workflow or activity, you can provide it with a task list name that can be referred to in
order to receive tasks for that workflow or activity.

Workflow and activity tasks are polled for separately, even if they use the same task list name. Workflow
tasks, for example, are delivered only to pollers that exist within your workflow code, and activity tasks are
delivered only to your activities.

3.1.5 Workers

Workflow and Activity workers are responsible for receiving tasks from Amazon SWF and in taking appro-
priate actions to start a workflow or schedule an activity to be run. They are each configured with a task list

18 Chapter 3. Flow Concepts

AWS Flow Framework for Ruby Developer Guide, Release 1.0

to poll on.

With the AWS Flow Framework for Ruby, you can start workers using the ActivityWorker and Workflow-
Worker classes, or by using the aws-flow-ruby command-line utility to spawn a number of workers when
provided with activity and workflow classes.

Your workers will not begin receiving workflow or activity task events until a workflow execution (page 19)
is started.

For more information about starting workers, see Starting Workflow and Activity Workers (page 32).

3.1.6 Workflow Execution

A workflow execution refers to an individual execution of a workflow using a workflow_client’s Workflow-
Client#start_execution method (or by any other means, such as starting a workflow from the command line
or using the AWS Management Console).

Once you begin executing a workflow, your workers (page 18) will begin receiving task events from Amazon
SWF.

3.2 Amazon SWF Timeout Types

To ensure that workflow executions run correctly, Amazon SWF enables you to set different types of time-
outs. Some timeouts specify how long the workflow can run in its entirety. Other timeouts specify how long
activity tasks can take before being assigned to a worker and how long they can take to complete from the
time they are scheduled. All timeouts in the Amazon SWF API are specified in seconds. Amazon SWF also
supports the string “NONE” as a timeout value, which indicates no timeout.

For timeouts related to decision tasks and activity tasks, Amazon SWF adds an event to the workflow
execution history. The attributes of the event provide information about what type of timeout occurred and
which decision task or activity task was affected. Amazon SWF also schedules a decision task. When the
decider receives the new decision task, it will see the timeout event in the history and take an appropriate
action by calling the RespondDecisionTaskCompleted action.

A task is considered open from the time that it is scheduled until it is closed. Therefore a task is reported as
open while a worker is processing it. A task is closed when a worker reports it as completed, canceled, or
failed. A task may also be closed by Amazon SWF as the result of a timeout.

3.2.1 Timeouts for Workflows and Workflow Executions

The following diagram shows how workflow execution and workflow (decider) timeouts are related to the
lifetime of a workflow:

3.2. Amazon SWF Timeout Types 19

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityWorker.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowWorker.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowWorker.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html#start_execution-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html#start_execution-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

There are two timeout types that are relevant to workflow and decision tasks:

Execution Start to Close This timeout specifies the maximum time that a workflow execution can take to
complete. It is set as a default during workflow registration, but it can be overridden with a different
value when the workflow is started. If this timeout is exceeded, Amazon SWF closes the workflow
execution and adds an event of type WorkflowExecutionTimedOut to the workflow execution history.

In addition to the timeoutType, the event attributes specify the childPolicy that is in effect for this
workflow execution. The child policy specifies how child workflow executions are handled if the
parent workflow execution times out or otherwise terminates. For example, if the childPolicy is set to
TERMINATE, then child workflow executions will be terminated.

Once a workflow execution has timed out, you cannot take any action on it other than visibility calls.

Task Start to Close This timeout specifies the maximum time that the corresponding decider can take to
complete a decision task. It is set during workflow type registration. If this timeout is exceeded, the
task is marked as timed out in the workflow execution history, and Amazon SWF adds an event of
type DecisionTaskTimedOut to the workflow history.

The event attributes will include the IDs for the events that correspond to when this decision task
was scheduled (scheduledEventId) and when it was started (startedEventId). In addition to adding the
event, Amazon SWF also schedules a new decision task to alert the decider that this decision task
timed out.

After this timeout occurs, an attempt to complete the timed-out decision task using RespondDecision-
TaskCompleted will fail.

3.2.2 Timeouts for Activities

The following diagram shows how timeouts are related to the lifetime of an activity task:

20 Chapter 3. Flow Concepts

AWS Flow Framework for Ruby Developer Guide, Release 1.0

There are four timeout types that are relevant to activity tasks:

Activity Task Start to Close This timeout specifies the maximum time that an activity worker can take
to process a task after the worker has received the task. Attempts to close a timed out activity
task using RespondActivityTaskCanceled, RespondActivityTaskCompleted, and RespondActivity-
TaskFailed will fail.

Activity Task Heartbeat This timeout specifies the maximum time that a task can run before providing its
progress through the RecordActivityTaskHeartbeat action.

Activity Task Schedule to Start This timeout specifies how long Amazon SWF waits before timing out
the activity task if no workers are available to perform the task. Once timed out, the expired task will
not be assigned to another worker.

Activity Task Schedule to Close This timeout specifies how long the task can take from the time it is
scheduled to the time it is complete. As a best practice, this value should not be greater than the
sum of the task schedule-to-start timeout and the task start-to-close timeout.

Note: Each of the timeout types has a default value, which is generally set to NONE (infinite). The
maximum time for any activity execution is limited to one year, however.

You set default values for these during activity type registration, but you can override them with new values
when you schedule the activity task. When one of these timeouts occurs, Amazon SWF will add an event
of type ActivityTaskTimedOut to the workflow history. The timeoutType value attribute of this event will
specify which of these timeouts occurred. For each of the timeouts, the value of timeoutType is shown in
parentheses. The event attributes will also include the IDs for the events that correspond to when the activity
task was scheduled (scheduledEventId) and when it was started (startedEventId). In addition to adding the
event, Amazon SWF also schedules a new decision task to alert the decider that the timeout occurred.

3.2. Amazon SWF Timeout Types 21

AWS Flow Framework for Ruby Developer Guide, Release 1.0

22 Chapter 3. Flow Concepts

CHAPTER

FOUR

BASIC WORKFLOW PROGRAMMING

This section covers the basics of workflow programming, describing how to register domains, program
activities and workflows, start task pollers, how to start a workflow execution, and how to set options. You
can find further information about programming with the AWS Flow Framework for Ruby in the Advanced
Topics (page 43) section.

Note: In addition to the examples provided within these topics, code samples that demonstrate many of the
features discussed here can be found in the AWS Flow Framework for Ruby samples and recipes repository,
available at:

• https://github.com/awslabs/aws-flow-ruby-samples

4.1 Registering a Domain

To register a domain with the AWS Flow Framework for Ruby, use the underlying AWS SDK for Ruby.
When you register a domain, you must provide Amazon SWF with the domain’s name and retention period,
measured in days. The retention period is the number of days that workflow execution history will be
retained for closed workflows.

Here’s a typical method that either retrieves an existing domain, or registers it if the domain name has not
yet been registered:

require 'aws/decider'

get a SWF object from the AWS Ruby SDK.
swf = AWS::SimpleWorkflow.new

attempt to retrieve a domain. If it doesn't already exist, then register it.
domain = swf.domains['ExampleDomain']
unless domain.exists?

domain = swf.domains.create('ExampleDomain', 10)
end

You can also use the aws-flow-ruby (page 77) utility to register a domain—if you specify a domain in its
worker configuration file that doesn’t yet exist, the AWS Flow Framework for Ruby will attempt to register
it for you.

23

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Note: When using the AWS Flow Framework for Ruby, registering a domain is optional. If you don’t
declare a domain to use for your workflows, the framework will use the default domain, FlowDefault,
with a retention period of 7 days.

For more information about registering domains with the AWS SDK for Ruby, see SimpleWorkflow in the
SDK for Ruby Reference.

4.1.1 Deprecating a Registered Domain

If you have registered a domain name and you would like to stop any new workflows from being created in
it, you can deprecate a registered domain. However, once you deprecate a domain:

• you can no longer run any workflows within it.

• you cannot re-register the domain within the same region and using the same account as the deprecated
domain.

Given these caveats, you can deprecate a domain by using the
AWS::SimpleWorkflow::Client#deprecate_domain method:

require 'aws/decider'

get a SWF object from the AWS Ruby SDK.
swf = AWS::SimpleWorkflow.new

deprecate the domain
swf.client.deprecate_domain({ name: 'ExampleDomain' })

4.2 Implementing Activities

All activities (page 18) in that are run with Amazon SWF use a registered activity type to identify the activity
and set its default options. You can have the AWS Flow Framework for Ruby register the activity for you,
or you can do this yourself. Either way, the primary attribute of any activity is the code that is run when the
activity is run.

4.2.1 An Activity Implementation is a Ruby Method

In Hello World (page 7), an activity was defined simply by creating an enclosing class and defining an
activity method:

class HelloWorld
def hello(input)

"Hello #{input[:name]}!"
end

end

24 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com//AWSRubySDK/latest/AWS/SimpleWorkflow.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html#deprecate_domain-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

The activity takes an input parameter that can receive data supplied to it by Amazon SWF when the activity
is run.

Activities that are implemented this way are ideal if you’re running a single activity with a default decider
and default activity type. For more control over your activity type registration and to set activity options,
you should base your activities classes on the Activities class, such as this set of activities from the Booking
sample:

require 'aws/decider'

class BookingActivities
extend AWS::Flow::Activities
activity :reserve_car, :reserve_air, :send_confirmation do

{
version: "1.0"

}
end

def reserve_car(request_id)
puts "Reserving car for Request ID: #{request_id}\n"

end

def reserve_air(request_id)
puts "Reserving airline for Request ID: #{request_id}\n"

end

def send_confirmation(customer_id)
puts "Sending notification to customer: #{customer_id}\n"

end
end

This class defines three activities and sets the same activity registration options (page 37) for each. In your
own Activities-based classes, you can use this technique to set the same options for multiple activity
methods, or you can provide separate options for each activity.

4.2.2 Activity Registration

Amazon SWF must know about your activity type in order to process tasks for it; registering an activity
type provides the activity’s name, version, and default options to Amazon SWF so that the activity can be
referenced and run in your workflows.

Activities that you define using the AWS Flow Framework for Ruby are automatically registered by the
framework when necessary. Activities that have already been registered are used when they are referenced
in your code, and any activities that are not yet registered will be registered for you by the framework when
your code is run for the first time.

When the AWS Flow Framework for Ruby registers an activity type for you, its name is taken to be a combi-
nation of the activity’s class and method names. For example, the reserve_car method defined in the Book-
ing example’s BookingActivities class will be named BookingActivities.reserve_car in
your workflow history.

4.2. Implementing Activities 25

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Whether you define one or not, version of an activity is required by Amazon SWF, and is either automatically
assigned by the framework (in the case that you define an activity to run as in the Hello World sample) or
can be set using an the version registration option when the activity is declared in your Activities-based
class, as with the Booking sample. When an activity version is automatically applied, the default value of
1.0 is used. Activity versions are not restricted to numeric values: “1.0”, “1.2a”, and “version_three” are
all valid version fields.

Like all Amazon SWF types, activity types are scoped to a particular domain (page 17), AWS account, and
region. Activities that are registered in other domains, regions, or to another account are unrelated, even if
they share the same name, version or other options.

Within a domain, region and account, an activity type is uniquely identified by the combination of its name
and version. Once registered, an activity type is immutable: Any changes you make to an activity’s default
options must be accompanied by either a change to its name, its version, or both.

4.2.3 Scheduling and Running Activities

Activities are scheduled to be run within your workflow implementation, also known as your workflow’s
decider logic. The AWS Flow Framework for Ruby provides a default decider that can run a single activity
that you provide to the start method:

require 'aws/decider'
AWS::Flow::start("HelloWorld.hello", { name: "AWS Flow Framework!" })

When working with multi-step workflows, you will often want to write the decider logic yourself. The
Booking sample implements a synchronization (page 46)-pattern workflow by scheduling two activities
asynchronously, and then waiting for all of the futures to be set before completing the workflow:

class BookingWorkflow
extend AWS::Flow::Workflows

workflow :make_booking do
{

version: "1.0",
default_execution_start_to_close_timeout: 120

}
end

activity_client(:client) { { from_class: "BookingActivities" } }

def make_booking(options)
puts "Workflow has started\n" unless is_replaying?
futures = []

if options[:reserve_car]
puts "Reserving a car for customer\n" unless is_replaying?
futures << client.send_async(:reserve_car, options[:request_id])

end

if options[:reserve_air]

26 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

puts "Reserving air ticket\n" unless is_replaying?
futures << client.send_async(:reserve_air, options[:customer_id])

end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all(futures)

client.send_confirmation(options[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

def is_replaying?
decision_context.workflow_clock.replaying

end
end

Note: For more information about implementing workflow patterns and about writing asynchronous
workflows, see the topics Implementing Workflow Patterns (page 45) and Executing Tasks Asynchronously
(page 49), respectively.

Activities are run when an activity worker (page 18) that is polling for activity tasks receives an activity
task event from Amazon SWF for a particular activity, runs the activity and then reports the result back to
Amazon SWF.

You can code activity workers (page 32) yourself, or you can use the aws-flow-ruby utility to spawn workers
that will automatically run activities for you.G Information about how to use each method is provided in the
linked topics.

4.2.4 For More Information

More information and further examples of activity implementation, registration and scheduling, refer to the
following topics and resources:

• Specifying Workflow and Activity Options (page 36) – provides information about setting activity
options during registration or when scheduling an activity.

• Amazon SWF Timeout Types (page 19) – provides information about timeouts for activities and what
they mean in the context of the activity’s life-cycle.

• Implementing Workflow Patterns (page 45) – provides information about how to design your decider
code to replicate many common workflow patterns.

• Setting Task Priority (page 43) – provides information about how to set a task priority value to your
activities to affect which activity tasks are delivered to your workers first.

• aws-flow-ruby (page 77) – provides information about how to set up and spawn workers for your
activities and workflows with a simple configuration file and the aws-flow-ruby utility.

• awslabs/aws-flow-ruby-samples – a GitHub repository with examples and recipes that provide code
examples of activity and workflow implementations using the AWS Flow Framework for Ruby.

4.2. Implementing Activities 27

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

4.3 Running Activities

If you need to run only a single activity at a time, you don’t need to write any workflow code—you can use
the start method to automatically create a workflow and start a workflow execution to run your activity.

Note: The start method can run only one activity per workflow execution. If your workflow consists
of more than one activity, create decider methods of your own. For more information, see Implementing
Workflows (page 29).

To run an activity

1. Write an activity method that takes one parameter, the activity input. The activity method must reside
within a class. For example:

class HelloWorld
def hello(input)

"Hello #{input[:name]}!"
end

end

2. Call the start method, providing it with the activity’s name (a combination of its class name and
method name, joined by a period) and a block of optional input data to pass to the activity. For
example, to run the hello activity method and provide it with input:

require 'aws/decider'
AWS::Flow::start("HelloWorld.hello", { name: "AWS Flow Framework!" })

The start method will register your activity if necessary, create and register a workflow to run it, and will
start a workflow execution.

If you do not provide any activity options to start, it will use the following defaults:

Option Value
version “1.0”
data_converter YAMLDataConverter
exponential_retry { maximum_attempts: 3 }
start_to_close_timeout “NONE”
schedule_to_close_timeout “NONE”
schedule_to_start_timeout “NONE”
heartbeat_timeout “NONE”
task_list “USE_WORKER_TASK_LIST”

You can modify any of these activity options by passing them as a block after the input data when you call
start:

require 'aws/decider'
AWS::Flow::start("HelloWorld.hello", { name: "AWS Flow Framework!" }) {

{
heartbeat_timeout: 10,

28 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

task_priority: 500,
}

}

4.3.1 For More Information

Use the following topics and resources to learn more about running activities:

• Hello World (page 7) – a basic tutorial that leads you through the process of creating and launching
an activity using the start method.

• Implementing Activities (page 24) – provides more information about writing activity code.

• Specifying Workflow and Activity Options (page 36) – provides information about the options that can
be set on activities and how to set them.

• Retrying Failed Tasks (page 52) – how to run activities that are automatically retried when they fail.

4.4 Implementing Workflows

A workflow represents the path of execution required to perform a sequence of tasks, which are usually
activities, but which can also be child workflows (which might also have activities and child workflows of
their own).

In some cases, you don’t need to implement your own workflow. If you would like to run a single activity,
you can use the start method to run a single activity using a default workflow. For more information, see
the Hello World (page 7) tutorial for an example, and Running Activities (page 28) for detailed information
about the AWS Flow Framework for Ruby-supplied default decider.

4.4.1 A Decider Implementation Defines Your Workflow

At the center of a workflow implementation is your decider logic. Similarly to activities, you provide
a workflow implementation by declaring a class based on the Workflows class and provide methods that
define your deciders. For example, here is the implementation of the workflow used in the Booking sample:

class BookingWorkflow
extend AWS::Flow::Workflows

workflow :make_booking do
{

version: "1.0",
default_execution_start_to_close_timeout: 120

}
end

activity_client(:client) { { from_class: "BookingActivities" } }

def make_booking(options)

4.4. Implementing Workflows 29

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

puts "Workflow has started\n" unless is_replaying?
futures = []

if options[:reserve_car]
puts "Reserving a car for customer\n" unless is_replaying?
futures << client.send_async(:reserve_car, options[:request_id])

end

if options[:reserve_air]
puts "Reserving air ticket\n" unless is_replaying?
futures << client.send_async(:reserve_air, options[:customer_id])

end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all(futures)

client.send_confirmation(options[:customer_id])

puts "Workflow has completed\n" unless is_replaying?
end

def is_replaying?
decision_context.workflow_clock.replaying

end
end

This example defines a single decider, make_booking, which declares an activity client using the Work-
flows#activity_client method to schedule activities with. The activity client takes a set of ActivityOptions
that it will use when an activity is scheduled using the client.

Your decider can schedule activities synchronously or asynchronously, can spawn child workflows, and can
perform many other functions to allow you to customize how your workflow progresses. While you design
your workflow classes and decider methods, keep the following points in mind:

• Do not use decider methods to perform long-running tasks. The AWS Flow Framework for Ruby
replay mechanism will repeat that task multiple times. Even asynchronous workflow methods will
typically run more than once. Instead, use activities for long running tasks; the replay mechanism
executes activities only once.

• Your workflow logic must be completely deterministic. Every episode (a single replay of the workflow)
must take the same control flow path. For example, the control flow path should not depend on the
current time.

4.4.2 Registering Workflows

Amazon SWF workflows are represented by a workflow type that is registered with Amazon SWF. As with
activities (page 25), the AWS Flow Framework for Ruby handles workflow registration automatically for
your workflow types when necessary.

Workflow types registered by the framework are named using a combination of the workflow class name
and decider method name; in the Booking example, the workflow type registered for the make_booking

30 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html#activity_client-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html#activity_client-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

decider method will be BookingWorkflow.make_booking.

You can set default options for workflow types when you declare decider methods in your Workflows-based
class:

workflow :make_booking do
{

version: "1.0",
default_execution_start_to_close_timeout: 120

}
end

The block of options associated with the make_booking declaration are used as default options whenever
the workflow is run, unless they are overridden when laucnhing the workflow. As with activities, workflow
types are immutable once registered, so if you need to change the default options for a workflow, you will
also need to change its name, version or both in order to keep it from interfering with workflows associated
with the previously-registered type.

When using the default decider (page 28), the AWS Flow Framework for Ruby will register and use its own
workflow type, named RubyFlowDefaultWorkflow.start, with a version number of 1.0. You
cannot redefine or change the default options associated with this workflow type.

4.4.3 Launching and Running Workflows

Your decider code won’t be run until:

1. A workflow execution is started.

2. A workflow worker receives a decision task to start the workflow.

You can start a workflow worker that polls for decision tasks by implementing one yourself (page 32) or by
using the aws-flow-ruby to spawn workers for you. Information about how to use each method is provided
in the linked topics.

To start a workflow execution, you can use the start_workflow method, providing it with your registered
workflow name, a block of input data for your workflow, and a set of WorkflowOptions used to start the
workflow. For example:

require 'aws/decider'

AWS::Flow::start_workflow(
"BookingWorkflow.make_booking",
{

request_id: "1234567890",
customer_id: "1234567890",
reserve_car: true,
reserve_air: true,

},
{

version: "1.0",
domain: "Booking"

4.4. Implementing Workflows 31

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

}
)

4.4.4 For More Information

• Specifying Workflow and Activity Options (page 36) – provides information about setting workflow
options during registration or when launching a workflow.

• Amazon SWF Timeout Types (page 19) – provides information about timeouts for workflows and what
they mean in the context of the workflow’s life-cycle.

• Implementing Workflow Patterns (page 45) – provides information about how to design your decider
code to replicate many common workflow patterns.

• Setting Task Priority (page 43) – provides information about how to set a task priority value to your
workflows to affect which decider tasks are delivered to your workers first.

• aws-flow-ruby (page 77) – provides information about how to set up and spawn workers for your
workflows and activities with a simple configuration file and the aws-flow-ruby utility.

• awslabs/aws-flow-ruby-samples – a GitHub repository with examples and recipes that provide code
examples of workflow and activity implementations using the AWS Flow Framework for Ruby.

4.5 Starting Workflow and Activity Workers

Workflows and Activities are run by workflow and activity workers. A worker is responsible for polling for
tasks from Amazon SWF on a task list (page 18), then starting the appropriate workflow or activity based
on the message in the task event.

The AWS Flow Framework for Ruby takes care of managing the workers for you. All you need to do is
instantiate and start the workers, passing optional configuration data to control how the workers operate.

You can start the workers in your Ruby code, or start them by using the aws-flow-ruby utility. If you
are planning on deploying fleets of workers using AWS OpsWorks, you should use aws-flow-ruby. For
more information about using Amazon SWF with AWS OpsWorks, see Tutorial: Hello AWS OpsWorks!
(page 63).

4.5.1 Using aws-flow-ruby to Start Workers

You can begin both activity and workflow workers by providing a small JSON configuration file to the aws-
flow-ruby utility, also referred to as the runner. Here is an example configuration, booking.json, that
configures a small fleet of workers for the Booking sample:

{
"domain":

{
"name": "Booking"

},

32 Chapter 4. Basic Workflow Programming

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

"workflow_workers": [
{

"task_list": "booking_workflow_tasklist",
"number_of_workers": 4

}
],
"activity_workers": [

{
"activity_classes": ["BookingActivities"],
"task_list": "booking_activity_tasklist",
"number_of_workers": 4

}
]

}

The runner interpets this file and creates a set of workers as you specify, using the activities and workflows
that are defined in activities.rb and workflows.rb files within the flow directory where the
configuration file exists. See aws-flow-ruby (page 77) for a complete description of how to configure the
runner.

4.5.2 Starting Activity Workers in Code

To start activity workers in your code:

1. Create a new ActivityWorker object, providing it with a AWS::SimpleWorkflow::Client object, the
domain (page 17), the task list (page 18) name to poll for activity tasks on, and an Activities-based
class to use to access its activity implementations. For example:

require 'aws/decider'

swf = AWS::SimpleWorkflow.new

activity_worker = AWS::Flow::ActivityWorker.new(
swf.client, "HelloWorldDomain", "hello_world_activity_tasks",
HelloWorldActivities)

2. Call start on the ActivityWorker. You can set whether or not the activities should be registered
first by using the should_register parameter.

activity_worker.start(true)

4.5.3 Starting Workflow Workers in Code

To start workflow workers in your code:

1. Create a new WorkflowWorker object, providing it with similar options as with an
ActivityWorker: a AWS::SimpleWorkflow::Client object, the domain (page 17), the task list

4.5. Starting Workflow and Activity Workers 33

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityWorker.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowWorker.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Client.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

(page 18) name to poll for workflow tasks on, and a Workflows-based class to use to access its activity
implementations. For example:

require 'aws/decider'

swf = AWS::SimpleWorkflow.new

workflow_worker = AWS::Flow::WorkflowWorker.new(
swf.client, "HelloWorldDomain", "hello_world_decision_tasks",
HelloWorldWorkflow)

2. Call start on the WorkflowWorker. You can set whether or not the workflows should be registered
first by using the should_register parameter.

workflow_worker.start(true)

4.5.4 For More Information

For more information about implementing workers, refer to the following topics and resources:

• aws-flow-ruby (page 77) – provides information about how to set up and spawn workers for your
activities and workflows with a simple configuration file and the aws-flow-ruby utility.

• Tutorial: Hello AWS OpsWorks! (page 63) – a tutorial that leads you through the process of spawning
SWF worker fleets with AWS OpsWorks.

• awslabs/aws-flow-ruby-samples – a GitHub repository with examples and recipes that provide code
examples of activity and workflow implementations using the AWS Flow Framework for Ruby.

4.6 Starting a Workflow Execution

Once you have defined your workflows and activities, have registered them with Amazon SWF and have
started activity and workflow workers, your workflow is ready to run. However, until you start a workflow
execution, Amazon SWF will not begin delivering tasks to your workers.

You have a number of options when starting a workflow with the AWS Flow Framework for Ruby:

1. If you are running a single activity only, use AWS::Flow#start.

2. If you are running multiple activities, use AWS::Flow#start_workflow.

3. Use a workflow client to start a workflow execution with
AWS::Flow::WorkflowClient#start_execution.

Since most workflows use multiple activities, this topic will focus on the final two methods. For information
about using the start method to run a single activity, see Hello World (page 7) and Running Activities
(page 28).

34 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

4.6.1 Starting a Workflow Execution with start_workflow

To start a workflow execution, the preferred method is to use start_workflow. The simplest way to run it is
to pass it the workflow name (class.method), input data, and a hash of StartWorkflowOptions:

require 'aws/decider'

AWS::Flow::start_workflow(
"BookingWorkflow.make_booking",
{

request_id: "1234567890", customer_id: "1234567890",
reserve_car: true, reserve_air: true,

},
{

domain: "Booking",
version: "1.0a"

}
)

Important: The domain and version options are required.

You can also pass the workflow class as the first argument, and specify the method to run in the passed-in
options. This is equivalent to the preceding method:

require 'aws/decider'

AWS::Flow::start_workflow(
"BookingWorkflow",
{

request_id: "1234567890", customer_id: "1234567890",
reserve_car: true, reserve_air: true,

},
{

domain: "Booking",
execution_method: "make_booking",
version: "1.0a"

}
)

Use the from_class option to use options set in the workflow class:

require 'aws/decider'
require_relative 'flow/workflows.rb'

AWS::Flow::start_workflow(
"BookingWorkflow",
{

request_id: "1234567890", customer_id: "1234567890",
reserve_car: true, reserve_air: true,

},
{

4.6. Starting a Workflow Execution 35

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#start_workflow-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

domain: "Booking",
from_class: "BookingWorkflow"

}
)

4.6.2 Starting a Workflow Execution with a WorkflowClient

In addition to using start_workflow, you can start a workflow execution by using a WorkflowClient object.

To start a workflow execution:

1. Get a WorkflowClient object by calling workflow_client and providing it with an
AWS::SimpleWorkflow object, a AWS::SimpleWorkflow::Domain object, and an optional block of
StartWorkflowOptions:

require 'aws/decider'

swf = AWS::SimpleWorkflow.new
domain = swf.domains['HelloWorldDomain']

workflow_client = AWS::Flow::workflow_client(swf.client, domain) {
{ task_list: "hello_world_decision_tasks" }

}

2. Use the WorkflowClient#start_execution method, passing it optional input data for the workflow, and
a hash of WorkflowOptions:

workflow_input = "Amazon SWF"
workflow_client.start_execution(
workflow_input, { { workflow_name: 'my_workflow_execution_name' } })

Once you’ve started the workflow execution, your workflow and activity pollers will begin receiving events
on their respective task lists.

4.6.3 For More Information

• Specifying Workflow and Activity Options (page 36) – provides information about setting options on
a workflow client or when starting a workflow execution.

• awslabs/aws-flow-ruby-samples – a GitHub repository with examples and recipes that provide work-
ing code using the AWS Flow Framework for Ruby.

4.7 Specifying Workflow and Activity Options

The AWS Flow Framework for Ruby allows you to set options that affect how your workflows and activities
are run. This topic lists each of the options that you can set, as well as providing detail about how, and when,
you can set them.

36 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#workflow_client-instance_method
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow.html
http://docs.aws.amazon.com/AWSRubySDK/latest/AWS/SimpleWorkflow/Domain.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/StartWorkflowOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html#start_execution-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowOptions.html
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

4.7.1 Activity Registration Options

The following registration options can be set only when declaring an activity type. Workers will use these
values to register the type with Amazon SWF. Once these values are set, you must set a different version
(essentially declaring a new type) if you want to change any of the registration options.

default_task_heartbeat_timeout The time, in seconds, within which an activity must record a heartbeat
progress notification (by calling record_activity_heartbeat in the ActivityExecutionContext class).

Optional. The default value is "NONE", which will allow tasks to run indefinitely before reporting
progress.

default_task_list The name of the task list used for this activity type.

Optional. The default value is "USE_WORKER_TASK_LIST", a restricted string that, when used,
will cause the activity to use the same task list that the activity worker is polling on.

default_task_priority The task priority to set, from -2147483647 to 2147483647, where higher num-
bers indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the
same task list. Tasks that are not assigned a priority are given the default value of 0. For more
information, see Setting Task Priority (page 43).

Optional. The default value is 0.

default_task_schedule_to_close_timeout The maximum duration, in seconds, of an activity execution
from the time it is scheduled to when it is marked as complete.

Optional. The default value is "NONE"; the activity has no restriction on when it must complete after
being scheduled.

default_task_schedule_to_start_timeout The maximum duration, in seconds, from the time when the
activity is scheduled to when it starts.

Optional. The default value is "NONE"; the activity has no restriction on when it must start after
being scheduled.

default_task_start_to_close_timeout The maximum duration, in seconds, of the activity execution from
the time it starts to when it is marked as complete.

Optional. The default value is "NONE"; the activity has no restriction on when it must complete after
being started.

version The activity version to use. This value can be set only when declaring a activity type.

Required. You must always set version when you register a activity type, or when changing any
activity registration options.

4.7.2 Workflow Registration Options

The following registration options can be set only when declaring a workflow type. Workers will use these
values to register the type with Amazon SWF. Once these values are set, you must set a different version
(essentially declaring a new type) if you want to change any of the registration options.

4.7. Specifying Workflow and Activity Options 37

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityExecutionContext.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

default_child_policy The optional policy to use for the child workflow executions when a workflow exe-
cution of this type is terminated.

Optional. The default value is "TERMINATE", which will automatically terminate all child execu-
tions when the parent workflow is terminated.

default_execution_start_to_close_timeout The maximum duration, in seconds, of a workflow execution
from the time it starts to when it is marked as complete.

Required. There is no default value. You must set this value either during registration or when
executing the workflow.

default_task_list The name of the default task list used for this workflow type.

Optional. The default value is "USE_WORKER_TASK_LIST", a restricted string that, when used,
will cause the workflow to use the same task list that the workflow worker is polling on.

default_task_priority The task priority to set, from -2147483647 to 2147483647, where higher num-
bers indicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the
same task list. Tasks that are not assigned a priority are given the default value of 0. For more
information, see Setting Task Priority (page 43).

Optional. The default value is 0.

default_task_start_to_close_timeout The maximum duration, in seconds, of a workflow task from the
time it starts to when it is complete.

Optional. The default value is 30.

version The workflow version to use. This value can be set only when declaring a workflow type.

Required. You must always set version when you register a workflow type, or when changing any
workflow registration options.

4.7.3 Activity Runtime Options

These options can be set when declaring an activity, initializing a new activity client or when scheduling an
activity. They will override any default options with the same name.

data_converter The data converter class to use to interpret data delivered from Amazon SWF. If not speci-
fied, then YAMLDataConverter will be used by default.

heartbeat_timeout The time, in seconds, within which an activity must record a heartbeat progress notifi-
cation (by calling record_activity_heartbeat in the ActivityExecutionContext class).

input Input data that will be passed to the activity when it starts. You can also pass input directly as a
parameter when scheduling the activity.

manual_completion Set to true when you have a human task (an activity that will be completed manu-
ally). In this case, the activity will return immediately after starting, but it will not complete automat-
ically when it returns.

schedule_to_close_timeout The maximum duration, in seconds, of an activity execution from the time it
is scheduled to when it is marked as complete.

38 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ActivityExecutionContext.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

schedule_to_start_timeout The maximum duration, in seconds, from the time when the activity is sched-
uled to when it starts.

start_to_close_timeout The maximum duration, in seconds, of the activity execution from the time it starts
to when it is marked as complete.

task_list The name of the task list used for this activity.

task_priority The task priority to set, from -2147483647 to 2147483647, where higher numbers in-
dicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the same task
list. Tasks that are not assigned a priority are given the default value of 0. For more information, see
Setting Task Priority (page 43).

4.7.4 Workflow Runtime Options

These options can be set when declaring a workflow type, initializing a new workflow client or when starting
the workflow. They will override default options with the same name.

child_policy The optional policy to use for the child workflow executions when a workflow execution of
this type is terminated.

data_converter The data converter class to use to interpret data delivered from Amazon SWF. If not speci-
fied, then YAMLDataConverter will be used by default.

execution_method The workflow method to call when the workflow begins executing. By default, this
method is defined when you use the workflow method in the Workflows class to register your work-
flows.

This option is not required; it is used only if you start a workflow using the start_execution method
on the client in your workflow class. By default, the client will select the first defined workflow in
that class.

This will not be used if you start a workflow execution by calling the workflow method directly
from the client (for example, workflow_client.workflow_a) or by calling send (for example,
workflow_client.send(:workflow_a)).

execution_start_to_close_timeout The maximum duration, in seconds, of a workflow execution from the
time it starts to when it is marked as complete.

input Input data that will be passed to the workflow upon execution. You can also pass input directly as a
parameter when starting the workflow.

tag_list A list of tags to associate with the workflow. This is an empty list by default.

task_list The name of the default task list used for this workflow.

task_priority The task priority to set, from -2147483647 to 2147483647, where higher numbers in-
dicate higher priority. Higher-priority tasks are delivered before lower-priority tasks on the same task
list. Tasks that are not assigned a priority are given the default value of 0. For more information, see
Setting Task Priority (page 43).

task_start_to_close_timeout The maximum duration, in seconds, of a workflow task from the time it starts
to when it is complete.

4.7. Specifying Workflow and Activity Options 39

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/YAMLDataConverter.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

workflow_id An optional workflow ID. If you don’t set it, the AWS Flow Framework for Ruby will choose
one for you.

4.7.5 How to Set Options

You can set options for activities and workflows at the following times:

• At type declaration (page 40) – when you declare a new type, you can specify default options that
will be used for all activities/workflows of that type unless options are overridden on the client or at
scheduling.

• On an activity/workflow client (page 41) – if you set activity options on an activity client, then any
activities that are scheduled and launched with that client will inherit the options that it holds. These
will act as overrides for any options set at type declaration.

• At scheduling (page 42) – when you schedule a workflow or activity for execution, you can specify
options that will override any that were set at type declaration or on the client.

Setting Registration (Type) Options

To set options in activity or workflow declarations that will be used when the type is registered with Amazon
SWF, pass them as a block when you declare the activity or workflow using the activity or workflow
methods in Activities or Workflows, respectively.

Using this method, you can send the same block of options to activities that share settings. For example, to
set activity registration options:

class BookingActivity
extend AWS::Flow::Activities

activity :reserve_car, :reserve_air, :send_confirmation do
{

version: "1.0",
default_task_list: "activity_tasklist",
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30

}
end

Workflow registration options are set the same way:

class BookingWorkflow
extend AWS::Flow::Workflows

workflow :make_booking do
{

version: "1.0",
default_task_list: "workflow_tasklist",
default_execution_start_to_close_timeout: 120

40 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

}
end

Important: Once an activity or workflow type is registered, its default (registration) options cannot be
changed. If you need to change the default options of a registered activity or workflow type, you will need
to register a new type with either a different name or different version to differentiate it from other activity
types.

Setting Both Registration and Runtime Options at Declaration

You can set both registration and runtime options during declaration. If you do this, then the registration
options will be set as the defaults for that type (you will see them if you view the type in the console, and
they will be used as defaults for any other clients that use the type).

Any runtime options that you set at declaration, however, will immediately override these type-defining
default options, and will be automatically used when scheduling an activity or workflow of that type in your
code, unless they are subsequently overridden on the client or when scheduling. You can freely modify
runtime options at type declaration without any need to update the version value for the type.

In effect, you can declare a type with different runtime options in different parts of your code, as long as you
don’t change any of the type’s registration options. If you do, you will need to also specify a new version.

Setting Options on the Client

If you set options when creating your workflow or activity clients, they will override any options set at type
declaration. For example:

activity_client(:my_activity_client) {
{

heartbeat_timeout: 30,
start_to_close_timeout: 300

}
}

The same technique is used to set workflow client options:

swf = AWS::SimpleWorkflow.new
domain = swf.domains['MyDomain']

workflow_client = AWS::Flow::workflow_client(swf, domain) {
{

task_list: 'workflow_task_list',
execution_start_to_close_timeout: 3600

}
}

4.7. Specifying Workflow and Activity Options 41

AWS Flow Framework for Ruby Developer Guide, Release 1.0

You can also use the from_class: attribute to copy options from another class. Any options that are set by
the class you specify will override those set when the activity was declared (default options).

activity_client(:client) { { from_class: "BookingActivity" } }

Copying Client Options Using with_opts

You can use the with_opts method available in the GenericClient class to create a new client that copies
options from an existing client, overriding them with options that are passed to the with_opts method in a
hash.

Setting Options at Scheduling

If you set options when an activity is scheduled or when starting a workflow, the values will override those
that are set on the client and any that were set at type declaration.

To set options during activity scheduling, pass the options block to the activity client’s schedule_activity
method or when calling the activity method directly from the client:

file_client.process_file(local_source, local_target) do
{ task_list: "new_activity_task_list" }

end

Setting workflow options when starting a workflow is similar:

workflow_client.start_execution() {
{

task_list: "new_workflow_task_list",
tag_list: ["orderinfo", "web"]

}
}

4.7.6 Setting Other Types of Options

While this topic has focused on options that you can set on workflows and activities, there are options for
other classes in the AWS Flow Framework for Ruby. For information about setting these options, refer to
the sections in which they are discussed:

• Options that can be set when retrying failed tasks are covered in Retrying Failed Tasks (page 52).

42 Chapter 4. Basic Workflow Programming

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html

CHAPTER

FIVE

ADVANCED TOPICS

This topic advanced workflow programming topics, such as setting task priority, programming workflow
patterns, error handling, asynchronous programming, retrying workflows and troubleshooting. For basic in-
formation about programming with the AWS Flow Framework for Ruby, see Basic Workflow Programming
(page 23).

Note: In addition to the examples provided within these topics, code samples that demonstrate many of the
features discussed here can be found in the AWS Flow Framework for Ruby samples and recipes repository,
available at:

• https://github.com/awslabs/aws-flow-ruby-samples

5.1 Setting Task Priority

By default, tasks on a task list are delivered based upon their arrival time: tasks that are scheduled first are
run first. By setting an optional task priority, you can give priority to certain tasks: &SWF; will attempt to
deliver higher-priority tasks on a task list before those with lower priority. Tasks with the same priority are
ordered by arrival time.

You can set a task priority for both workflows and activities. A workflow’s task priority does not affect
the priority of any activity tasks it schedules, nor does it affect any child workflows it starts. The default
priority for an activity or workflow is set (either by you or by Amazon SWF) during registration, and the
registered task priority is always used unless it is overridden while scheduling the activity or starting a
workflow execution.

Task priority values can range from “-2147483648” to “2147483647”, with higher numbers indicating higher
priority. If you don’t set the task priority for an activity or workflow, it will be assigned a priority of zero
(“0”).

5.1.1 Setting Task Priority for Workflows

You can set the task priority for a workflow when you register it or start it. The task priority that is set when
the workflow type is registered is used as the default for any workflow executions of that type, unless it is
overridden when starting the workflow execution.

43

https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

To register a workflow type with a default task priority, use the default_task_priority option when declaring
it:

workflow :priority_workflow do
{

default_task_list: "workflow_tasks",
default_task_priority: 10,
version: "1.0",

}
end

You can override a workflow type’s registered (default) task priority by setting task_priority when you start
the workflow execution:

workflow_client.start_execution() {
{

task_list: "workflow_tasks",
tag_list: ["lowpriority"],
task_priority: -5

}
}

5.1.2 Setting Task Priority for Activities

You can set the task priority for an activity either when registering it or when scheduling it. The task priority
that is set when registering an activity type is used as the default priority when the activity is run, unless it
is overridden when scheduling the activity.

Just as with workflow types, to register an activity type with a default task priority use the de-
fault_task_priority option when declaring it:

activity :do_something_important do
{

version: "1.5",
default_task_list: "activity_list",
default_task_priority: 10,
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30

}
end

You can also set the task_priority option for an activity when you schedule it, overriding the registered
(default) task priority.

important_activity_client.send_async(
:do_something_important, { task_priority: 20 })

44 Chapter 5. Advanced Topics

AWS Flow Framework for Ruby Developer Guide, Release 1.0

5.1.3 For More Information

• Specifying Workflow and Activity Options (page 36)

5.2 Implementing Workflow Patterns

This section demonstrates how to implement common workflow patterns using the AWS Flow Framework
for Ruby. Much more information about commonly-used workflow patterns can be found on the Workflow
Patterns page, presented by the Eindhoven and Queensland Universities of Technology.

5.2.1 Sequence

A sequence pattern refers to a workflow in which one task follows another in sequential order. It is imple-
mented by calling activities synchronously:

client.activity1
client.activity2
client.activity3

Since each activity blocks execution of the main thread when it runs, activity2 will run only after
activity1 has completed. Likewise, activity3 won’t run until after activity2 is complete.

5.2.2 Parallel Split

A parallel split pattern refers to a workflow in which one or more tasks are executed concurrently. It is
implemented by calling activities asynchronously with GenericClient#send_async:

5.2. Implementing Workflow Patterns 45

http://www.workflowpatterns.com/
http://www.workflowpatterns.com/
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

client.activity1
client.send_async(:activity2)
client.send_async(:activity3)

The send_async method launches a fiber to run the activity on and returns immediately. In this case,
activity3 will be run immediately, without waiting for activity2 to complete. Likewise, execu-
tion of the main thread will continue without waiting for either activity2 or activity3 to complete.

If you want your main thread to wait for one or both activities to finish before proceeding, see simple merge
(page 47) or synchronization (page 46).

5.2.3 Synchronization

A synchronization pattern refers to a workflow in which the main thread waits for one or more concurrently-
running tasks to complete before continuing. It is implemented by calling Core#wait_for_all with the futures
that are returned from the activities that you want to synchronize:

first_future = client.send_async(:activity1)
second_future = client.send_async(:activity2)
wait_for_all(first_future, second_future)
client.activity3

5.2.4 Exclusive Choice

46 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

An exclusive choice pattern refers to a workflow in which the results of one activity are used to select one
subsequent activity to run from a set of two or more activities. It is implemented by choosing the activity to
run based on the value returned by a predicate function acting on a decision value:

decision_value = client.activity1
if (predicate_function(decision_value))

client.activity2
else

client.activity3
end

5.2.5 Simple Merge

A simple merge pattern refers to a workflow in which the completion of one or more activities triggers the
next activity in the sequence. It is implemented by calling Core#wait_for_any with the futures that are
returned from the activities that you want to merge:

first_future = client.send_async(:activity1)
second_future = client.send_async(:activity2)
wait_for_any(first_future, second_future)
client.activity3

5.2. Implementing Workflow Patterns 47

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_any-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

5.2.6 Multi Choice

A multi choice pattern refers to a workflow in which the results of one activity are used to select one or more
subsequent activities to run from a set of two or more activities. This is very similar to exclusive choice
(page 46), but more than one branch in the workflow may be run. Like exclusive choice, it is commonly
implemented with a predicate function that chooses one or more activities to run based on a decision value:

decision_value = client.activity1
if (predicate_function(decision_value))

client.activity2
elsif (predicate_function2(decision_value))

client.activity3
else

client.send_async(:activity3)
client.send_async(:activity4)

end

5.3 Handling Errors

The way you handle errors in AWS Flow Framework for Ruby depends on whether the workflow is syn-
chronous or asynchronous.

5.3.1 Errors in Synchronous Workflows

If your activities or workflows are synchronous, you can use Ruby’s standard begin/rescue/ensure
pattern to handle errors. For example:

from within a decider
begin

my_activity_client.my_activity
rescue ActivityTaskTimedOutException => e

handle timeout
rescue ActivityTaskFailedException => e

48 Chapter 5. Advanced Topics

AWS Flow Framework for Ruby Developer Guide, Release 1.0

handle failure
ensure

clean up and stuff
end

AWS Flow Framework for Ruby exception names are based on the event types specified in HistoryEvent
in the Amazon Simple Workflow Service API Reference. You can predict the exception name by adding
“Exception” to the end of the event type. For example, an exception in TimerFired will result in a
TimerFiredException.

5.3.2 Errors in Asynchronous Workflows

If your activities or workflows are asynchronous, (using send_async), use the Core#error_handler core
method, which is modeled after Ruby’s begin/rescue/ensure pattern. Here is an example of its use:

error_handler do |t|
t.begin do

my_activity_client.send_async :my_activity
end
t.rescue ActivityTaskTimedOutException do |e|

handle timeout
end
t.rescue ActivityTaskFailedException do |e|

handle failure
end
t.ensure do

clean up and stuff
end

end

You pass the error_handler method a block that takes a single argument (a Core::BeginRescueEnsure
object). The BeginRescueEnsure class has three methods: begin, rescue, and ensure, which take parts
of your error handling logic.

For more information about writing code for asynchronous tasks, see Executing Tasks Asynchronously
(page 49).

5.3.3 Additional Error Handling Examples

The handle_error recipe in the public aws-flow-ruby-samples project on GitHub provides a number of ex-
amples of handling errors for both synchronous and asynchronous tasks.

5.4 Executing Tasks Asynchronously

You can schedule tasks to run asynchronously in a number of different ways:

5.4. Executing Tasks Asynchronously 49

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/HistoryEvent.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#error_handler-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/BeginRescueEnsure.html
https://github.com/awslabs/aws-flow-ruby-samples/tree/master/Recipes/handle_error
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

• Use the GenericClient class method send_async to schedule an asynchronous task using an activity
or workflow client.

• Use the Core instance method task to execute any block of code asynchronously in the context of the
AWS Flow Framework for Ruby.

Whichever method you use, the Framework will return an instance of the Core::Future class, which is used
to determine when the asynchronous task has been completed.

5.4.1 Waiting for a Future

A Core::Future provides a mechanism for determining whether or not the task that it is tracking has com-
pleted. When the task is complete, the Future becomes set. The Future class itself provides three
methods that can be used to determine when the task has completed:

• get, which blocks until the future is ready.

• set?, which returns true when the future is ready.

• on_set, which takes a callback block that will be executed once the task has been completed.

There are also a number of methods in the Core namespace that operate on Futures:

• Core#wait_for_all takes a list of Future instances and does not return until all of them are set.

• Core#wait_for_any takes a list of Future instances and returns as soon as any one of them is set.

To obtain a Future, you can use either the client’s send_async method or the Core namespace’s task
method.

5.4.2 Scheduling an Asynchronous Task Using a Workflow or Activity Client

To schedule an asynchronous task using a workflow or activity client, use the client’s Generic-
Client#send_async method (provided by the parent class, GenericClient) method to schedule the activity.
send_async returns a Core::Future immediately.

def make_booking options
puts "Workflow has started\n" unless is_replaying?
futures = []

if options[:reserve_car]
puts "Reserving a car for customer\n" unless is_replaying?
futures << client.send_async(:reserve_car, options[:request_id])

end

if options[:reserve_air]
puts "Reserving air ticket\n" unless is_replaying?
futures << client.send_async(:reserve_air, options[:customer_id])

end

puts "Waiting for reservation to complete\n" unless is_replaying?
wait_for_all(futures)

50 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_all-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#wait_for_any-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#send_async-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

client.send_confirmation(options[:customer_id])
puts "Workflow has completed\n" unless is_replaying?

end

In the preceding code, send_async is used to schedule two asynchronous activities, and then wait_for_all
is used to wait for both activities to complete before scheduling a third activity.

5.4.3 Executing a Block Asynchronously

Using the Core#task method, you can execute any block of code asynchronously. Like send_async, the
task method returns a Core::Future immediately and then begins executing the asynchronous code. When
the code has completed, the returned Future instance will be set.

5.4.4 Handling Errors in Asynchronous Code

Asynchronous code requires special consideration when handling errors. The AWS Flow Framework for
Ruby provides an Core#error_handler method that provides a Ruby-like way, using begin/rescue/end-
like semantic for error handling. You pass error_handler a block of the following form:

error_handler do |t|
t.begin do

my_activity_client.send_async :my_activity
end
t.rescue ActivityTaskTimedOutException do |e|

handle timeout
end
t.rescue ActivityTaskFailedException do |e|

handle failure
end
t.ensure do

clean up and stuff
end

end

See Handling Errors (page 48) for more information about handling errors in the AWS Flow Framework for
Ruby.

You can also use error_handler to provide custom logic for retry attempts on failed tasks. For more
information, see Providing your own Retry Logic (page 54).

5.4.5 Additional Examples

For additional examples of working with asynchronous tasks, see the AWS Flow Framework for Ruby
Samples project. Many of the recipes and samples demonstrate the use of asynchronous tasks to create
various workflow patterns.

The AWS Flow Framework for Ruby samples are hosted on GitHub at:

5.4. Executing Tasks Asynchronously 51

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#task-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core/Future.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Core.html#error_handler-instance_method

AWS Flow Framework for Ruby Developer Guide, Release 1.0

• https://github.com/awslabs/aws-flow-ruby-samples/

5.5 Retrying Failed Tasks

There are a number of ways to retry failed activity or workflow tasks, or even arbitrary methods or blocks
of code with the AWS Flow Framework for Ruby:

• If you have an activity or workflow task that you want to configure for automatic retries, you can set
ExponentialRetryOptions during activity/workflow registration, or when scheduling a task.

• You can retry any method by using one of the generic client methods: GenericClient#retry or Gener-
icClient#exponential_retry.

• You can use the AWS::Flow method with_retry to retry any block of code.

5.5.1 Configuring a Task for Automatic Exponential Retries

To configure an activity or workflow to automatically retry when it fails, pass in a block of Exponential-
RetryOptions in the exponential_retry section of the options block when you declare the type. For example:

activity :unreliable_activity_with_retry_options do
{

version: "1.0",
default_task_list: "activity_tasklist",
default_task_schedule_to_start_timeout: 30,
default_task_start_to_close_timeout: 30,
exponential_retry: { maximum_attempts: 5 }

}
end

In the preceding snippet, the activity will automatically be retried (up to 5 times) using an exponential retry
algorithm if any exception occurs.

You can also pass exponential retry options when scheduling the task:

client.send(:unreliable_activity_without_retry_options) do
{

exponential_retry: {
maximum_attempts: 5,
exceptions_to_retry: [ArgumentError],

}
}

end

In this example, the optional parameter exceptions_to_retry was specified, restricting retry attempts to occur
only in the case of an ArgumentError. This overrides the default behavior, which attempts a retry after any
exception.

52 Chapter 5. Advanced Topics

https://github.com/awslabs/aws-flow-ruby-samples/
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#retry-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#exponential_retry-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html#exponential_retry-instance_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#with_retry-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Exponential Retry Attempts and Jitter Logic

When you specify exponential retry options, the AWS Flow Framework for Ruby applies a jitter function
by default, to add some randomization to the retry attempts. This helps to reduce the chance that many
activities will be retried at exactly the same time.

If you want to use your own jitter logic when using exponential retries, you can use the jitter_function option
to set your own jitter function:

activity_client(:client) do
{

from_class: "RetryActivities",
exponential_retry: {

should_jitter: true,
jitter_function: lambda do |seed, max_value|

Random.new(seed.to_i).rand(max_value)
end,
maximum_attempts: 5,
exceptions_to_retry: [StandardError],

}
}

end

Tip: If you don’t want any jitter function applied to exponential retry attempts, you can turn it off by
specifying False for the should_jitter option.

5.5.2 Retrying Methods Using an Activity or Workflow Client

You can retry tasks that were not configured at declaration (page 52) by using the client methods:

You can add exponential retry options using send, as described in Configuring a Task for Automatic Expo-
nential Retries (page 52), or by using the exponential_retry or retry methods of the GenericClient class
(inherited by both GenericActivityClient and WorkflowClient) to retry the method with either the built-in
exponential retry algorithm or by supplying your own retry method.

To use the exponential retry algorithm, use exponential_retry with a method to retry, arguments for the
method, and a block of ExponentialRetryOptions:

activity_client.exponential_retry(:my_activity_method, activity_input) {
exponential_retry: {

maximum_attempts: 2,
exceptions_to_retry: [ArgumentError],

}
}

If you want to define your own retry algorithm, use the retry method by sending it the method to retry, your
own retry function, arguments for the method to retry, and a block of RetryOptions:

5.5. Retrying Failed Tasks 53

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/GenericActivityClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/WorkflowClient.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/ExponentialRetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

retry_time_secs = lambda do |first_attempt_time, failure_time, num_retries|
secs_in_day = 3600 * 24
if ((failure_time - first_attempt_time) > secs_in_day) then

return -1
else

Constant rate: just divide the total number of seconds by the number of
retries.
return secs_in_day / num_retries

end
end

activity_client.retry(:my_activity_method, retry_time_secs, activity_input) {
exponential_retry: {

maximum_attempts: 2,
exceptions_to_retry: [ArgumentError],

}
}

5.5.3 Retrying an Arbitrary Block of Code

Using the with_retry method, you can execute any block of code with retries in the AWS Flow context, by
supplying a set of RetryOptions and the block of code to execute.

In this example, with_retry is used to add retry options to an activity that was registered without them:

def handle_unreliable_activity
retry_options = {

exponential_retry: {
maximum_attempts: 5,
exceptions_to_retry: [ArgumentError],

}
}

AWS::Flow::with_retry(retry_options) do
client.unreliable_activity_without_retry_options

end
end

5.5.4 Providing your own Retry Logic

Although you can provide a list of errors to automatically retry in the exceptions_to_retry RetryOptions, and
a list of errors to automatically exclude from retry attempts in the exceptions_to_exclude option, there might
be times where you want more control over which conditions will initiate a retry attempt.

To provide your own retry logic, use an exception handling strategy and initiate your own retries in a function
called by the code that handles the exception.

54 Chapter 5. Advanced Topics

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow.html#with_retry-class_method
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/RetryOptions.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Synchronous Example

In a synchronous workflow, you can use the standard begin/rescue/ensure pattern:

def handle_unreliable_activity
begin

client.unreliable_activity_without_retry_options
rescue StandardError => e

retry_on_failure(e)
end

end

def retry_on_failure(ex)
handle_unreliable_activity if should_retry(ex)

end

def should_retry(ex)
custom logic to decide to retry the activity or not according to 'ex'
return true

end

Asynchronous Example

For an asynchronous workflow, you can use a similar technique, using error_handler and wait_for_all to
handle the details of error handling for, and waiting for the results of, an asynchronous task.

def handle_unreliable_activity
failure = Future.new
error_handler do |t|

t.begin do
client.send_async(:unreliable_activity_without_retry_options)

end
t.rescue Exception do |e|

failure.set(e)
end
t.ensure do

failure.set unless failure.set?
end

end
wait_for_all(failure)
retry_on_failure(failure)

end

def retry_on_failure(failure)
ex = failure.get
handle_unreliable_activity if !ex.nil? && should_retry(ex)

end

def should_retry(ex)
insert your custom logic here.

5.5. Retrying Failed Tasks 55

AWS Flow Framework for Ruby Developer Guide, Release 1.0

return true
end

5.5.5 Additional Information and Examples

Refer to the following resources for more information about the subjects in this topic:

• For more information about error handling in the AWS Flow Framework for Ruby, see Handling
Errors (page 48).

• For more information about programming asynchronous tasks, see Executing Tasks Asynchronously
(page 49).

• To view additional examples of retrying tasks, see the retry_activity recipe in the public AWS Flow
Framework for Ruby Samples project on GitHub.

5.6 Troubleshooting and Debugging Workflows

This section provides information about how to troubleshoot your workflow executions. It includes strategies
for examining and replaying workflows, and lists some common causes of errors in workflow executions.

5.6.1 Examining Workflow Executions with the AWS Management Console

The first step in troubleshooting a workflow execution is to use the AWS Management Console to look at the
workflow history. The workflow history is a complete and authoritative record of all the events that changed
the execution state of the workflow execution. This history is maintained by Amazon SWF and is invaluable
for diagnosing problems. The Amazon SWF console enables you to search for workflow executions and
drill down into individual history events.

To learn more about using the AWS Management Console with Amazon SWF, see Managing Your Workflow
Executions in the Amazon Simple Workflow Service Developer Guide.

5.6.2 Using the WorkflowReplayer Class

The AWS Flow Framework provides a Replayer::WorkflowReplayer that you can use to replay a workflow
execution locally and debug it. Using this class, you can debug closed and running workflow executions.
WorkflowReplayer relies on the history stored in Amazon SWF to perform the replay. You can point it
to a workflow execution in your Amazon SWF account.

When you replay a workflow execution using WorkflowReplayer, it does not impact the workflow
execution running in your account: the replay is done completely on the client. You can debug the workflow,
create breakpoints, and step into code using your debugging tools as usual.

For example, the following code snippet can be used to replay a workflow execution:

56 Chapter 5. Advanced Topics

https://github.com/awslabs/aws-flow-ruby-samples/tree/master/Recipes/retry_activity
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-console-manage-workflow-executions.html
http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dg-console-manage-workflow-executions.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Replayer/WorkflowReplayer.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

require 'replayer'

Create an instance of the replayer with the required options
replayer = AWS::Flow::Replayer::WorkflowReplayer.new(

domain: '<domain_name>',
execution: {

workflow_id: "<workflow_id",
run_id: "<run_id>"

},
workflow_class: YourWorkflowClass

)

Call the replay method with the replay_upto event_id number -
decision = replayer.replay(20)

puts decision.inspect

5.6.3 Common Causes of Errors in Workflow Executions

Unknown Resource Fault

Amazon SWF returns an unknown resource fault when you try to perform an operation on a resource that is
not available. The common causes for this fault are:

• You configure a worker with a domain that does not exist. To fix this, first register the domain using
the Amazon SWF console or with the Amazon SWF service API.

• You try to create workflow execution or activity tasks of types that have not been registered. This
can happen if you try to create the workflow execution before the workers have been run. Since
workers register their types when they are run for the first time, you must run them at least once
before attempting to start executions (or manually register the types using the AWS Management
Console or the service API). Note that once types have been registered, you can create executions
even if no worker is running.

• A worker attempts to complete a task that has already timed out. For example, if a worker takes too
long to process a task and exceeds a timeout, it will get an UnknownResource fault when it attempts to
complete or fail the task. The AWS Flow Framework workers will continue to poll Amazon SWF and
process additional tasks. However, you should consider adjusting the timeout. Adjusting the timeout
requires that you register a new version of the activity type.

Non Deterministic Workflows

The implementation of your workflow must be deterministic. Some common mistakes that can lead to
nondeterminism are:

• Use of the system clock

• Use of random numbers

5.6. Troubleshooting and Debugging Workflows 57

AWS Flow Framework for Ruby Developer Guide, Release 1.0

• Generation of GUIDs

Since these constructs may return different values at different times, the control flow of your workflow may
take different paths each time it is executed. If the framework detects nondeterminism while executing the
workflow, an exception will be thrown.

Problems Due to Versioning

When you implement a new version of your workflow or activity—for instance, when you add a new fea-
ture—you should change the version string of the type by providing a new version when declaring your
workflow or activity type.

When new versions of a workflow are deployed, you might have executions of the existing version that are
still running. Therefore, you need to make sure that workers get tasks that match the correct version of your
workflow and activities. One way to accomplish this is by using a different set of task lists for each version.
For example, you can append the version string to the name of a task list. This ensures that tasks belonging
to different versions of the workflow and activities are assigned to the appropriate workers.

Lost Tasks

Sometimes you may shut down workers and start new ones in quick succession only to discover that tasks
get delivered to the old workers. This can happen due to race conditions in the system, which is distributed
across several processes. The problem can also appear when you are running unit tests in a tight loop.

To make sure that the problem is, in fact, due to old workers getting tasks, you should look at the workflow
history to determine which process received the task that you expected the new worker to receive. For
example, the DecisionTaskStarted event in the workflow history contains the identity of the workflow
worker that received the task. The id used by the AWS Flow Framework is of the form: {processId}@{host
name}. Here is an example of the details for a DecisionTaskStarted event in the Amazon SWF
console for a sample execution:

Event Timestamp Mon Feb 20 11:52:40 GMT-800 2012
Identity 2276@ip-0A6C1DF5
Scheduled Event Id 33

In order to avoid this situation, use different task lists for each test. Also, consider adding a delay between
shutting down old workers and starting new ones.

58 Chapter 5. Advanced Topics

CHAPTER

SIX

WORKING WITH OTHER AWS PRODUCTS

This section contains guidance about how to use the AWS Flow Framework for Ruby in conjunction with
other Amazon Web Services (AWS) products, such as Amazon CloudWatch, AWS OpsWorks, and AWS
Elastic Beanstalk.

6.1 Deploying Workflows With AWS Elastic Beanstalk

You can use AWS Elastic Beanstalk to deploy and run your AWS Flow Framework for Ruby workflows,
activities and workers. This topic will lead you through the procedure to do so, using the example provided
in Hello World (page 7).

6.1.1 Prerequisites

To follow this example, you should:

• have both Ruby and the AWS Flow Framework for Ruby (at least version 2.4.0) installed, as described
in Setting Up (page 5).

• have your AWS credentials configured as described in Providing AWS Credentials (page 6).

• be familiar with navigating your filesystem using the command-line (terminal), creating directories
and files, and executing Ruby scripts.

6.1.2 Create the Workflow Application

Creating a workflow application that can be deployed and run on AWS Elastic Beanstalk is similar to creating
a local application with aws-flow-utils.

To create the application:

1. Open a command-line window and use aws-flow-utils to create an application skeletion, specifying
-c eb to create an AWS Elastic Beanstalk-compatible application. You also need to set the region
to run the EC2 instances in, using the -r argument:

aws-flow-utils -n HelloBeanstalk -c eb -r us-west-2

59

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2. This will create a project in the HelloBeanstalk directory in the path where you ran aws-flow-
utils, and will output a 1-Click URL that you can use to create your AWS Elastic Beanstalk applica-
tion. It will look something like this:

Your AWS Flow Framework for Ruby application will be located at:
/path/to/HelloBeanstalk/

AWS Elastic Beanstalk 1-Click URL:
https://console.aws.amazon.com/elasticbeanstalk/?region=...

Save the generated URL—you will use it to configure your application.

The project directory will contain the following directories and files:

HelloBeanstalk
|-- Gemfile
|-- config.ru
|-- flow
| |-- activities.rb
| `-- workflows.rb
`-- worker.json

3. In the flow/activities.rb file, add the following code:

class HelloWorld
def hello(input)

"Hello #{input[:name]}!"
end

end

4. Create a .zip archive of the HelloBeanstalk directory in a way that is supported by your operating
system. On Linux, Unix or OS X systems, you can type:

zip -r HelloBeanstalk.zip HelloBeanstalk

That’s all you need in order to create your workflow application. Now you can deploy it with AWS Elastic
Beanstalk.

6.1.3 Configure your Application using the AWS Elastic Beanstalk Console

The 1-Click URL that was printed to the screen as output when you ran aws-flow-utils will be used now to
configure your application on the AWS Elastic Beanstalk console so that you can deploy it.

To configure your application on the AWS Elastic Beanstalk console:

1. Sign in to the AWS Management Console, and follow the 1-Click URL provided in the output of
the aws-flow-utils command. The URL will bring you to AWS Elastic Beanstalk‘s Create New
Application page, pre-configured for your application.

60 Chapter 6. Working with Other AWS Products

https://aws.amazon.com/console/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2. Enter an optional Description and click Next.

3. On the Environment Type page, choose Web Server for the Environment tier option.

4. Ensure that the Predefined Configuration is Ruby, and click Next.

5. On the Application Version page, choose Upload your own, and click Browse..., choosing the
HelloBeanstalk.zip file that you created earlier.

6.1. Deploying Workflows With AWS Elastic Beanstalk 61

AWS Flow Framework for Ruby Developer Guide, Release 1.0

6. Click Next to proceed to the Environment Information page. There are no options that need to be
set on this page.

7. Click Next to proceed to the Additional Resources page. Again, there are no options that need to be
set on this page.

8. Click Next to proceed to the Configuration Details page.

9. On the Configuration Details page, choose an EC2 key pair, or open a new browser window and
configure one now, using the IAM Console.

10. Choose an Instance Profile that has access to Amazon EC2, AWS Elastic Beanstalk, and Amazon
SWF.

11. Click Next to proceed to the Environment Tags page. You can leave the tags empty.

12. Click Next to proceed to the Review page.

13. Review your application’s settings, and click Launch to begin creating your deployment.

AWS Elastic Beanstalk will take some time to fully launch your application. When it is ready, you’ll see
Health of your AWS Elastic Beanstalk deployment turn to a green circle:

Your workflow is now deployed!

6.1.4 Start a Workflow Execution

Lastly, you need to start a workflow execution so that your workers receive tasks to process.

To start a workflow execution:

1. Open a command-line window and create a local script (call it starter.rb). Add the following
code:

require 'aws/decider'
AWS::Flow::start("HelloWorld.hello", { name: "AWS Flow Framework!" })

2. Run the script using Ruby:

ruby starter.rb

62 Chapter 6. Working with Other AWS Products

AWS Flow Framework for Ruby Developer Guide, Release 1.0

This will begin executing the hello activity on your AWS Elastic Beanstalk-deployed application.

6.2 Tutorial: Hello AWS OpsWorks!

Amazon SWF now provides a dedicated layer in AWS OpsWorks that simplifies deployment of workflows
and activities written using AWS Flow Framework for Ruby. Using AWS OpsWorks with Amazon SWF,
you can easily set up a worker fleet that is cloud-deployable and can use advanced Amazon EC2 features
such as load-based auto scaling.

Amazon SWF support for AWS OpsWorks includes updates to the OpsWorks console, allowing you to
deploy workflow and activity workers from AWS OpsWorks. It also includes updates to the AWS Flow
Framework for Ruby to make it easy to specify the details necessary to spawn workers with a simple JSON
file, registering any necessary workflow and activity types and starting the activity and workflow workers.
This component is called the runner, and is provided by a new command-line utility: aws-flow-ruby.

This tutorial will show you how to use the AWS Flow Framework for Ruby layer for AWS OpsWorks to
deploy and run the Hello World sample application that is described in detail in Hello World (page 7)

The typical steps for deploying a new AWS Flow Framework for Ruby application on AWS OpsWorks are
the following:

1. Develop your AWS Flow Framework for Ruby workflows and activities normally.

2. Test your application by using the runner (page 77) to check that your workflow runs as expected.
AWS Flow Framework for Ruby version 2.0.1 or greater is required to run this step.

Note: AWS Flow Framework for Ruby version 2.4.0 introduces changes that are incompatible with
the current version of the flow layer in AWS OpsWorks. For now, you should use a version of the
framework previous to 2.4.0.

3. Set up your application on AWS OpsWorks using the AWS Management Console by creating a stack,
layer, and application to deploy.

4. Deploy your application using AWS OpsWorks and monitor your workflow’s progress.

The following sections walk through the full set of steps to learn how to configure and use the runner to test
how your application will run with AWS OpsWorks. However, if you’re interested only in learning how to
set up and deploy a working AWS Flow Framework for Ruby application with AWS OpsWorks, you can
skip ahead to Deploying and Running Hello World on AWS OpsWorks (page 68).

6.2.1 Developing and Testing an AWS Flow Framework for Ruby Application using
AWS OpsWorks

In this section, we’ll use AWS OpsWorks and a local utility (aws-flow-ruby) to deploy and test an AWS
Flow Framework for Ruby application based on the Hello World sample used in Hello World (page 7).

6.2. Tutorial: Hello AWS OpsWorks! 63

https://console.aws.amazon.com/opsworks/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Prerequisites

To deploy the sample on AWS OpsWorks, you must have an AWS account with access to both Amazon
SWF and AWS OpsWorks. If you haven’t yet signed up for AWS, go to aws.amazon.com and click the Sign
Up link to get started.

To run the sample locally using the aws-flow-ruby command-line utility (which will be referred to as the
runner):

• You will need to have at least version 2.0.1 of the AWS Flow Framework for Ruby gem installed. For
more information about setting up the framework, see Getting Started.

• Make sure that you have provided your AWS credentials using the AWS CLI or by setting the
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables. For more in-
formation, see Set up your AWS Credentials.

Get the Tutorial Source Code

The Source Code used in this tutorial is provided on GitHub at:

• https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld

You an view the code there, or download it using the following link:

• https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld/archive/master.zip

This code is a slightly modified version of the Hello World sample from the awslabs/aws-flow-ruby-samples
project on GitHub.

Once you have the sample installed in a local directory on your system, open a terminal (command-line)
window and change to the directory where you unzipped the sample code.

The sample’s top-level directory contains the following files and directories:

Gemfile Sets the AWS Flow Framework gem version to use (must be at least 2.0.1)
helloworld.jsonDescribes the runner configuration.
flow
directory

Contains files that are used by the runner to find the activities and workflows.

lib
directory

Contains the workflow worker, activity worker, and workflow starter code that is run to
start the workflow. These files are the same files that are described in Hello World, but
have been modified to run in the context of the runner.

The contents of these files will be described fully in later sections of the tutorial.

Add the Required Gemfile

AWS OpsWorks requires that you add a Gemfile to your code in the root directory of your project to
identify which version of the AWS Flow Framework for Ruby gem to use when deploying and running your
code.

Here is the Gemfile for the Hello World sample:

64 Chapter 6. Working with Other AWS Products

https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld
https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld/archive/master.zip

AWS Flow Framework for Ruby Developer Guide, Release 1.0

source "http://www.rubygems.org"

gem 'aws-flow', '~> 2', '>= 2.0.1'

Set Up the Runner Configuration

To discover details about how the workflows and activities will be run, the runner reads a JSON-formatted
configuration file, as described in aws-flow-ruby (page 77).

Note: While using AWS OpsWorks, you don’t need to specify a configuration file—the AWS Flow Frame-
work for Ruby layer creates its own configuration based on values that you specify in the AWS Management
Console. However, to test your workflow setup locally before deploying it to AWS OpsWorks, you will need
to create a local runner configuration file.

To set up the runner configuration:

1. If you have not already done so, open a terminal window and change to the location where you
unzipped the sample code (aws-flow-ruby-opsworks-helloworld).

2. In the sample’s root directory, create or view the file called helloworld.json. It contains the
following lines:

{
"domain":

{
"name": "HelloWorld"

},
"workflow_workers": [

{
"task_list": "workflow_tasklist"

}
],
"activity_workers": [

{
"task_list": "activity_tasklist"

}
]

}

This file specifies the domains to register (if necessary) and use for the workflow and activity workers.
It also specifies the number of workflow and activity workers to spawn and the number of process
forks allowed when running the activities.

3. In the flow directory within the aws-flow-ruby-opsworks-helloworld directory, create or view activ-
ities.rb and workflows.rb. The runner loads these files to discover where the activity and workflow
code is.

The flow/activities.rb file provides the activity code:

6.2. Tutorial: Hello AWS OpsWorks! 65

AWS Flow Framework for Ruby Developer Guide, Release 1.0

require 'lib/helloworld_activity'

The flow/workflows.rb file provides the workflow code:

require 'lib/helloworld_workflow'

In the sample, these files simply require files that exist in the lib directory. The runner will look in
these files for classes that extend Activities and Workflows, which it will take to be the activities and
workflows to run, respectively.

Note: If you want to explicitly specify which activity and workflow classes to run, add them to the runner
configuration file instead. For more information, see Configuring the Runner.

The contents of the files are similar to the original files from the Hello World sample, but have been simpli-
fied. The runner takes care of most of the configuration for you. Here are the contents of each:

lib/helloworld_activity.rb

require 'aws/decider'

The HelloWorldActivity class defines a set of activities for the HelloWorld sample.
class HelloWorldActivity

extend AWS::Flow::Activities

Define which activities to run.
activity :say_hello do

{
version: '1.0',

}
end

This activity will say hello when invoked by the workflow
def say_hello(name)

puts "Hello, #{name}!"
end

end

lib/helloworld_workflow.rb

require_relative "helloworld_activity"

HelloWorldWorkflow class defines the workflows for the HelloWorld sample
class HelloWorldWorkflow

extend AWS::Flow::Workflows

Define which workflows to run.
workflow :hello do

{
version: '1.0',
default_execution_start_to_close_timeout: 120

66 Chapter 6. Working with Other AWS Products

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

}
end

Create an activity client using the activity_client method to schedule
activities
activity_client(:client) { { from_class: "HelloWorldActivity" } }

This is the entry point for the workflow
def hello(name)

Use the activity client 'client' to invoke the say_hello activity
client.say_hello(name)

end
end

Verify the Code and Configuration

You can now execute the runner locally to make sure that the runner can find and launch your workflow and
activity. Since AWS OpsWorks also uses the AWS Flow Framework for Ruby runner to run your workflow
code, this is a good way to test your code’s readiness for AWS OpsWorks.

To verify the setup locally:

1. If you have not already done so, open a terminal window and change to the
aws-flow-ruby-opsworks-helloworld directory where you cloned or unzipped the
sample code.

2. Execute the runner from within the aws-flow-ruby-opsworks-helloworld directory, pass-
ing it the name of the configuration file you created. For example:

aws-flow-ruby -f helloworld.json

This will start the workflow worker and activity worker using the domain that is specified in
helloworld.json. When it runs, you will see output from the runner, such as:

waiting on workers [4573, 4574] to complete

The workflow and activity workers are waiting for Amazon SWF tasks to schedule the workflows and
activities for execution. Next, you’ll need to start a workflow execution to begin workflow and activity
scheduling.

3. Run the helloworld_workflow_starter.rb script to start the workflow execution:

bundle exec ruby lib/helloworld_workflow_starter.rb helloworld.json

After a short time, you should see the results of the Hello World activity running:

Hello, AWS Flow Framework!

Now you’re ready to run the sample on AWS OpsWorks instead of the local machine.

6.2. Tutorial: Hello AWS OpsWorks! 67

AWS Flow Framework for Ruby Developer Guide, Release 1.0

6.2.2 Deploying and Running Hello World on AWS OpsWorks

In this section, we’ll set up and deploy the AWS OpsWorks-enabled version of the Hello World application
on AWS OpsWorks. If you completed the previous section, Developing and Testing an AWS Flow Frame-
work for Ruby Application using AWS OpsWorks, you will discover that these steps will use the same
settings that you used when configuring the runner. If you didn’t download and test the application locally,
don’t worry—the application we’ll be using has been set up for AWS OpsWorks already.

Set up a Stack

First, you will need to set up an AWS OpsWorks stack. A stack may consist of a number of layers, each of
which can have apps that are deployed to the layers.

To set up the stack:

1. Sign in to the AWS Management Console and open the AWS OpsWorks console at
https://console.aws.amazon.com/opsworks/.

2. Add a new stack by clicking the Add Stack button or by selecting Add Stack in the Select Stack menu.

3. You can use the default values that are provided to create your AWS OpsWorks stack. Here are
suggestions for each of the fields on the screen.

Name Choose a unique name, or leave blank to allow AWS OpsWorks to choose a name
for you.

Region US East (N. Virginia)

VPC No VPC

Default Availability Zone us-east-1a

Default operating system Amazon Linux

Default root device type Instance store

IAM role Choose an existing role with access to Amazon SWF, such as “aws-opsworks-
service-role”, or choose a New Role and give the role access to Amazon SWF.

Default SSH key Choose an SSH key that you’ve created, or create a new one. For infor-
mation about using key pairs to log in to an AWS OpsWorks instance, see Using SSH
to Communicate with an Instance in the AWS OpsWorks User Guide.

Default IAM instance profile Choose an existing instance profile with access to Amazon
SWF, such as “aws-opsworks-ec2-role”, or choose a New Instance Profile and give
the profile access to Amazon SWF.

Hostname theme Choose any

Stack color Choose any

Important: Be sure that Chef version 11.10 is selected. You can click Advanced on the Add Stack
screen to see what the setting is or change it, but if you’ve already created a stack, you can change the
Chef version by editing the existing stack.

68 Chapter 6. Working with Other AWS Products

https://console.aws.amazon.com/opsworks/

AWS Flow Framework for Ruby Developer Guide, Release 1.0

4. When you’re finished configuring your layer, click the Add Stack button at the bottom of the config-
uration screen to create your stack and continue.

Add a Layer to the Stack

Now that the stack is set up, you’ll add a layer to the stack.

To add the layer:

1. Select your new AWS OpsWorks stack if it is not already selected, and then click Add a Layer.

2. Set the Layer Type to AWS Flow. You’ll find this type in the Other category in the drop-down list.

3. Since you selected a default IAM profile for your layer, it will be automatically selected for the layer’s
EC2 Instance profile.

4. When you have finished setting your layer options, click Add Layer to complete adding the layer to
your stack.

Add an Instance

The next step in setting up our AWS OpsWorks deployment is to add an Amazon EC2 instance to the layer
using the Amazon EC2 instance profile that you set. These instances will provide the computing platform
on which your workflow code will run.

To add an instance to the layer:

1. Choose the Instances view on the left sidebar if it is not already selected.

2. Click Add an instance to add a new instance to the stack.

You can accept the default options (copied from your layer), or modify the Hostname and instance
Size.

Important: Running an Amazon EC2 instance will incur AWS costs. For information about the
costs of running various Amazon EC2 instance types, see the Amazon EC2 Pricing page.

3. Click the Add Instance button to finalize your settings and add the instance to your layer. Your instance
will initially be in the stopped state.

4. If you’ll be proceeding with adding the Hello World application and running it, start your instance
now. It may take a few minutes for your instance to start.

Add the Hello World Application

Next, you will add the modified Hello World application to your stack. This will instruct AWS OpsWorks
to deploy your application to the Amazon EC2 instances that it starts on your behalf.

To add the Hello World application to your stack:

1. Click the Navigation heading and choose Apps in the list. If your browser window is large enough,
you’ll find the Apps link on the left sidebar.

6.2. Tutorial: Hello AWS OpsWorks! 69

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2. Click Add an app to begin adding a new application.

3. In the Settings section, choose a Name that is memorable, such as helloworld. Verify that the Type is
set to AWS Flow (Ruby).

4. Under AWS Flow (Ruby) Settings, choose an Amazon SWF domain name to run your workflows and
activities under. This doesn’t need to be the same domain that you used in the local test of the Hello
World application. The runner will register the domain if necessary, so feel free to choose a new
domain name if you would like to.

You can accept the default workflow retention period of 10 days.

5. Under Run Workflows and Run Activities, set the name of the workflow and activity task lists to use.
If you chose to use the same domain that you used in the local test, you should pick new workflow
and activity task names so that your workflows and activities don’t receive tasks from the local test.

Note: The workflow starter that you initiate later in Start Your Workflow Execution will need to use
the same task list name as the one you set for your workflow worker in order to start the workflow.

6. Under Data Sources, choose None for the Data Source Type.

7. Under Application Source, choose the Git repository type and set the repository URL to the clone URL
of the Hello World AWS OpsWorks sample: https://github.com/awslabs/aws-flow-ruby-opsworks-
helloworld.git. You can leave the Repository SSH Key and Branch/Revision settings blank.

Note: Alternatively, you can choose the Http Archive repository type, download or create a .zip or
.tar.gz archive of the sample, and publish it in a accessible location (such as Amazon S3). You can
then provide the public URL of the sample archive for this setting.

For more information, see Adding Apps.

8. Under Environment Variables, add a key named AWS_Region with its value set to the AWS region
that you plan to deploy the worker to, such as us-west-2.

9. Click Add App to complete adding the Hello World application to your layer.

Note: The helloworld.json file that exists within the repository is ignored. When AWS OpsWorks deploys
the application to your Amazon EC2 instances, it will create its own JSON configuration file that contains
the application settings that you have just set.

Deploy Hello World

To check to see if your instance is running, click the Instances item on the left sidebar or in the Navigation
menu. Once the instance is running, you can deploy the Hello World application to it.

To deploy the Hello World application to your EC2 instance:

1. Once your instance is running, click the Apps item and click deploy on the Hello World application
that you’ve just finished setting up.

70 Chapter 6. Working with Other AWS Products

https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld.git
https://github.com/awslabs/aws-flow-ruby-opsworks-helloworld.git

AWS Flow Framework for Ruby Developer Guide, Release 1.0

2. Verify that the Command setting is Deploy, and then click the Deploy button at the bottom of the
screen. The view will automatically proceed to the Deployments menu item, and you can monitor the
progress of your deployment. It may take a few minutes before it is ready.

Verify Your Deployment

Now that you have deployed Hello World to the Amazon EC2 instance, you can log in and verify your
deployment. In order to do this, you will need the SSH key-pair that you associated with your Amazon EC2
instance.

To verify your deployment on the EC2 instance:

1. If you are not already on the Instances view in your AWS OpsWorks console, select Instances in the
menu or in the left sidebar.

2. Click the SSH link. If you have not yet associated the SSH key with your account, the next screen
will provide instructions and a link to do so. Otherwise, you will be presented with a list of ways to
connect to your instance, through your browser or by using the command-line to SSH to the instance.

For example, from the command-line, you can specify your private key file and the instance address,
as shown in the Connect Directly section of the page you receive when clicking the SSH link:

ssh -i ~/.ssh/[your-keyfile] my-account@INSTANCE-DNS

Replace [your-keyfile] and INSTANCE-DNS with your key file name and the IP address of your
instance, respectively.

3. Once you are logged in to your instance, view the runner configuration file by typing the following
commands (assuming that the application name you chose was helloworld):

cd srv/www/helloworld
cat runner_config.json

The contents of runner_config.json should match the values that you entered when setting up your
application.

Start Your Workflow Execution

When Hello World is deployed, AWS OpsWorks starts your workflow and activity workers, which start
polling on the task lists that you specified when setting up your application.

However, since a workflow execution has not started, the workers won’t receive any tasks and no activities
will be run. You can start a workflow execution on the command line as was performed in Verify the Code
and Configuration, or you can start the workflow execution using the AWS Management Console. Both
methods will be provided.

To start a workflow execution using the command line:

6.2. Tutorial: Hello AWS OpsWorks! 71

AWS Flow Framework for Ruby Developer Guide, Release 1.0

1. Open a terminal (command-line) window and locate the directory where you unpacked (or cloned)
the sample code, as per Get the Tutorial Source Code. You could also clone or unpack a new instance
of the code if you don’t want to modify the existing code.

2. Whichever method you chose (whether it was to use the existing code or download a new copy),
change to the tutorial code directory. For example:

cd aws-flow-ruby-opsworks-helloworld

3. Edit helloworld.json and make sure that it contains the same values that you chose when setting up
your application in Add the Hello World Application. If you chose different values when setting up
the application, change the values in helloworld.json to match.

Note: For convenience, the AWS OpsWorks version of helloworld_workflow_starter.rb uses the same
helloworld.json file that the runner uses to find the domain and task lists to use. If you’re curious to
see how this is done, open the file and examine it.

4. If you made any modifications to helloworld.json, save the file and then run hello_workflow_starter.rb
just as you did when testing the code in Verify the Code and Configuration:

bundle exec ruby lib/helloworld_workflow_starter.rb helloworld.json

5. Open the AWS Management Console, navigate to the SWF section and click Workflow Executions to
monitor the progress of your workflow execution. You should be able to see your workflow events in
the Events tab, and your running activities in the Activities tab of the displayed workflow execution.

Alternatively to executing the workflow on the command line, you can start it using the AWS Management
Console.

To start a workflow execution using the |console|:

1. Using the AWS Management Console, navigate to the Amazon SWF section by selecting SWF in the
Services menu.

2. Click Dashboard and then select the same Domain that you used when setting up your application in
Add the Hello World Application.

3. Click Start a new Workflow Execution in the Quick Links section of the page.

4. Set the Workflow Type Name and Workflow Type Version that was specified in the Hello World ap-
plication. You can verify these settings by viewing the helloworld_utils.rb file in the sample filename.
If you did not modify it, these values will be HelloWorldWorkflow and 1.0. Enter any value you like
for the Workflow Execution ID.

5. Click Advanced Options and set the Task List to be the same task list that you used when adding the
application on AWS OpsWorks. Choose reasonable values for the Execution Start to Close Timeout
and the Task Start to Close Timeout. For reference, the values used in the sample code are 3600 and
30 seconds, respectively.

6. Click Continue to proceed to the next screen.

72 Chapter 6. Working with Other AWS Products

AWS Flow Framework for Ruby Developer Guide, Release 1.0

7. Enter any values you like for the execution Input, or leave it blank. Click the Review button to review
the values that you’ve entered.

8. When you’re satisfied with the values, click Start Execution to start your workflow execution. This
will begin executing your workflow and activity tasks.

9. Click Workflow Executions and then click the name of the workflow execution you just initiated to
monitor its progress as with the command-line initiated execution.

6.2.3 Experiment with Your Own Application

You’ve successfully created an AWS OpsWorks-ready stack, layer, instance, and application and have com-
pleted a deployment to the Amazon EC2 instance you created.

Now that you’ve proceeded through an entire AWS Flow Framework for Ruby deployment on AWS
OpsWorks, you can try deploying your own workflow code. For the best results, follow the steps as they
were presented in this guide, substituting your own application in place of the Hello World sample.

With AWS OpsWorks and the AWS Flow Framework for Ruby, you can deploy as many workflow and
activity workers as you like on the AWS cloud with minimal setup!

6.2.4 For More Information

For more information about working with AWS Flow Framework for Ruby and AWS OpsWorks, refer to
these topics:

• aws-flow-ruby (page 77)

• Adding Apps: AWS Flow (Ruby) in the |OPS| User Guide

6.3 Amazon SWF Metrics for CloudWatch

Amazon SWF now provides metrics for CloudWatch that you can use to track your workflows and activities
and set alarms on threshold values that you choose. You can view metrics using the AWS Management
Console. For more information, see Viewing Amazon SWF Metrics.

6.3.1 Amazon SWF Workflow Metrics

The following metrics are available for Amazon SWF workflows:

6.3. Amazon SWF Metrics for CloudWatch 73

http://docs.aws.amazon.com/opsworks/latest/userguide//workingapps-creating.html#workingapps-flow

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Metric Description
DecisionTaskSched-
uleToStartTime

The time interval, in milliseconds, between the time that the decision task was
scheduled and the time it was picked up by a worker and started.

DecisionTaskStartTo-
CloseTime

The time interval, in milliseconds, between the time that the decision task was
started and the time it was closed.

DecisionTasksCom-
pleted

The count of decision tasks that have been completed.

StartedDecision-
TasksTimedOutOn-
Close

The count of decision tasks that started but timed out on closing.

WorkflowStartTo-
CloseTime

The time, in milliseconds, between the time the workflow started and the time
it closed.

WorkflowsCanceled The count of workflows that were canceled.
WorkflowsCompleted The count of workflows that completed.
WorkflowsContin-
uedAsNew

The count of workflows that continued as new.

WorkflowsFailed the count of workflows that failed.
WorkflowsTerminated the count of workflows that were terminated.
WorkflowsTimedOut The count of workflows that timed out, for any reason.

Dimensions for Amazon SWF Workflow Metrics

Dimension Description
Domain The Amazon SWF domain that the workflow is running in.
WorkflowTypeName The name of the workflow type for this workflow execution.
WorkflowTypeVersion The version of the workflow type for this workflow execution.

6.3.2 Amazon SWF Activity Metrics

The following metrics are available for Amazon SWF activities:

74 Chapter 6. Working with Other AWS Products

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Metric Description
ActivityTaskScheduleTo-
CloseTime

The time interval, in milliseconds, between the time when the activity
was scheduled to when it closed.

ActivityTaskSchedule-
ToStartTime

The time interval, in milliseconds, between the time when the activity
task was scheduled and when it started.

ActivityTaskStartToClose-
Time

The time interval, in milliseconds, between the time when the activity
task started and when it was closed.

ActivityTasksCanceled The count of activity tasks that were canceled.
ActivityTasksCompleted The count of activity tasks that completed.
ActivityTasksFailed The count of activity tasks that failed.
ScheduledActivity-
TasksTimedOutOnClose

The count of activity tasks that were scheduled but timed out on close.

ScheduledActivity-
TasksTimedOutOnStart

The count of activity tasks that were scheduled but timed out on start.

StartedActivityTasksTimed-
OutOnClose

The count of activity tasks that were started but timed out on close.

StartedActivityTasksTimed-
OutOnHeartbeat

The count of activity tasks that were started but timed out due to a
heartbeat timeout.

Dimensions for Amazon SWF Activity Metrics

Dimension Description
Domain The Amazon SWF domain that the activity is running in.
ActivityTypeName The name of the activity type.
ActivityTypeVersion The version of the activity type

6.3.3 Working with Metrics

Metrics that Report a Time Interval

Amazon SWF metrics for CloudWatch that report time intervals are always measured in milliseconds. These
metrics generally correspond to stages of your workflow execution for which you can set workflow and
activity timeouts, and have similar names.

For example, the DecisionTaskStartToCloseTime metric measures the time it took for the de-
cision task to complete after it began executing, which is the same time period for which you can set a
DecisionTaskStartToCloseTimeout value.

For a diagram of each of these workflow stages and to learn when they occur over the workflow and activity
lifecycles, see Timeout Types.

Metrics that Report a Count

Some of the Amazon SWF metrics for CloudWatch report results as a count. For example,
WorkflowsCanceled, records a result as either one or zero, indicating whether or not the workflow

6.3. Amazon SWF Metrics for CloudWatch 75

AWS Flow Framework for Ruby Developer Guide, Release 1.0

was canceled. A value of zero does not indicate that the metric was not reported, only that the condition
described by the metric did not occur.

For count metrics, minimum and maximum will always be either zero or one, but average will be a value
ranging from zero to one.

76 Chapter 6. Working with Other AWS Products

CHAPTER

SEVEN

UTILITIES

The AWS Flow Framework for Ruby is packaged with two utilities, aws-flow-ruby, which can be
used to spawn and manage workers (page 18), and aws-flow-utils, which can generate AWS Flow
Framework for Ruby application skeletons for you.

7.1 aws-flow-ruby

aws-flow-ruby (also referred to as the runner) is a command-line utility that you can use to spawn workflow
and activity workers according to a specification that you provide in a JSON configuration file. It is provided
with the AWS Flow Framework for Ruby beginning with version 1.3.0.

Note: While aws-flow-ruby will start activity and workflow workers, it is not designed to start the workflow
execution itself. See Starting a Workflow Execution (page 34) for more information.

7.1.1 Starting Workers with aws-flow-ruby

To use aws-flow-ruby to launch your activity and workflow workers, provide it with the JSON configuration
file as its sole argument:

aws-flow-ruby -f runnerspec.json

The JSON file that you provide must adhere to the format specified in Runner Specification File (page 78).

Note: The runner will start the workflow and activity workers that are defined in the file, and they’ll start
polling for tasks. It does not start a workflow execution. You must perform that step separately. For more
information, see Tutorial: Hello AWS OpsWorks! (page 63).

The runner is configured by passing it a JSON-formatted configuration file. Here is a minimal example,
providing only the required fields:

{
"domain": { "name": "ExampleDomain" },
"activity_workers": [

{ "task_list": "example_activity_tasklist" }

77

AWS Flow Framework for Ruby Developer Guide, Release 1.0

],
"workflow_workers": [

{ "task_list": "example_workflow_tasklist" }
]

}

You do not need to specify either the workflow or activity classes using this minimal setup. The runner
will automatically look for the presence of the activities.rb and workflows.rb files in the flow
subdirectory in the location that you start aws-flow-ruby, and will use those as the activity and workflow
classes, respectively.

If the activities within the activities.rb file are not based on the Activities class, then an Activi-
ties class will be generated for you. However, in this case you must explicitly list the class names in the
activity_classes option.

Tip: You don’t need to implement your activities and workflows in the activities.rb and workflows.rb files.
You can use these files to simply require activity and workflow code that is located elsewhere.

If you want to override the use of these files, specify the activity_paths, workflow_paths, and
related activity_classes and workflow_classes fields in the runner configuration file.

7.1.2 Runner Specification File

Here is a complete list of the sections and fields that can be set in the runner configuration file.

domain Provides the domain name that will be used (or registered, if necessary) by aws-flow-ruby, and
optionally, the domain retention period. If domain is not provided, then the domain FlowDefault
will be used by default.

Parame-
ter

Description

name Required The domain name to register. This domain name must be unique to your
account / region (Two domains in different regions that share the same name are still
considered to be wholly different domains).

reten-
tion_in_days

Optional. The number of days for which the workflow history will be preserved. If
this is not specified, a default retention period of 7 days is used.

Example:

"domain": {
"name": "MyExampleDomain",
"retention_in_days": 10

}

activity_paths Optional. Specifies a list of paths to Ruby source files containing activity classes based on
the Activities class.

If not specified, aws-flow-ruby will attempt to load the file flow/activities.rb, which will
typically contain require lines that load the activity source files. For example:

78 Chapter 7. Utilities

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

require 'lib/helloworld_activity.rb'

The paths that are specified should be relative to the location of the configuration file (where the
runner is executed).

Example:

"activity_paths": [
"aws-flow-ruby-samples/Samples/hello_world/lib/helloworld_activity.rb"

]

activity_workers Specifies a list of activity worker groups to spawn. Each worker takes the following
options:

Parameter Description
activ-
ity_classes

Optional. A list of activity class names that the activity worker will run.
If not provided, then the activity classes to be run will be auto-discovered by
looking in the files specified in the activity_paths member (or, alternatively,
flow/activities.rb) for classes that are based on AWS::Flow::Activities.

Note: any activities that are not based on AWS::Flow::Activities must be listed
here, or they will not be used.

num-
ber_of_forks_per_worker

Optional. The number of forked processes that are spawned per activity worker.
This sets the number of activity tasks that an activity worker can work on in
parallel. If not specified, a default value of 20 will be used. You can set this to
zero to turn forking off.

num-
ber_of_workers

Optional. The number of activity workers (AWS::Flow::ActivityWorker) to
spawn. For each activity worker spawned, a default workflow implementation
(decider) will be generated, as well. If not specified, a default value of 1 (one)
will be used. you can override this value in the default_deciders section.

task_list The task list to use for the activity execution. If this is not specified, then a task
list name will be generated for you, based on the name of the first activity class
found.

Example:

"activity_workers": {
"number_of_workers": 1,
"number_of_forks_per_worker": 10,
"activity_classes": ["HelloWorldActivity"],
"task_list": "activity_tasklist"

}

default_deciders Optional. Specifies behavior when the AWS Flow Framework for Ruby automatically
generates a workflow implementation for your activities.

A single option can be set, number_of_workers, which sets how many workers are launched. This can

7.1. aws-flow-ruby 79

AWS Flow Framework for Ruby Developer Guide, Release 1.0

be used to override the value set in the activity_workers section.

Example:

"default_deciders": {
"number_of_workers" : 3,

}

Note: Generated workflows and workers use the task list “flow_default_ruby”.

workflow_paths Optional. Specifies a list of paths to Ruby source files containing workflow classes based
on the Workflows class.

If not specified, aws-flow-ruby will attempt to load the file flow/workflows.rb, which will typically
contain require lines that load the workflow source files. For example:

require 'lib/helloworld_workflow.rb'

The paths that are specified should be relative to the location of the configuration file (where aws-
flow-ruby is executed).

Example:

"workflow_paths": [
"aws-flow-ruby-samples/Samples/hello_world/lib/helloworld_workflow.rb"

]

workflow_workers Required. Specifies a list of workflow worker groups to spawn. These take the follow-
ing options:

num-
ber_of_workers

Optional. The number of workflow workers (AWS::Flow::WorkflowWorker) to
spawn. If not specified, a default value of 1 (one) will be used.

task_list Required. The task list to use for the workflow execution.
work-
flow_classes

Optional. The list of workflow class names that the workflow worker will run.
If not provided, then the workflow classes to be run will be auto-discovered by
looking in the files specified in the workflow_paths member (or, alternatively,
flow/workflows.rb) for classes that are based on AWS::Flow::Workflows.

Note: any workflows that are not based on AWS::Flow::Workflows must be listed
here, or they will not be used.

Example:

"workflow_workers": {
"number_of_workers": 1,
"workflow_classes": ["HelloWorldWorkflow"],
"task_list": "workflow_tasklist"

}

80 Chapter 7. Utilities

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

AWS Flow Framework for Ruby Developer Guide, Release 1.0

7.2 aws-flow-utils

The aws-flow-utils utility can be used to generate application skeletons suitable for running locally or hosted
on Amazon EC2 using AWS Elastic Beanstalk. It is provided with the AWS Flow Framework for Ruby
beginning with version 2.4.0.

Basic syntax:

aws-flow-utils -c TYPE -n APPNAME [OPTIONS]

At the minimum, you must specify the type of application to create (either local or eb) and give it a
name. If you specify eb, then aws-flow-utils will create an application that you can deploy using AWS
Elastic Beanstalk. For more information about deploying a workflow using AWS Elastic Beanstalk, see
Deploying Workflows With AWS Elastic Beanstalk (page 59).

7.2.1 Options Reference

There are a number of options that you can specify when running aws-flow-utils:

7.2. aws-flow-utils 81

AWS Flow Framework for Ruby Developer Guide, Release 1.0

Option Description
-c, --command TYPE Create a project of the specified TYPE. You can

specify either:
• local to build a locally-executable Ama-

zon SWF application
• eb to build an Amazon SWF application

configured for use with Amazon Elastic
Beanstalk.

-n, --name NAME Set the name of the application.
-r, --region REGION Set the AWS Region. If this option is not spec-

ified, the default value is taken from the environ-
ment variable AWS_REGION. If AWS_REGION is
not set, then this argument is required.

-p, --path PATH Set the location where the application will be cre-
ated. The default is in the local directory (‘.’)

-a, --act_path PATH Sets the path to an activity class that will be copied
into your project. If this option is not specified,
then an empty activity.rb file will be gener-
ated that you can fill in yourself.

-w, --wf_path PATH An optional path to a workflow class that will be
copied into your project.

-A, --activities x,y,z Set the names of activity classes within the file set
using the --act_path option. This option is
only necessary if your activity classes are not based
on the Activities class.

-W, --workflows x,y,z Set the names of workflow classes within the file set
using the --wf_path option. This option is only
necessary if your workflow classes are not based on
the Workflows class.

Note: There’s no need to memorize this list; you can use aws-flow-utils --help to get a list of the
command syntax and available options.

82 Chapter 7. Utilities

http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Activities.html
http://docs.aws.amazon.com/amazonswf/latest/awsrbflowapi/AWS/Flow/Workflows.html

CHAPTER

EIGHT

ADDITIONAL RESOURCES

In addition to using the contents of this guide, you can learn more about the AWS Flow Framework for Ruby
by using the online resources listed in this topic.

8.1 AWS Flow Framework for Ruby API Reference

The AWS Flow Framework for Ruby API Reference provides details about each of the classes, methods and
data structures that make up the framework.

8.2 Amazon Simple Workflow Service Forums

The Amazon SWF forums are a great place to post questions and read answers from the Amazon SWF team
and other coders working with the AWS Flow Framework and other Amazon SDKs.

8.3 Videos

The video, Introduction to Programming the AWS Flow Framework for Ruby (video), introduces viewers to
the AWS Flow Framework for Ruby and walks through the Hello World (page 7) tutorial, providing details
about the code and how to run it.

8.4 Samples and Recipes

A set of AWS Flow Framework for Ruby code samples and recipes is available on GitHub, at
https://github.com/awslabs/aws-flow-ruby-samples.

Note: You can find a discussion of the samples and recipes in the following topics in this guide:

• Sample Code

• Recipes

83

http://docs.aws.amazon.com//amazonswf/latest/awsrbflowapi/
https://forums.aws.amazon.com/forum.jspa?forumID=133
http://www.youtube.com/watch?v=Z_dvXy4AVEE
https://github.com/awslabs/aws-flow-ruby-samples

AWS Flow Framework for Ruby Developer Guide, Release 1.0

84 Chapter 8. Additional Resources

CHAPTER

NINE

DOCUMENT HISTORY

This topic lists important changes to the documentation over the history of the AWS Flow Framework for
Ruby Developer Guide.

• API version: 2012-01-25

• Latest documentation update: January 22, 2015

January 22, 2015 The AWS Flow Framework for Ruby provides a new utility, aws-flow-utils, which can
generate application skeletons that you can run locally or on AWS Elastic Beanstalk. Many of the
tutorials and related content has been updated. For details, refer to the following walkthroughs, which
are new (or, in the case of the Hello World tutorial, has been completely rewritten):

• Hello World (page 7)

• Basic Workflow Example (page 11)

• Deploying Workflows With AWS Elastic Beanstalk (page 59)

Additionally, the rest of the documentation has been re-organized and refreshed. For an overview of
the new layout, see What is the AWS Flow Framework for Ruby? (page 1).

December 17, 2014 Amazon SWF now includes support for setting the priority of tasks on a task list, and
will attempt to deliver those with higher priority before tasks with lower priority. Information about
this feature is provided in Setting Task Priority (page 43).

November 10, 2014 A number of topics in the Programming Guide section have been revised for better
clarity:

• Specifying Workflow and Activity Options (page 36)

• Retrying Failed Tasks (page 52)

• Executing Tasks Asynchronously (page 49)

• Handling Errors (page 48)

• Troubleshooting and Debugging Workflows (page 56)

Additionally, Troubleshooting and Debugging Workflows (page 56) provides information about using
the new WorkflowReplayer class.

September 8, 2014 Added content and a new tutorial about how to use AWS OpsWorks with Amazon SWF
(page 56).

85

AWS Flow Framework for Ruby Developer Guide, Release 1.0

August 19, 2014 Added documentation about the runner (page 77), a new command-line utility that helps
to configure and launch activities and workflows.

August 18, 2014 The guide has been restructured to more closely resemble other AWS guides. Some of the
changes include the following:

• The Introduction topic has been renamed What is the AWS Flow Framework for Ruby? (page 1),
and now includes the sections Important Notes and Where to Find the Source Code and Samples.

• The Sample Code and Recipes sections have been moved into the Programming Guide.

• The Additional Resources (page 83) section has been promoted to a top-level chapter, instead of
being hidden within the introduction.

April 8, 2014 A new chapter has been added to the documentation: Recipes. This chapter provides recipes
for common use cases.

The official AWS Flow Framework for Ruby samples are now described in the Sample Code chapter.
These are fully-functional Amazon SWF applications that use the AWS Flow Framework for Ruby.

The Hello World (page 7) tutorial has been updated to match the version that currently exists in the
AWS Flow Framework for Ruby samples.

November 13, 2013 The code for the basic code example was missing from its topic—this has been fixed.

August 1, 2013 Initial release of the AWS Flow Framework for Ruby Developer Guide.

86 Chapter 9. Document History

INDEX

A
activities

asynchronous, 49
description, 17
implementing, 24
options, 36
registering, 24

activity workers
programming, 32

aws credentials, 6

C
CloudWatch

list of metrics, 73
code

basic workflow, 11
command

aws-flow-ruby, 77
aws-flow-utils, 80

command-line
utilities, 76

concepts
main topic, 16

credentials
setting, 6

D
decider

implementing, 29
workflow patterns, 45

E
errors

handling, 48

G
getting started, 3

installing, 5

H
hello world, 7, 11

I
installing, 5

O
options

setting, 36

P
programming, 21, 34

activities, 24
asynchronous, 49
debugging, 56
decider, 29
error handling, 48
options, 36
registering a domain, 23
retries, 52
troubleshooting, 56
workers, 32
workflow patterns, 45
workflows, 29

R
registering

activity type, 24
domain, 23
workflow type, 29

runner, 77

S
single

application
creating with aws-flow-utils, 80

workers
starting with aws-flow-ruby, 77

87

AWS Flow Framework for Ruby Developer Guide, Release 1.0

T
task priority

setting, 43
tasks

asynchronous, 49

U
utilities, 76

aws-flow-ruby, 77
aws-flow-utils, 80

W
workflow workers

programming, 32
workflows

debugging, 56
description, 17
implementing, 29
options, 36
patterns, 45
registering, 29
troubleshooting, 56

88 Index

	What is the AWS Flow Framework for Ruby?
	Contents
	Important Notes About the AWS Flow Framework for Ruby
	Where to Find the Source Code and Samples
	Framework and SDK References in the Text
	About Amazon Web Services

	Getting Started
	Setting Up
	Providing AWS Credentials
	Hello World
	Basic Workflow Example

	Flow Concepts
	Parts of an Amazon SWF Application
	Amazon SWF Timeout Types

	Basic Workflow Programming
	Registering a Domain
	Implementing Activities
	Running Activities
	Implementing Workflows
	Starting Workflow and Activity Workers
	Starting a Workflow Execution
	Specifying Workflow and Activity Options

	Advanced Topics
	Setting Task Priority
	Implementing Workflow Patterns
	Handling Errors
	Executing Tasks Asynchronously
	Retrying Failed Tasks
	Troubleshooting and Debugging Workflows

	Working with Other AWS Products
	Deploying Workflows With AWS Elastic Beanstalk
	Tutorial: Hello AWS OpsWorks!
	Amazon SWF Metrics for CloudWatch

	Utilities
	aws-flow-ruby
	aws-flow-utils

	Additional Resources
	AWS Flow Framework for Ruby API Reference
	Amazon Simple Workflow Service Forums
	Videos
	Samples and Recipes

	Document History
	Index

